Advances in Clinical Medicine
Vol. 13  No. 07 ( 2023 ), Article ID: 69564 , 8 pages
10.12677/ACM.2023.1371692

近期皮质下小梗死的研究进展

杨治燕,尹凤琼*,张亚军,马腾

昆明医科大学第二附属医院特需病房,云南 昆明

收稿日期:2023年6月25日;录用日期:2023年7月19日;发布日期:2023年7月27日

摘要

脑小血管病是一种动态进展的全脑功能紊乱性疾病,它与缺血性脑梗死、认知障碍及步态障碍的发生发展有关。近期皮质下小梗死是引起脑小血管病急性症状的影像学标记物,同时也在缺血性脑卒中的诊断范畴。本文从近期皮质下小梗死的临床影像表现、病因及发病机制、腔隙化演变、与其他影像学标记物的关系及潜在的新标记物这几方面的研究展开综述。

关键词

近期皮质下小梗死,脑小血管病,腔隙化演变,磁敏感血管征,综述

Research Progress on Recent Subcortical Small Infarct

Zhiyan Yang, Fengqiong Yin*, Yajun Zhang, Teng Ma

Special-Needed Hospital Ward, The Second Affiliated Hospital of Kunming Medical University, Kunming Yunnan

Received: Jun. 25th, 2023; accepted: Jul. 19th, 2023; published: Jul. 27th, 2023

ABSTRACT

Cerebral small vessel disease is a dynamic and progressive disorder of global brain function, which is related to the occurrence and development of ischemic cerebral infarction, cognitive impairment, and gait disorders. Recent subcortical small infarct is an imaging marker that causes acute symptoms of cerebral small vessel disease, and is also included in the diagnosis of ischemic stroke. This article reviews the clinical imaging manifestations, etiology and pathogenesis, evolution of lacunarization, relationship with other imaging markers, and potential new markers of recent subcortical small infarct.

Keywords:Recent Subcortical Small Infarct, Cerebral Small Vessel Disease, Evolution of Lacunarization, Susceptibility Vessel Sign, Review

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

脑小血管病(cerebral small vessel disease, CSVD)是指由各种病因导致颅内小动脉及其分支远端、微动脉、动–静脉吻合支、微静脉、小静脉、蛛网膜下腔内的血管及血管周围2~5 mm的脑实质病变而引起的一系列影像、病理、临床综合征 [1] 。在2013年国际神经影像学血管性改变标准化报道(standards for reporting vascular changes on neuroimaging, STRIVE)中,定义CSVD主要影像学标记物包括近期皮质下小梗死(recent small subcortical infarct, RSSI)、可能血管源性脑白质高信号(white matter hyperiintensities of presumed vascular origin, WMH)、可能血管源性腔隙(lacune of presumed vascular origin, LPVO)、血管周围间隙(perivascularspace, PVS)、脑微出血(cerebral microbleeds, CMB)和脑萎缩(brain atrophy, BA) [2] 。CSVD被看作是动态进展的全脑功能紊乱性疾病,病程有急性和慢性之分 [3] 。急性CSVD可导致腔隙综合征(lacunar syndrome, LACS)的发生,慢性、隐匿性CSVD与认知障碍及步态障碍的发生发展有密切联系 [3] 。在六大影像学标志物中,RSSI是引起CSVD急性神经功能缺损症状的标记物 [1] [3] ,也在缺血性脑卒中的诊断范畴。本文通过对RSSI临床及影像学表现、病因及发病机制、RSSI的腔隙化演变、RSSI与其他影像学标记物的关系及RSSI相关的潜在的新标志物这几方面进行阐述,为无症状CSVD进展为缺血性脑卒中的预防提供基础。

2. RSSI的定义、影像学表现及临床症状

RSSI是指1条穿支动脉(perforating artery, PA)灌注区域的近期小梗死灶,且伴有数周前发生的与脑部病变一致的影像学特征或临床症状 [1] [2] 。它的直径在轴向切面上需要 < 20 mm,但在冠状面或矢状面上可以>20 mm [2] 。在磁共振上,RSSI在T1WI序列上为低信号,在T2WI、FLAIR和DWI序列上为高信号 [2] ;在ADC序列上,RSSI早期呈低信号,之后随时间推移,信号可略升高 [3] 。国内一项前瞻性研究把在DWI序列下直径 < 5 mm的RSSI定义为急性皮质下微梗死(AS-CMI),发现AS-CMI具有更高的CSVD总负荷,与直径 > 5 mm的RSSI相比,1年后随访AS-CMI并未出现更好的神经功能恢复结果,这些可能提示AS-CMI是更严重的脑小血管损伤征兆 [4] 。RSSI的位置多见于在内囊后肢、豆状核、丘脑前外侧、半卵圆中心、脑干及小脑 [1] 。RSSI是小血管急性闭塞所致的小梗死灶,约占缺血性脑卒中病因分型的30% [5] 。大多数RSSI突然起病,表现为LACS,包括经典的纯运动性偏瘫、纯感觉性卒中、感觉运动性卒中、共济失调性轻偏瘫、构音障碍–手笨拙综合征 [1] [3] ;也有研究发现<5%的RSSI无任何临床症状 [6] 。患者通常神经功能损伤小、短期预后好,但脑卒中复发、认知障碍和死亡的风险会随时间的推移而增加 [7] 。与其他亚型缺血性脑卒中相比,RSSI所致的死亡风险略低,但长期来看,脑卒中复发和认知障碍风险仍相似 [8] 。

3. RSSI危险因素及可能的发生机制

3.1. RSSI危险因素

血管危险因素如年龄、吸烟、高血压、糖尿病、高脂血症、高同型半胱氨酸血症相互协同,致使脑小血管狭窄甚至闭塞,促使RSSI的发生 [1] ,但也有研究发现不同位置的RSSI可能由不同的病因所致。两项回顾性研究显示,位置在基底神经节、半卵圆中心的RSSI患者普遍患高血压 [9] ;而糖尿病在丘脑、脑桥、脑干的RSSI患者中更常见 [9] [10] ,提出位置在前循环的RSSI与高血压有关,而位置在后循环的RSSI与糖尿病更密切。自主神经系统在脑血流方面起到重要的调节作用,在解剖学特征上,颈内动脉系统的交感神经分布密集,椎基底动脉区域的交感神经分布相对稀疏 [11] ,这可能是位置在前循环的RSSI患者普遍患高血压的解剖学基础,然而位置在后循环的RSSI与糖尿病相联系的具体机制仍在探究。

3.2. RSSI的发生机制

与CSVD相关的缺血性脑卒中发生的机制仍在探讨中,大部分研究认为CSVD中RSSI与LPVO是腔隙性脑梗死(lacunar infarction, LI)的急性与慢性病变的影像表现,RSSI的病变血管为单个PA [12] 。两篇文献提出LI的两种不同亚型,亚型一是由近端PA粥样硬化引起血管狭窄或上级动脉斑块堵塞PA入口,使营养对应区域的脑血流灌注不足而引发梗塞;亚型二是PA远端管壁出现脂质玻璃样变性和纤维素样坏死的病理特征,使管壁节断性硬化坏死,壁上形成血栓阻塞血管从而引发梗塞 [13] [14] 。除此外,内皮细胞功能障碍和血脑屏障破坏是促使LI发生的早期机制。内皮细胞功能障碍一方面可促进动脉壁脂质斑块的形成,使PA管腔狭窄,另一方面使血浆成分渗漏进血管壁内、巨噬细胞迁移到血管壁里形成泡沫细胞,从而促使小动脉增厚;血脑屏障由紧密连接的内皮细胞、周细胞、基底膜和星形胶质细胞的足端组成,它们的损伤导致血浆蛋白渗漏到血管周围组织和血管壁里,从而加剧小动脉壁硬化;纤维素样坏死可进一步加重血管壁坏死、扭曲和硬化,最终PA管壁上血栓形成,管腔闭塞,梗死灶出现 [14] [15] 。

4. RSSI的腔隙化演变

RSSI随时间的推移,它可能会消失、或变为WMH、或腔隙化 [3] [16] [17] 。在三种演变结果里,RSSI腔隙化预示着神经组织损伤严重,从早期的神经细胞水肿、炎症细胞浸润、神经胶质细胞反应性增生,到神经细胞完全丢失、棘细胞层水肿,最后梗死灶液化形成空腔 [18] 。多项研究显示近2/3的RSSI会转化为腔隙 [16] [17] [19] [20] ,RSSI的腔隙化演变可能受局部病变特征和其周围环境影响。

RSSI的直径及梗死程度与腔隙化相关,且腔隙化程度越高,患者神经功能恢复越差。多项前瞻性研究指出RSSI直径是腔隙化的独立预测因子 [17] [19] [20] [21] [22] ,可能因梗死灶越大,代表神经细胞及少突胶质细胞损伤越多,越容易转化为腔隙灶。两项前瞻性研究随访后显示,与其他部位相比,基底节区域因其侧枝循环丰富,在发生RSSI后腔隙化的概率低 [10] [22] 。一项随访三个月的前瞻性研究显示,与非腔隙化患者相比,腔隙化患者病灶内的ADC值(表观扩散系数)较低,表明腔隙化的患者RSSI内存在更严重的水分子扩散异常和局部组织缺血损害 [16] 。GattringerT等人把长期神经组织破坏的程度定义为空化指数,即发生RSSI 1年后T1WI序列上的空腔体积与FLAIR序列上的RSSI体积基线之比,该研究发现病灶内ADC值与空化指数成负相关,表明腔隙化的严重程度与RSSI的缺血程度有关 [23] 。但另一项随访6个月的研究发现尽管RSSI腔隙化比例高,但空腔面积小,占整个病灶的9%~13.5%,说明病灶内的异质性很高;该研究还显示患者发生缺血性脑卒中事件6个月后的临床结果(mRS评分)与RSSI病灶里的腔隙化程度独立相关 [19] 。

WMH与CSVD高负荷是RSSI腔隙化的相关因素。一项前瞻性研究显示梗塞灶在WMH边缘为RSSI腔隙化形成的独立因素 [22] ;另一项前瞻性随访也证实,与WMH相接触的皮质下白质的RSSI比周围环境无WMH的RSSI更易腔隙化 [10] 。WMH半暗带是围绕WMH细微变化的正常外观白质(normal appearance white matter, NAWM),国外一项回顾性研究显示NAWM的脑血流量比全脑组织的脑血流量低 [24] ,因此提出WMH半暗带可能是RSSI有更大概率腔隙化的原因 [10] 。国内一项前瞻性研究把CSVD总负荷作为与腔隙化关联的指标,该研究发现,CSVD总负荷的增加程度与RSSI的腔隙化概率呈正相关(r = 0.201; P = 0.004),总负荷高的RSSI患者之后形成空腔的可能性更大(P = 0.001; OR = 12.281; 95% CI = 2.789~54.078) [17] 。

5. RSSI与其他CSVD影像学标记物的关系

RSSI位于不同供血系统,CSVD的负担有所不同。一项回顾性研究显示,与后循环RSSI相比,位于前循环的RSSI伴随更多种类的CSVD影像学标记物 [9] 。RSSI的存在与WMH的动态演变相互交织。多项回顾性研究显示相比其他部位的RSSI,半卵圆中心的RSSI伴有更严重的WMH [25] [26] ,并与更高的CSVD总负荷相关 [25] 。同样在另一项探讨RSSI的位置与缺血性脑卒中后WMH演变的关系研究中,随访一年发现半卵圆中心RSSI的WMH体积增长比其他区域RSSI的WMH体积增长快 [26] 。由Loos CMJ主持的一项探讨RSSI与周围WMH进展关系的研究显示,在随访5年期间发现接近有一半的RSSI在其上方或者下方继发出现WMH帽或WMH轨迹,新的WMH最常出现在半卵圆中心的RSSI周围,并且发现脑深部的WMH及WMH基线为新出现的WMH帽的危险因素,他们提出RSSI周围的白质继发变化应被视为脑部损伤的恶化表现和CSVD进展的单独影像学特征 [27] 。同样WMH的动态演变会导致LI的发生。国内的一项前瞻性研究显示,在随访的2年内,WMH的动态进展增加了LI的发生风险 [28] 。除此外,国外的另一项回顾性研究显示LI往往发生在WMH相对较严重的大脑半球 [29] 。WMH与RSSI常相互并存、相互影响,共同促进认知功能障碍的发展。

一项回顾性研究显示,与其他病因亚型的缺血性脑卒中相比,小动脉闭塞型脑卒中的WMH负担最高 [30] ;另一项纳入388名首次轻型脑卒中患者的前瞻性随访发现,WMH负担与患者90天神经功能预后不良相关,脑白质的完整性影响轻型脑卒中患者的临床结局 [31] 。多项研究显示RSSI患者伴有认知功能障碍非常普遍,约占31%~40% [32] [33] [34] ;国外的一项随访研究表明,伴中重度WMH的患者发生RSSI后认知功能恢复比无/轻度WMH的RSSI患者的认知功能恢复差,他们提出将Fazekas评分作为一种简单可行的评估,来支持预测RSSI患者的认知障碍发展过程和认知受损的结果 [32] 。然而国内一项随访研究显示,RSSI患者的WMH严重程度与是否出现认知功能障碍并不完全平行,脑白质结构的微损伤和远程WMH的效应可能是造成他们之间存在异质性的原因 [34] 。

6. 与RSSI相关的潜在的新标志物

6.1. RSSI的磁敏感血管征

顺磁物质(脱氧血红蛋白、含铁血红蛋白、高铁血红蛋白)可在SWI/T2*GFR序列上显示低信号,磁敏感血管征(susceptibility vessel sign, SVS)是指在SWI/T2*GFR序列上,急性缺血性脑卒中患者梗死部位的责任动脉路径上出现低信号现象,它提示责任动脉被含大量脱氧血红蛋白的血栓栓塞 [35] 。多项研究显示将近20% RSSI的梗死灶近端或内部在SWI/T2*GFR序列上出现PA路径中的低信号 [36] [37] [38] ,它可能代表PA闭塞中的小凝块或含铁血黄素沉积 [37] ,提出RSSI出现SVS的机制可能是微栓子脱落致PA栓塞或者内皮功能障碍和血脑屏障破坏从而使顺磁性物质发生渗漏 [37] ;且国内外研究还发现RSSI的SVS与脑深部WMH显著相关 [37] [38] ;此外,伴有SVS的RSSI患者是否有更差的神经功能结局目前还未有相关文献报道。近期国外一项研究发现严重CSVD的WMH在SWI序列上观察到扩张的局灶性小血管簇,它在SWI序列上表现为低信号的点或线,代表扩张且功能失调的小血管;它与更多的腔隙和更高的WMH负担相关,猜测它的出现可能预示着更严重的脑白质受损,即WMH的空化甚至形成腔隙,后续需要更多的纵向研究和病理学证实这一新的影像学特征 [39] 。

6.2. 视网膜微血管形态与脑小血管损伤的关系

视网膜微血管系统与中枢神经微血管系统具有相似的胚胎起源、解剖特征和生理特性,视网膜微血管可作为研究脑微血管的一个窗口 [40] 。光学相干断层扫描血管造影(optical coherence tomography angiography, OCTA)是一种把视网膜微血管丛可视化成非侵入性图像的成像工具,它提供视网膜微血管的成像和灌注 [41] 。一项回顾性研究显示,与健康对照组相比,RSSI患者在黄斑区的浅层视网膜毛细血管丛(shallow retinal capillary plexus, SRCP)和深层视网膜毛细血管丛(deep retinal capillary plexus, DRCP)密度及在视神经乳头区的径向视乳头周围毛细血管(radial peripapillary capillaries, RPC)密度都显著降低;RSSI患者视乳头周围的视网膜神经纤维层厚度(peripapillary retinal nerve fiber layer, pRNFL)更薄,他们认为视神经周围的微血管变化反映脑部的神经和微循环状态 [42] 。除此外,另外两项横断性研究显示,与健康组比较,CSVD患者黄斑区较低的SRCP密度 [43] 及较薄的pRNFL [44] 与较高的WMH负担相关。近期一篇文献报道,在轻微缺血性脑卒中患者中,较低的视网膜血管密度与NAWM中较高的MD值(平均扩散系数)相关 [45] 。视网膜神经微血管异常与CSVD的多种影像学标记物具有相关性,未来需要更多的纵向研究证实OCTA可作为脑部微血管病变的量化工具。

6.3. RSSI潜在的血液敏感标志物

胶质纤维酸性蛋白(glial fibrillary acidic protein, GFAP)是星形胶质细胞的细胞骨架,当星形胶质细胞受损时,该物质会释放到脑脊液和血液中 [46] 。一项前瞻性研究发现GFAP血清水平与急性缺血性脑卒中患者发病72小时内、发病第7天、发病第30天的临床严重程度(NHISS评分)呈正相关,提出血清GFAP可作为急性缺血性脑卒中患者神经功能恢复的预测指标 [46] 。同样,由GattringerT主持的一项横断性研究也显示血清GFAP水平在RSSI患者中升高;且血清GFAP水平与RSSI直径成正相关,与WMH、LPVO、CMB不相关;提出血清GFAP是急性脑小血管损伤的敏感标志物,与慢性CSVD全脑弥漫性损伤无关 [47] 。神经丝是成熟神经元的主要细胞骨架成分,由3个大小不同的亚基(NfL、NfM和NfH)共同组成,在轴突中最为丰富 [48] 。神经丝轻链(neurofilament light chain, NfL)是神经系统中轴突损伤的明确标志物,在Gattringer T团队的前瞻性研究发现血清Nfl水平和RSSI直径成正相关,与脑深部更严重的WMH有关;且在RSSI发生3个月后的随访中发现血清NfL的水平仍然高于控制值,这表明RSSI患者在较长时间存在持续性的轴突损伤;且高水平NfL的RSSI患者在随访中MRI上出现新的CSVD缺血性影像表现(新的RSSI、LPVO、WMH),他们提出血清NfL是CSVD活动性、进展性的敏感标记物 [49] 。另外,由Peters N主持的对CSVD患者进行长达9年的随访研究显示高水平的血清NfL与CSVD中LPVO的发生相关,证实血清NfL与CSVD病程进展有密切联系,表明NfL可能会成为监测CSVD进展的潜在标记物 [50] 。

7. 总结及展望

RSSI是CSVD六大影像学标记物中引起急性临床症状的标记物,它的梗塞灶面积虽然小,较比大面积脑梗塞患者神经功能预后好,但它的发生和演变与患者认知功能障碍的发生发展息息相关。随着放射检查技术及血液检测技术的发展,未来需要新的CSVD影像学标记物及血液标记物来提高早期甚至超早期CSVD的诊断能力,需要更多的纵向研究阐明CSVD小血管损伤的时空演变,为预防无症状CSVD进展为缺血性脑卒中提供线索。

文章引用

杨治燕,尹凤琼,张亚军,马 腾. 近期皮质下小梗死的研究进展
Research Progress on Recent Subcortical Small Infarct[J]. 临床医学进展, 2023, 13(07): 12069-12076. https://doi.org/10.12677/ACM.2023.1371692

参考文献

  1. 1. 胡文立, 杨磊, 李譞婷, 等. 中国脑小血管病诊治专家共识2021[J]. 中国卒中杂志, 2021, 16(7): 716-726.

  2. 2. Wardlaw, J.M., Smith, E.E., Biessels, G.J., et al. (2013) Neuroimaging Standards for Research into Small Vessel Disease and Its Contribution to Ageing and Neurodegeneration. The Lancet Neurology, 12, 822-838. https://doi.org/10.1016/S1474-4422(13)70124-8

  3. 3. 黎海涛, 金光暐, 赵艺蕾, 等. 脑小血管病磁共振诊断与临床[M]. 北京: 清华大学出版社, 2022: 44-264.

  4. 4. Tao, W., Cheng, Y., Guo, W., et al. (2022) Clinical Features and Imaging Markers of Small Vessel Disease in Symptomatic Acute Subcortical Cerebral Microinfarcts. BMC Neurolo-gy, 22, Article No. 311. https://doi.org/10.1186/s12883-022-02824-w

  5. 5. Wu, S., Wu, B., Liu, M., et al. (2019) Stroke in China: Ad-vances and Challenges in Epidemiology, Prevention, and Management. The Lancet Neurology, 18, 394-405. https://doi.org/10.1016/S1474-4422(18)30500-3

  6. 6. Valdés Hernández Mdel, C., Maconick, L.C., Muñoz, Ma-niega, S., et al. (2015) A Comparison of Location of Acute Symptomatic vs “Silent” Small Vessel Lesions. International Journal of Stroke, 10, 1044-1050. https://doi.org/10.1111/ijs.12558

  7. 7. Arboix, A. and Martí-Vilalta, J.L. (2009) Lacunar Stroke. Expert Review of Neurotherapeutics, 9, 179-196. https://doi.org/10.1586/14737175.9.2.179

  8. 8. Portegijs, S., Ong, A.Y., Halbesma, N., et al. (2022) Long-Term Mortality and Recurrent Vascular Events in Lacunar versus Non-Lacunar Ischaemic Stroke: A Cohort Study. European Stroke Journal, 7, 57-65. https://doi.org/10.1177/23969873211062019

  9. 9. Ppinger, S., Gattringer, T., Nachbaur, L., et al. (2019) Are Morphologic Features of Recent Small Subcortical Infarcts Related to Specific Etiologic Aspects? Therapeutic Advances in Neurological Disorders, 12. https://doi.org/10.1177/1756286419835716

  10. 10. Hong, H., Zhang, R., Yu, X., et al. (2020) Factors Associated with the Occurrence and Evolution of Recent Small Subcortical Infarcts (RSSIs) in Different Locations. Frontiers in Ag-ing Neuroscience, 12, Article No. 264. https://doi.org/10.3389/fnagi.2020.00264

  11. 11. Goadsby, P.J. (2013) Autonomic Nervous System Control of the Cerebral Circulation. In: Handbook of Clinical Neurology, Vol. 117, Elsevier, Amsterdam, 193-201. https://doi.org/10.1016/B978-0-444-53491-0.00016-X

  12. 12. Grosset, L. and Jouvent, E. (2022) Cerebral Small-Vessel Diseases: A Look Back from 1991 to Today. Cerebrovascular Diseases, 51, 131-137. https://doi.org/10.1159/000522213

  13. 13. Wardlaw, J.M., Smith, C. and Dichgans, M. (2013) Mechanisms of Spo-radic Cerebral Small Vessel Disease: Insights from Neuroimaging. The Lancet Neurology, 12, 483-497. https://doi.org/10.1016/S1474-4422(13)70060-7

  14. 14. Jiang, S., Wu, S., Zhang, S., et al. (2021) Advances in Un-derstanding the Pathogenesis of Lacunar Stroke: From Pathology and Pathophysiology to Neuroimaging. Cerebrovascu-lar Diseases, 50, 588-596. https://doi.org/10.1159/000516052

  15. 15. Wardlaw, J.M., Smith, C. and Dichgans, M. (2019) Small Vessel Disease: Mechanisms and Clinical Implications. The Lancet Neurology, 18, 684-696. https://doi.org/10.1016/S1474-4422(19)30079-1

  16. 16. Pinter, D., Gattringer, T., Enzinger, C., et al. (2019) Longitu-dinal MRI Dynamics of Recent Small Subcortical Infarcts and Possible Predictors. Journal of Cerebral Blood Flow & Metabolism, 39, 1669-1677. https://doi.org/10.1177/0271678X18775215

  17. 17. Wang, M., Li, Y., Song, Y., et al. (2023) Association of Total Cerebral Small Vessel Disease Burden with the Cavitation of Recent Small Subcortical Infarcts. Acta Radiologica, 64, 295-300. https://doi.org/10.1177/02841851211066583

  18. 18. Rudilosso, S., Rodríguez-Vázquez, A., Urra, X., et al. (2022) The Potential Impact of Neuroimaging and Translational Research on the Clinical Management of Lacunar Stroke. International Journal of Molecular Sciences, 23, Article No. 1497. https://doi.org/10.3390/ijms23031497

  19. 19. Duering, M., Adam, R., Wollenweber, F.A., et al. (2020) With-in-Lesion Heterogeneity of Subcortical DWI Lesion Evolution, and Stroke Outcome: A Voxel-Based Analysis. Journal of Cerebral Blood Flow and Metabolism, 40, 1482-1491. https://doi.org/10.1177/0271678X19865916

  20. 20. Wang, M.M., Zhang, S.S., Liu, H., et al. (2019) Analysis of Related Factors Affecting Evolution of Recent Small Subcortical Infarcts with Cerebral Small Vessel Disease. Chinese Medical Journal, 99, 3420-3423.

  21. 21. Kwon, H.S., Cho, A.H., Lee, M.H., et al. (2019) Evolution of Acute Lacunar Lesions in Terms of Size and Shape: A PICASSO Sub-Study. Journal of Neurotrauma, 266, 766-772. https://doi.org/10.1007/s00415-019-09201-7

  22. 22. Zhang, X., Ding, L., Yang, L., et al. (2016) Relationship between White Matter Hyperintensities Penumbra and Cavity Formation. Medical Science Monitor, 22, 41-49. https://doi.org/10.12659/MSM.896324

  23. 23. Gattringer, T., ValdesHernandez, M., Heye, A., et al. (2020) Predictors of Lesion Cavitation after Recent Small Subcortical Stroke. Translational Stroke Re-search, 11, 402-411. https://doi.org/10.1007/s12975-019-00741-8

  24. 24. Promjunyakul, N.O., Lahna, D.L., Kaye, J.A., et al. (2016) Comparison of Cerebral Blood Flow and Structural Penumbras in Relation to White Matter Hyperin-tensities: A Multi-Modal Magnetic Resonance Imaging Study. Journal of Cerebral Blood Flow and Metabolism, 36, 1528-1536. https://doi.org/10.1177/0271678X16651268

  25. 25. Rudilosso, S., Mena, L., Esteller, D., et al. (2021) Higher Cerebral Small Vessel Disease Burden in Patients with White Matter Recent Small Subcortical Infarcts. Journal of Stroke and Cerebrovascular Diseases, 30, Article ID: 105824. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105824

  26. 26. Valdés Hernández, M.D.C., Grimsley-Moore, T., Sakka, E., et al. (2021) Lacunar Stroke Lesion Extent and Location and White Matter Hyperintensities Evolution 1 Year Post-Lacunar Stroke. Frontiers in Neurology, 12, Article ID: 640498. https://doi.org/10.3389/fneur.2021.640498

  27. 27. Loos, C.M.J., Makin, S.D.J., Staals, J., et al. (2018) Long-Term Morphological Changes of Symptomatic Lacunar Infarcts and Surrounding White Matter on Structural Magnetic Reso-nance Imaging. Stroke, 49, 1183-1188. https://doi.org/10.1161/STROKEAHA.117.020495

  28. 28. Xu, X., Gao, Y., Liu, R., et al. (2018) Progression of White Matter Hyperintensities Contributes to Lacunar Infarction. Aging and Disease, 9, 444-452. https://doi.org/10.14336/AD.2017.0808

  29. 29. Ryu, W.S., Schellingerhout, D., Ahn, H.S., et al. (2018) Hemispheric Asymmetry of White Matter Hyperintensity in Association with Lacunar Infarction. Journal of the American Heart As-sociation, 7, e010653. https://doi.org/10.1161/JAHA.118.010653

  30. 30. Giese, A.K., Schirmer, M.D., Dalca, A.V., et al. (2020) White Matter Hyperintensity Burden in Acute Stroke Patients Differs by Ischemic Stroke Subtype. Neurology, 95, e79-e88. https://doi.org/10.1212/WNL.0000000000009728

  31. 31. Chen, X., Wang, L., Jiang, J., et al. (2021) Association of Neuroimaging Markers of Cerebral Small Vessel Disease with Short-Term Outcomes in Patients with Minor Cerebro-vascular Events. BMC Neurology, 21, Article No. 21. https://doi.org/10.1186/s12883-021-02043-9

  32. 32. Fruhwirth, V., Enzinger, C., Fandler-Höfler, S., et al. (2021) Baseline White Matter Hyperintensities Affect the Course of Cognitive Function after Small Vessel Disease-Related Stroke: A Prospective Observational Study. European Journal of Neurology, 28, 401-410. https://doi.org/10.1111/ene.14593

  33. 33. Ohlmeier, L., Nannoni, S., Pallucca, C., et al. (2023) Prevalence of and Risk Factors for, Cognitive Impairment in Lacunar Stroke. International Journal of Stroke, 18, 62-69. https://doi.org/10.1177/17474930211064965

  34. 34. Ye, M., Zhou, Y., Chen, H., et al. (2022) Heterogeneity of White Matter Hyperintensity and Cognitive Impairment in Patients with Acute Lacunar Stroke. Brain Sciences, 12, Article No. 1674. https://doi.org/10.3390/brainsci12121674

  35. 35. 孙植培, 钱伟东. 磁敏感血管征在急性脑梗死诊疗中的临床应用[J]. 医学综述, 2020, 26(3): 544-548.

  36. 36. Al-Zghloul, M., Wenz, H., Maros, M., et al. (2018) Suscepti-bility Vessel Sign on T2*-Weighted Gradient Echo Imaging in Lacunar Infarction. In Vivo, 32, 973-976. https://doi.org/10.21873/invivo.11337

  37. 37. Rudilosso, S., Olivera, M., Esteller, D., et al. (2018) Susceptibility Vessel Sign in Deep Perforating Arteries in Patients with Recent Small Subcortical Infarcts. Journal of Stroke and Cere-brovascular Diseases, 30, Article ID: 105415. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105415

  38. 38. 崔明愚, 王丽娟, 刘荧, 等. 近期皮质下小梗死患者的磁敏感血管征与脑小血管病的相关性研究[J]. 中华老年心脑血管病杂志, 2022, 24(4): 347-350.

  39. 39. Rudilosso, S., Chui, E., Stringer, M.S., et al. (2022) Prevalence and Significance of the Vessel-Cluster Sign on Susceptibility-Weighted Imaging in Patients with Severe Small Vessel Disease. Neurology, 99, e440-e452. https://doi.org/10.1212/WNL.0000000000200614

  40. 40. London, A., Benhar, I. and Schwartz, M. (2013) The Retina as a Window to the Brain-From Eye Research to CNS Disorders. Nature Reviews Neurology, 9, 44-53. https://doi.org/10.1038/nrneurol.2012.227

  41. 41. Spaide, R.F., Fujimoto, J.G., Waheed, N.K., et al. (2018) Optical Coherence Tomography Angiography. Progress in Retinal and Eye Research, 64, 11-12. https://doi.org/10.1016/j.preteyeres.2017.11.003

  42. 42. Cao, Y., Yan, J., Zhan, Z., et al. (2021) Macula Structure and Microvascular Changes in Recent Small Subcortical Infarct Patients. Frontiers in Neurology, 11, Article ID: 615252. https://doi.org/10.3389/fneur.2020.615252

  43. 43. Wang, X., Wei, Q., Wu, X., et al. (2021) The Vessel Density of the Superficial Retinal Capillary Plexus as a New Biomarker in Cerebral Small Vessel Disease: An Optical Coherence Tomography Angiography Study. Neurological Sciences, 42, 3615-3624. https://doi.org/10.1007/s10072-021-05038-z

  44. 44. Langner, S.M., Terheyden, J.H., Geerling, C.F., et al. (2022) Structural Retinal Changes in Cerebral Small Vessel Disease. Scientific Reports, 12, Article No. 9315. https://doi.org/10.1038/s41598-022-13312-z

  45. 45. Wiseman, S.J., Zhang, J.F., Gray, C., et al. (2023) Retinal Capil-lary Microvessel Morphology Changes Are Associated with Vascular Damage and Dysfunction in Cerebral Small Vessel Disease. Journal of Cerebral Blood Flow and Metabolism, 43, 231-240. https://doi.org/10.1177/0271678X221135658

  46. 46. Puspitasari, V., Gunawan, P.Y., Wiradarma, H.D., et al. (2019) Glial Fibrillary Acidic Protein Serum Level as a Predictor of Clinical Outcome in Ischemic Stroke. Open Access Macedo-nian Journal of Medical Sciences, 7, 1471-1474. https://doi.org/10.3889/oamjms.2019.326

  47. 47. Gattringer, T., Enzinger, C., Pinter, D., et al. (2023) Serum Glial Fi-brillary Acidic Protein Is Sensitive to Acute but Not Chronic Tissue Damage in Cerebral Small Vessel Disease. Journal of Neurology, 270, 320-327. https://doi.org/10.1007/s00415-022-11358-7

  48. 48. Gafson, A.R., Barthélemy, N.R., Bomont, P., et al. (2020) Neu-rofilaments: Neurobiological Foundations for Biomarker Applications. Brain, 143, 1975-1998. https://doi.org/10.1093/brain/awaa098

  49. 49. Gattringer, T., Pinter, D., Enzinger, C., et al. (2017) Serum Neurofila-ment Light Is Sensitive to Active Cerebral Small Vessel Disease. Neurology, 89, 2108-2114. https://doi.org/10.1212/WNL.0000000000004645

  50. 50. Peters, N., van Leijsen, E., Tuladhar, A.M., et al. (2020) Serum Neurofilament Light Chain Is Associated with Incident Lacunes in Progressive Cerebral Small Vessel Disease. Journal of Stroke, 22, 369-376. https://doi.org/10.5853/jos.2019.02845

  51. NOTES

    *通讯作者。

期刊菜单