Advances in Clinical Medicine
Vol. 13  No. 03 ( 2023 ), Article ID: 62924 , 6 pages
10.12677/ACM.2023.133610

RIPK1和肌萎缩侧索硬化症研究进展

袁如意1,2

1三峡大学基础医学院,湖北 宜昌

2三峡大学人民医院神经内科,湖北 宜昌

收稿日期:2023年2月21日;录用日期:2023年3月16日;发布日期:2023年3月22日

摘要

肌萎缩侧索硬化症(Amyotrophic lateral sclerosis, ALS)是一种慢性进展的致死性疾病,受体相互作用蛋白激酶1 (Receptor-interacting protein kinase 1, RIPK1)可能是治疗ALS的关键靶点。在RIPK1介导的程序性坏死中,RIPK1的激活主要受其泛素化和磷酸化调节,其中K63泛素化和M1泛素化及其下游的磷酸化决定是否激活RIPK1以介导细胞生存或死亡。在RIPK1介导的炎症中,RIPK1通过介导炎症基因的表达或者炎症因子的转录直接促进炎症的发生,或者通过调控小胶质细胞来介导脊髓炎症微环境。因此,RIPK1可能是ALS发病关键因素。目前已有用于治疗ALS的RIPK1抑制剂进入临床试验,但是其在炎症性疾病的进一步研究中发现疗效欠佳。最近研究发现在SOD1G93A小鼠中遗传失活RIPK1并不会改善其病理和临床表现,这为以RIPK1为靶点治疗ALS提供了不同的见解。

关键词

RIPK1,肌萎缩侧索硬化症,程序性坏死

Research Progress of RIPK1 and Amyotrophic Lateral Sclerosis

Ruyi Yuan1,2

1College of Basic Medical Science, China Three Gorges University, Yichang Hubei

2Department of Neurology, People’s Hospital of China Three Gorges University, Yichang Hubei

Received: Feb. 21st, 2023; accepted: Mar. 16th, 2023; published: Mar. 22nd, 2023

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a chronic progressive fatal disease, and receptor-interacting protein kinase 1 (RIPK1) may be a key target for the treatment of ALS. In RIPK1-mediated programmed necrosis, the activation of RIPK1 is mainly regulated by its ubiquitination and phosphorylation. K63 ubiquitination and M1 ubiquitination and their downstream phosphorylation determine whether RIPK1 is activated to mediate cell survival or death. In RIPK1-mediated inflammation, RIPK1 directly promotes the occurrence of inflammation by mediating the expression of inflammatory genes or the transcription of inflammatory factors, or mediates the spinal cord inflammatory microenvironment by regulating microglia. Therefore, RIPK1 is a key factor in the pathogenesis of ALS. At present, RIPK1 inhibitor used to treat ALS has entered clinical trials, but it was found to be less effective in further research on inflammatory diseases. Recent studies have found that genetic inactivation of RIPK1 in SOD1G93A mice does not improve its pathological and clinical manifestations, which may be the reason for the lack of efficacy of RIPK1 inhibitors in clinical trials.

Keywords:RIPK1, Amyotrophic Lateral Sclerosis, Necroptosis

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

肌萎缩侧索硬化症是一种严重的神经系统退行性疾病,通常在起病后3~5年内死亡,其特征是运动皮层、脑干和脊髓上、下运动神经元的进行性丧失,导致进行性肌肉无力和萎缩。目前对于ALS运动神经元丢失的机制尚不清楚。近年来,RIPK1已经成为治疗神经退行性疾病、自身免疫性疾病和炎症性疾病的重要靶点。有大量的研究表明RIPK1在不同的信号机制调控下可以介导凋亡、程序性坏死和炎症等不同的信号通路 [1] - [6]。RIPK1介导的程序性坏死和炎症被认为是ALS的重要发病机制。目前以RIPK1为靶点开发的用于治疗ALS的抑制剂已经进入了临床试验阶段。本文综述了RIPK1激酶活性的调控机制、RIPK1参与ALS的发病机制以及以RIPK1为靶点治疗ALS的研究进展。

2. RIPK1是TNF-α信号通路重要介质

肿瘤坏死因子α (tumor necrosis factor α, TNF-α)通过一系列信号级联反应参与多种退行性疾病的发病机制 [7]。而RIPK1的激活是TNF-α通路中的关键介质,并决定了下游细胞的死亡或存活 [4]。转化生长因子β激活激酶1 (transforming growth factor-β-activated kinase 1, TAK1)可被活化的RIPK1招募,并激活kappa B激酶抑制剂(inhibitor of kappa B kinase, IKK),从而促进核因子κB (nuclear factor kappa-B, NF-κB)信号通路的激活,从而导致促生存因子或促炎细胞因子的转录 [8]。复合物IIa的形成是RIPK1激活的另一通路,可以导致RIPK1依赖的凋亡(RIPK1-dependent apoptosis, RDA) [9]。而当半胱氨酸蛋白酶活性缺乏时,活化的RIPK1通过形成复合物IIb导致程序性坏死,并进一步触发细胞膜的破坏和细胞裂解 [1]。

RIPK1的激活主要由泛素化和磷酸化两种方式调控。在TNFα激活TNFR1后形成复合物I,这一过程主要通过其自身死亡结合域招募RIPK1和肿瘤坏死因子受体相关死亡域蛋白(Tumor necrosis factor receptor type 1-associated death domain protein, TRADD)来完成 [10]。首先复合体I中的TRADD招募适配器蛋白以催化RIPK1上的K63泛素修饰 [11]。其次是复合物I招募精子发生关联2 (spermatogenesis associated 2, SPATA2)和线性泛素化组装复合物(linear ubiquitination assembly complex, LUBAC)对RIPK1进行M1线性泛素修饰 [12]。M1泛素链和K63泛素链通过与泛素链结合的方式招募下游信号分子对RIPK1进行磷酸化或者对其自身去泛素化修饰以调控其激酶活性 [9]。

2.1. RIPK1的K63泛素修饰

在复合物I中,TRADD招募适配器蛋白,并介导RIPK1的K63泛素化 [11]。随后,具有泛素结合域的信号蛋白与K63泛素链结合并激活TAK1 [13]。首先,TAK1可以直接对RIPK1进行磷酸化,其对RIPK1的磷酸化决定了RIPK1是与Fas相关死亡域蛋白(Fas-associated with death domain protein, FADD)结合导致RDA还是与RIPK3结合导致程序性坏死 [14]。其次,TAK1也可以进一步激活IKK或者MAPK活化蛋白激酶2 (MAPK-activated protein kinase 2, MK2)来抑制复合物II的形成 [15] [16],以促进细胞生存。NF-κB信号通路也可以被IKK激活,并导致促生存因子或促炎因子的转录 [8]。最近研究表明,降低泛素修饰酶cIAP1启动子区域中的H3K73me3水平有助于增强K63-去泛素化 [17]。

2.2. RIPK1的M1线性泛素修饰

复合物I中的TRADD/TRAF2/cIAP1复合物招募LUBAC介导RIPK1的M1线性泛素修饰 [18] [19] [20]。去泛素化酶CYLD及其适配器SPATA2也可以被招募到复合物I以介导M1泛素链的分解,从而负性调控RIPK1的激活 [21]。三种主要结合M1泛素链的泛素结合蛋白也参与负调控RIPK1的激活,包括视神经磷酸酶(optineurin, OPTN)、NF-κB必需调节因子(NF-κB essential modulator, NEMO)和NF-κB激活的A20结合抑制剂1 (A20-binding inhibitor of NF-κB activation 1, ABIN1) [22] [23] [24]。此外,复合物I中RIPK1的M1泛素化也介导了TANK结合激酶1 (TANK-binding kinase 1, TBK1)的募集,导致RIPK1底物识别的重要位点T189的磷酸化,从而阻断了RIPK1的激活 [25]。

3. RIPK1促进ALS炎症的发生

RIPK1的激活可以介导炎症基因的表达,这一过程独立于程序性坏死和RDA [5] [26]。髓系细胞中RIPK1的激活可促进炎症基因的表达和促炎细胞因子的释放,而这一过程并不依赖于细胞死亡 [27] [28] [29]。研究表明,RIPK1 (有时与RIPK3一起)具有细胞死亡独立的信号活性,导致多种炎症分子的转录上调 [5] [27] [29]。炎症基因表达的调控涉及RIPK1下游的一系列信号转导,然后进一步激活炎症转录因子 [4]。最新的研究表明,活化的RIPK1募集BRG1/BRM相关因子(BRG1/BRM-associated factor, BAF)复合物进一步介导BAF复合物的关键成分SMARCC2的磷酸化,从而促进染色质重塑并介导炎症反应的特定基因的转录 [2]。越来越多的证据表明,RIPK1可以直接促进炎症的发生。

脊髓轴突变性是ALS早期病理改变,而OPTN缺失的少突胶质细胞和髓系细胞可以导致类似的病理改变 [6]。在Optn−/−小鼠的脊髓中发现多种促炎细胞因子水平升高,但可以被RIPK1抑制降低 [6]。因此,髓系细胞和少突胶质细胞中OPTN的缺失也可以通过活化的RIPK1调控促炎小胶质细胞激活并导致髓鞘和轴突功能缺陷。最近的研究表明,RIPK1调控的炎症小胶质细胞(RIPK1-Regulated Inflammatory Microglia, RRIMs)富集促进多种ALS小鼠模型的脊髓炎症环境形成,并可以通过药理学或遗传抑制RIPK1来降低RRIMs水平,说明RIPK1也通过调节小胶质细胞状态来介导脊髓炎症微环境的形成 [3]。

4. 以RIPK1为靶点治疗ALS

RIPK1介导的神经炎症和细胞死亡的激活是ALS的重要病理机制 [30]。导致ALS的OPTN和TBK1基因突变已被证明会促进中枢神经系统中RIPK1介导的程序性坏死和RDA的发生 [6] [25]。Optn编码一种可调节RIPK1泛素化和降解的泛素结合蛋白。RIPK1参与介导OPTN缺乏引起的轴突丢失和髓鞘异常,这通常是ALS患者的早期病理改变 [6]。TBK1可以通过磷酸化RIPK1阻断与底物的相互作用来抑制其激酶活性 [25] [31]。TBK1−/−的胚胎致死性小鼠可以通过杂合或纯合RIPK1激酶死亡D138N敲入突变完全拯救,这为TBK1在调节RIPK1激活中的关键功能提供了基因验证 [25]。在体外试验中,TBK1缺失或药理抑制使细胞对TNF-α诱导的RIPK1依赖的细胞死亡敏感 [25] [31]。另外,在TBK1+/−小鼠的髓系中,TAK1作为另一种RIPK1负性调控因子,其单倍体不足导致了ALS/FTD的许多特征,包括髓鞘异常、轴突变性、神经元丢失和细胞质TDP-43聚集 [25]。因此,RIPK1的激活可能介导了ALS的病理改变。

目前,用于治疗ALS的RIPK1抑制剂已经进入临床试验。由葛兰素史克公司开发的化合物GSK2982772成功地完成了I期临床试验,但在随后的溃疡性结肠炎及类风湿关节炎的临床研究中均无明确的疗效 [32] [33] [34],其对于ALS的治疗效果有待进一步研究。最近,赛诺菲和Denali开发的另一种RIPK1抑制剂(SAR443820)用于治疗ALS,其II期临床试验尚在进行中 [35]。

在近期的研究中发现,遗传失活MLKL并不影响SOD1G93A小鼠模型的疾病进展,随后的脊髓病理研究也发现通过MLKL遗传失活阻断程序性坏死信号通路不会影响ALS小鼠模型中的运动神经元变性 [36]。另一项研究也表明遗传失活RIPK1不会改善SOD1G93A小鼠模型的病理和疾病进展 [37]。因此,程序性坏死和RIPK1在导致ALS中的突出作用仍存在争议,这也部分解释了RIPK1抑制剂在临床试验中缺乏疗效的原因。

5. 讨论

在程序性坏死信号通路中,RIPK1是关键的信号事件,其激活受多种不同机制的调控,以此决定下游级联信号的走向。RIPK1也以非坏死依赖的方式调控炎症,其机制主要有自主调控和调节小胶质细胞以促进炎症两种方式。因此,RIPK1被认为是介导ALS发病机制的重要因素。以RIPK1为靶点开发的抑制剂已经进行了初步的临床研究,但是在其他疾病的研究中发现RIPK1抑制剂无临床疗效。在最近的研究中发现RIPK1失活并不能拯救SOD1G93A小鼠模型的疾病进展。因此,RIPK1是否为ALS发病的重要机制尚需进一步研究。

文章引用

袁如意. RIPK1和肌萎缩侧索硬化症研究进展
Research Progress of RIPK1 and Amyotrophic Lateral Sclerosis[J]. 临床医学进展, 2023, 13(03): 4253-4258. https://doi.org/10.12677/ACM.2023.133610

参考文献

  1. 1. Yuan, J., Amin, P. and Ofengeim, D. (2019) Necroptosis and RIPK1-Mediated Neuroinflammation in CNS Diseases. Nature Reviews Neuroscience, 20, 19-33. https://doi.org/10.1038/s41583-018-0093-1

  2. 2. Li, W., Shan, B., Zou, C., et al. (2022) Nuclear RIPK1 Promotes Chromatin Remodeling to Mediate Inflammatory Response. Cell Research, 32, 621-637. https://doi.org/10.1038/s41422-022-00673-3

  3. 3. Mifflin, L., Hu, Z., Dufort, C., et al. (2021) A RIPK1-Regulated Inflammatory Microglial State in Amyotrophic Lateral Sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 118, e2025102118. https://doi.org/10.1073/pnas.2025102118

  4. 4. Degterev, A., Ofengeim, D. and Yuan, J. (2019) Targeting RIPK1 for the Treatment of Human Diseases. Proceedings of the National Academy of Sciences of the United States of America, 116, 9714-9722. https://doi.org/10.1073/pnas.1901179116

  5. 5. Najjar, M., Saleh, D., Zelic, M., et al. (2016) RIPK1 and RIPK3 Kinases Promote Cell-Death-Independent Inflammation by Toll-Like Receptor 4. Immunity, 45, 46-59. https://doi.org/10.1016/j.immuni.2016.06.007

  6. 6. Ito, Y., Ofengeim, D., Najafov, A., et al. (2016) RIPK1 Medi-ates Axonal Degeneration by Promoting Inflammation and Necroptosis in ALS. Science, 353, 603-608. https://doi.org/10.1126/science.aaf6803

  7. 7. Varfolomeev, E. and Vucic, D. (2018) Intracellular Regulation of TNF Activity in Health and Disease. Cytokine, 101, 26-32. https://doi.org/10.1016/j.cyto.2016.08.035

  8. 8. Chen, Z.J. (2012) Ubiquitination in Signaling to and Activation of IKK. Immunological Reviews, 246, 95-106. https://doi.org/10.1111/j.1600-065X.2012.01108.x

  9. 9. Shan, B., Pan, H., Najafov, A., et al. (2018) Necroptosis in Development and Diseases. Genes & Development, 32, 327-340. https://doi.org/10.1101/gad.312561.118

  10. 10. Micheau, O. and Tschopp, J. (2003) Induction of TNF Receptor I-Mediated Apoptosis via Two Sequential Signaling Complexes. Cell, 114, 181-190. https://doi.org/10.1016/S0092-8674(03)00521-X

  11. 11. Bertrand, M.J., Milutinovic, S., Dickson, K.M., et al. (2008) cIAP1 and cIAP2 Facilitate Cancer Cell Survival by Functioning as E3 Ligases That Promote RIP1 Ubiquitination. Molecular Cell, 30, 689-700. https://doi.org/10.1016/j.molcel.2008.05.014

  12. 12. Wei, R., Xu, L.W., Liu, J., et al. (2017) SPATA2 Regulates the Activation of RIPK1 by Modulating Linear Ubiquitination. Genes & Development, 31, 1162-1176. https://doi.org/10.1101/gad.299776.117

  13. 13. Kanayama, A., Seth, R.B., Sun, L., et al. (2004) TAB2 and TAB3 Activate the NF-kappaB Pathway through Binding to Polyubiquitin Chains. Molecular Cell, 15, 535-548. https://doi.org/10.1016/j.molcel.2004.08.008

  14. 14. Geng, J., Ito, Y., Shi, L., et al. (2017) Regulation of RIPK1 Activation by TAK1-Mediated Phosphorylation Dictates Apoptosis and Necroptosis. Nature Communications, 8, 359. https://doi.org/10.1038/s41467-017-00406-w

  15. 15. Jaco, I., Annibaldi, A., Lalaoui, N., et al. (2017) MK2 Phos-phorylates RIPK1 to Prevent TNF-Induced Cell Death. Molecular Cell, 66, 698-710. https://doi.org/10.1016/j.molcel.2017.05.003

  16. 16. Dondelinger, Y., Jouan-Lanhouet, S., Divert, T., et al. (2015) NF-κB-Independent Role of IKKα/IKKβ in Preventing RIPK1 Kinase-Dependent Apoptotic and Necroptotic Cell Death during TNF Signaling. Molecular Cell, 60, 63-76. https://doi.org/10.1016/j.molcel.2015.07.032

  17. 17. Wang, X., Kuang, N., Chen, Y., et al. (2021) Transplantation of Olfactory Ensheathing Cells Promotes the Therapeutic Effect of Neural Stem Cells on Spinal Cord Injury by Inhibiting Necrioptosis. Aging (Albany NY), 13, 9056-9070. https://doi.org/10.18632/aging.202758

  18. 18. Gerlach, B., Cordier, S.M., Schmukle, A.C., et al. (2011) Linear Ubiquitination Prevents Inflammation and Regulates Immune Signalling. Nature, 471, 591-596. https://doi.org/10.1038/nature09816

  19. 19. Ikeda, F., Deribe, Y.L., Skånland, S.S., et al. (2011) SHARPIN Forms a Linear Ubiquitin Ligase Complex Regulating NF-κB Activity and Apoptosis. Nature, 471, 637-641. https://doi.org/10.1038/nature09814

  20. 20. Haas, T.L., Emmerich, C.H., Gerlach, B., et al. (2009) Recruitment of the Linear Ubiquitin Chain Assembly Complex Stabilizes the TNF-R1 Signaling Complex and Is Required for TNF-Mediated Gene Induction. Molecular Cell, 36, 831-844. https://doi.org/10.1016/j.molcel.2009.10.013

  21. 21. Elliott, P.R., Leske, D., Hrdinka, M., et al. (2016) SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling. Molecular Cell, 63, 990-1005. https://doi.org/10.1016/j.molcel.2016.08.001

  22. 22. Rahighi, S., Ikeda, F., Kawasaki, M., et al. (2009) Specific Recognition of Linear Ubiquitin Chains by NEMO Is Important for NF-kappaB Activation. Cell, 136, 1098-1109. https://doi.org/10.1016/j.cell.2009.03.007

  23. 23. Hadian, K., Griesbach, R.A., Dornauer, S., et al. (2011) NF-κB Essential Modulator (NEMO) Interaction with Linear and lys-63 Ubiquitin Chains Contributes to NF-κB Activation. Journal of Biological Chemistry, 286, 26107-26117. https://doi.org/10.1074/jbc.M111.233163

  24. 24. Nanda, S.K., Venigalla, R.K., Ordureau, A., et al. (2011) Polyubiquitin Binding to ABIN1 Is Required to Prevent Autoimmunity. Journal of Experimental Medicine, 208, 1215-1228. https://doi.org/10.1084/jem.20102177

  25. 25. Xu, D., Jin, T., Zhu, H., et al. (2018) TBK1 Suppresses RIPK1-Driven Apoptosis and Inflammation during Development and in Aging. Cell, 174, 1477-1491. https://doi.org/10.1016/j.cell.2018.07.041

  26. 26. Zhu, K., Liang, W., Ma, Z., et al. (2018) Necroptosis Promotes Cell-Autonomous Activation of Proinflammatory Cytokine gene Expression. Cell Death & Disease, 9, 500. https://doi.org/10.1038/s41419-018-0524-y

  27. 27. Christofferson, D.E., Li, Y., Hitomi, J., et al. (2012) A Novel Role for RIP1 Kinase in Mediating TNFα Production. Cell Death & Disease, 3, e320. https://doi.org/10.1038/cddis.2012.64

  28. 28. McNamara, C.R., Ahuja, R., Osafo-Addo, A.D., et al. (2013) Akt Regulates TNFα Synthesis Downstream of RIP1 Kinase Activation during Necroptosis. PLOS ONE, 8, e56576. https://doi.org/10.1371/journal.pone.0056576

  29. 29. Saleh, D., Najjar, M., Zelic, M., et al. (2017) Kinase Activities of RIPK1 and RIPK3 Can Direct IFN-β Synthesis Induced by Lipopolysaccharide. The Journal of Immunology, 198, 4435-4447. https://doi.org/10.4049/jimmunol.1601717

  30. 30. Feldman, E.L., Goutman, S.A., Petri, S., et al. (2022) Amyotrophic Lateral Sclerosis. The Lancet, 400, 1363-1380. https://doi.org/10.1016/S0140-6736(22)01272-7

  31. 31. Lafont, E., Draber, P., Rieser, E., et al. (2018) TBK1 and IKKε Prevent TNF-Induced Cell Death by RIPK1 Phosphorylation. Nature Cell Biology, 20, 1389-1399. https://doi.org/10.1038/s41556-018-0229-6

  32. 32. Weisel, K., Scott, N., Berger, S., et al. (2021) A Randomised, Placebo-Controlled Study of RIPK1 Inhibitor GSK2982772 in Patients with Active Ulcerative Colitis. BMJ Open Gas-troenterology, 8, e000680. https://doi.org/10.1136/bmjgast-2021-000680

  33. 33. Weisel, K., Berger, S., Thorn, K., et al. (2021) A Randomized, Placebo-Controlled Experimental Medicine Study of RIPK1 Inhibitor GSK2982772 in Patients with Moderate to Severe Rheumatoid Arthritis. Arthritis Research & Therapy, 23, 85. https://doi.org/10.1186/s13075-021-02468-0

  34. 34. Weisel, K., Scott, N.E., Tompson, D.J., et al. (2017) Random-ized Clinical Study of Safety, Pharmacokinetics, and Pharmacodynamics of RIPK1 Inhibitor GSK2982772 in Healthy Volunteers. Pharmacology Research & Perspectives, 5, e00365. https://doi.org/10.1002/prp2.365

  35. 35. Vissers, M., Heuberger, J., Groeneveld, G.J., et al. (2022) Safety, Pharmacokinetics and Target Engagement of Novel RIPK1 Inhibitor SAR443060 (DNL747) for Neurodegenerative Disorders: Randomized, Placebo-Controlled, Double-Blind Phase I/Ib Studies in Healthy Subjects and Patients. Clinical and Translational Science, 15, 2010-2023. https://doi.org/10.1111/cts.13317

  36. 36. Wang, T., Perera, N.D., Chiam, M., et al. (2020) Necroptosis Is Dispensable for Motor Neuron Degeneration in a Mouse Model of ALS. Cell Death & Differentiation, 27, 1728-1739. https://doi.org/10.1038/s41418-019-0457-8

  37. 37. Dominguez, S., Varfolomeev, E., Brendza, R., et al. (2021) Ge-netic Inactivation of RIP1 Kinase Does Not Ameliorate Disease in a Mouse Model of ALS. Cell Death & Differentiation, 28, 915-931. https://doi.org/10.1038/s41418-020-00625-7

期刊菜单