Advances in Clinical Medicine
Vol. 13  No. 07 ( 2023 ), Article ID: 69542 , 4 pages
10.12677/ACM.2023.1371689

细胞连接在机械通气相关肺损伤中的 研究进展

古海云,赵涛*,李刚

日照市人民医院麻醉科,山东 日照

收稿日期:2023年6月25日;录用日期:2023年7月19日;发布日期:2023年7月27日

摘要

机械通气是临床全身麻醉和危重症患者维持有效氧合的重要手段。由于机械通气患者增加,机械通气相关肺损伤(Ventilation-induced lung injury, VILI)的发生率也持续增加,严重可导致急性呼吸窘迫综合征。细胞连接在机械通气相关肺损伤起到关键作用,本文拟从机械通气相关肺损伤中细胞连接变化的研究进展进行综述。

关键词

细胞连接,紧密连接,机械通气相关肺损伤

Research Progress of Cell Junction in Ventilator-Induced Lung Injury

Haiyun Gu, Tao Zhao*, Gang Li

Department of Anesthesiology, The People’s Hospital of Rizhao, Rizhao Shandong

Received: Jun. 25th, 2023; accepted: Jul. 19th, 2023; published: Jul. 27th, 2023

ABSTRACT

Mechanical ventilation is an important method to maintain effective oxygenation in patients of clinical general anesthesia and critical care. Due to the increase in patients with mechanical ventilation, the incidence of ventilator-induced lung injury (VILI) also continues to increase, which can lead to acute respiratory distress syndrome. Cell junction plays a key role in VILI. This article reviews the research progress of cell junction changes in VILI.

Keywords:Cell Junction, Tight Junctions, Ventilator-Induced Lung Injury

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

机械通气是临床全身麻醉和重症医学常用的治疗方法,通过维持患者的呼吸功能缓解呼吸系统疾病造成的呼吸困难等症状,减轻患者的痛苦。然而,机械通气也可能会带来不良反应,如肺损伤,严重影响患者的生存质量和预后 [1] 。关于机械通气相关肺损伤的研究引起临床医师的关注。近年来研究发现,机械通气相关肺损伤与细胞连接的变化密切相关 [2] 。本文将对机械通气相关肺损伤中细胞连接变化的研究进展进行综述。

2. 机械通气相关肺损伤定义及类型

机械通气相关肺损伤是指机械通气时因机械通气操作或患者呼吸系统疾病等因素导致的肺泡通透性增加,肺水肿,进而引起急性肺损伤 [3] 。机械通气相关肺损伤包括两种类型:气压伤、容积伤、剪切伤、生物伤、机械伤等 [4] [5] [6] [7] [8] 。气压伤是由于机械通气时肺组织受到压迫,导致肺泡破裂和胸膜出血或气胸等症状而造成的肺损伤 [4] 。容积伤是由于吸气末高肺容积引起肺泡过度膨胀而致的肺损伤 [5] 。在机械通气过程中,过度膨胀的肺组织与正常肺组织之间、反复开闭的肺组织与正常肺组织之间以及扩张程度不同的肺组织之间,都会产生较大的剪切力,导致剪切伤 [6] 。在机械通气过程中,机械力刺激导致肺组织细胞直接分泌或者通过信号通路活化导致大量炎症因子、趋化因子等介质释放,导致肺组织出现生物伤 [7] 。机械通气过程中,机械功率可能是影响VILI发生的重要因素,影响肺组织炎症反应和肺泡应力水平 [8] 。

3. 细胞连接的概念和类型

细胞连接是细胞之间的接触点,包括紧密连接、锚定连接和间隙连接等。其中,紧密连接是指细胞之间通过膜蛋白互相贴合,形成一个具有高度隔离性的屏障,防止溶质的扩散和细胞之间的物质交换 [9] 。锚定连接主要由以下两类分子组成:鞘氨醇磷脂和蛋白质 [10] 。鞘氨醇磷脂主要存在于紧密连接区域的内层,而蛋白质则在外层,负责桥接细胞之间的膜蛋白。间隙连接是介于紧密连接和连接之间的一种中间状态,它可以允许某些细胞间的小分子物质通过 [11] 。

4. 细胞连接变化对机械通气相关肺损伤的影响

机械通气相关肺损伤中,细胞连接的变化与损伤程度密切相关。在机械通气过程中,机械力导致肺泡、肺血管内皮细胞反复牵张和破坏等,肺泡上皮细胞和肺血管内皮细胞的细胞连接的破坏或失去稳定性,导致细胞基底膜和外周细胞轮廓改变 [12] 。同时,机械力引起肺组织细胞信号传递和机制发生紊乱,导致肺组织细胞内外膜跨膜蛋白的结构和功能改变、细胞凋亡甚至坏死等病变,肺泡通透性增加,进而引起肺组织水肿 [13] 。本文从以下几种细胞连接变化在机械通气相关肺损伤中的作用进行阐述。

4.1. 紧密连接蛋白的变化对机械通气相关肺损伤的影响

机械通气后,肺泡表面附着的纤毛上皮细胞因纤毛运动不畅,肺泡上皮细胞形态发生改变,导致紧密连接区域受到影响。研究表明 [14] ,机械通气导致肺泡纤毛上皮细胞紧密连接Occludin、Claudin-1的降低,导致细胞间距和基底膜发生改变,细胞内外膜跨膜蛋白的结构和功能都发生了改变,导致肺泡通透性增加,进而影响肺泡对无菌环境的代谢维持,病原体易于穿透入侵,导致肺组织损伤。因此,紧密连接的变化会对机械通气相关肺损伤造成重要影响。

4.2. 锚定连接的变化对机械通气相关肺损伤的影响

锚定连接通过细胞骨架系统将细胞与相邻细胞或细胞与基质间连接起来,机械通气过程中,锚定连接区域受到较大的牵拉力和压力,连接间隔较小,连接稳定性变差 [15] 。在机械通气过程中,黏附连接蛋白p120-catenin、β-catenin等受到机械力的牵张,导致其表达降低,导致细胞间连接稳定性变差 [16] 。在机械牵张过程中,锚定连接区域的孔隙和开放通畅度减小,这些都会抑制细胞生长和增殖,发生细胞死亡、细胞迁移受阻等现象,最终导致肺组织损伤的发生 [17] 。锚定连接区域对机械通气的反应是呈时间性和动态性的,即连接区域的可适应性能力随通气时间的延长而下降。

4.3. 间隙连接的变化对机械通气相关肺损伤的影响

间隙连接是通讯连接的一种,介导相邻细胞间的物质转运、化学和电信号的传递。机械通气导致间隙连接发生改变,增加肺组织的水肿程度。研究表明 [18] ,肺泡表面的肺泡毛细血管基底膜、肺泡上皮细胞的间隙连接区域和表层连接区域间间隔缩小,使细胞间交换的气体减少,同时阻碍了细胞内部和体外的物质通路间隙连接的变化也导致细胞间化学和电信号的传递,导致肺泡细胞发生死亡、细胞迁移受阻等现象,出现严重的肺组织损伤。

5. 机械通气相关肺损伤的预防和治疗

机械通气相关肺损伤的预防和治疗主要包括机械通气的改进、肺泡保护性通气策略、肺容积还原和促进肺组织修复等方法。肺泡保护性通气策略包括低容积通气、低氧合通气、肺泡通气度等指标的控制,以减少机械通气对肺部组织的损伤 [19] [20] 。肺容积还原和促进肺组织修复主要通过呼气末正压、肺内抗炎治疗、呼吸支持和营养支持等方法来达到。其预防和治疗方法的根本就是影响细胞连接的表达和分布来降低机械通气所导致的肺损伤。

6. 结论

综上所述,细胞连接变化在机械通气相关肺损伤的发生过程中发挥着重要的作用,不同类型的细胞连接变化对机械通气相关肺损伤的影响也不尽相同。因此,研究机械通气相关肺损伤的细胞连接变化及其机制,寻找更有效的治疗方法是未来的研究方向。

基金项目

国家自然科学基金(82002083),泰山学者工程(tsqn202211380)。

文章引用

古海云,赵 涛,李 刚. 细胞连接在机械通气相关肺损伤中的研究进展
Research Progress of Cell Junction in Ventilator-Induced Lung Injury[J]. 临床医学进展, 2023, 13(07): 12052-12055. https://doi.org/10.12677/ACM.2023.1371689

参考文献

  1. 1. Costa, E.L.V., Slutsky, A.S., Brochard, L.J., et al. (2021) Ventilatory Variables and Mechanical Power in Patients with Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 204, 303-311. https://doi.org/10.1164/rccm.202009-3467OC

  2. 2. Mitra, S., Epshtein, Y., Sammani, S., et al. (2021) UCHL1, a Deubiquitinating Enzyme, Regulates Lung Endothelial Cell Permeability in Vitro and in Vivo. American Journal of Physi-ology—Lung Cellular and Molecular Physiology, 320, 497-507. https://doi.org/10.1152/ajplung.00492.2020

  3. 3. Ling, M.Y., Ye, L., Zeng, Q., et al. (2023) Ferrostatin-1 Allevi-ates Ventilator-Induced Lung Injury by Inhibiting Ferroptosis. International Immunopharmacology, 120, Article ID: 110356. https://doi.org/10.1016/j.intimp.2023.110356

  4. 4. Marini, J.J., Thornton, L.T., Rocco, P.R.M., et al. (2023) Practical Assessment of Risk of VILI from Ventilating Power: A Conceptual Model. Critical Care, 27, 157. https://doi.org/10.1186/s13054-023-04406-9

  5. 5. Beitler, J.R., Malhotra, A. and Thompson, B.T. (2016) Ventila-tor-Induced Lung Injury. Clinics in Chest Medicine, 37, 633-646. https://doi.org/10.1016/j.ccm.2016.07.004

  6. 6. Joelsson, J.P., Asbjarnarson, A., Sigurdsson, S., et al. (2022) Ven-tilator-Induced Lung Injury Results in Oxidative Stress Response and Mitochondrial Swelling in a Mouse Model. La-boratory Animal Research, 38, Article No. 23. https://doi.org/10.1186/s42826-022-00133-4

  7. 7. Curley, G.F., Laffey, J.G., Zhang, H., et al. (2016) Biotrauma and Ventilator-Induced Lung Injury: Clinical Implications. Chest, 150, 1109-1117. https://doi.org/10.1016/j.chest.2016.07.019

  8. 8. Gattinoni, L., Marini, J.J., Collino, F., et al. (2017) The Future of Mechanical Ventilation: Lessons from the Present and the Past. Critical Care, 21, 183. https://doi.org/10.1186/s13054-017-1750-x

  9. 9. Garcia, M.A., Nelson, W.J. and Chavez, N. (2018) Cell-Cell Junctions Organize Structural and Signaling Networks. Cold Spring Harbor Perspectives in Biology, 10, a029181. https://doi.org/10.1101/cshperspect.a029181

  10. 10. Angulo-Urarte, A., van der Wal, T. and Huveneers, S. (2020) Cell-Cell Junctions as Sensors and Transducers of Mechanical Forces. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1862, Article ID: 183316. https://doi.org/10.1016/j.bbamem.2020.183316

  11. 11. Totland, M.Z., Rasmussen, N.L., Knudsen, L.M., et al. (2020) Regulation of Gap Junction Intercellular Communication by Connexin Ubiquitination: Physiological and Pathophysio-logical Implications. Cellular and Molecular Life Sciences, 77, 573-591. https://doi.org/10.1007/s00018-019-03285-0

  12. 12. Felten, M., Ferencik, S., Alves, L.T., et al. (2023) Ventila-tor-Induced Lung Injury Is Modulated by the Circadian Clock. American Journal of Respiratory and Critical Care Medi-cine, 207, 1464-1474. https://doi.org/10.1164/rccm.202202-0320OC

  13. 13. Chen, Z.Y., He, S., Lian, S.Y., et al. (2023) The Wnt/β-catenin Pathway Regulates Inflammation and Apoptosis in Ventilator-Induced Lung Injury. Bioscience Reports, 43, BSR20222429. https://doi.org/10.1042/BSR20222429

  14. 14. Zhao, T., Yan, J., Zhang, M.R., et al. (2021) The Elk1/MMP-9 Axis Regulates E-Cadherin and Occludin in Ventilator-Induced Lung Injury. Respiratory Research, 22, Article No. 233. https://doi.org/10.1186/s12931-021-01829-2

  15. 15. Dipaolo, B.C., Davidovich, N., Kazanietz, M.G., et al. (2013) Rac1 Pathway Mediates Stretch Response in Pulmonary Alveolar Epithelial Cells. American Journal of Physiology—Lung Cellular and Molecular Physiology, 305, L141-L153. https://doi.org/10.1152/ajplung.00298.2012

  16. 16. Liu, G., Gu, C.P., Liu, M.J., et al. (2019) Protective Role of p120-Catenin on Mitochondria by Inhibiting NLRP3 in Ventilator-Induced Lung Injury. Journal of Cellular and Molec-ular Medicine, 23, 7360-7371. https://doi.org/10.1111/jcmm.14595

  17. 17. Laforgia, N., Cosmo, L.D., Palumbo, O., et al. (2020) The First Case of Congenital Myasthenic Syndrome Caused by a Large Homozygous Deletion in the C-Terminal Region of COLQ (Colla-gen Like Tail Subunit of Asymmetric Acetylcholinesterase) Protein. Genes (Basel), 11, Article No. 1519. https://doi.org/10.3390/genes11121519

  18. 18. Watanabe, N., Sasaki, S., Masamoto, K., et al. (2018) Vascular Gap Junctions Contribute to Forepaw Stimulation-Induced Vasodilation Differentially in the Pial and Penetrating Arteries in Isoflurane-Anesthetized Rats. Frontiers in Molecular Neuroscience, 11, Article No. 446. https://doi.org/10.3389/fnmol.2018.00446

  19. 19. Sahetya, S.K., Goligher, E.C. and Brower, R.G. (2017) Fifty Years of Research in ARDS. Setting Positive End-Expiratory Pressure in Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 195, 1429-1438. https://doi.org/10.1164/rccm.201610-2035CI

  20. 20. Yen, S., Preissner, M., Bennett, E., et al. (2020) Interaction be-tween Regional Lung Volumes and Ventilator-Induced Lung Injury in the Normal and Endotoxemic Lung. American Journal of Physiology—Lung Cellular and Molecular Physiology, 318, 494-499. https://doi.org/10.1152/ajplung.00492.2019

  21. NOTES

    *通讯作者Email: zttlwj@126.com

期刊菜单