Advances in Applied Mathematics
Vol. 11  No. 11 ( 2022 ), Article ID: 57685 , 8 pages
10.12677/AAM.2022.1111814

具有不定奇性的三阶微分方程周期正解的 存在性

宋娟*,程志波

河南理工大学数学与信息科学学院,河南 焦作

收稿日期:2022年10月7日;录用日期:2022年11月1日;发布日期:2022年11月10日

摘要

不定奇性微分方程周期解的研究是微分方程中的一个重要组成部分,它在电子束模型、边界层理论和玻色–爱因斯坦凝聚体等多种学科中拥有广泛应用。近年来,许多研究关注的是排斥型三阶奇性微分方程周期正解的存在性问题。作为这一结果的延伸,本文讨论了一类具有不定奇性的三阶微分方程

u + M u = h ( t ) u ρ + e ( t )

周期正解的存在性,其中M是正常数, h , e L 1 ( / T ) 并且对任意 t [ 0 , T ] e ( t ) > 0 。函数 h ( t ) [ 0 , T ] 上可变号的。利用Krasnoselskiĭ’s-Guo不动点定理和一些分析方法,我们证明该方程至少存在一个T-周期正解。

关键词

周期正解,不定奇性,Krasnoselskiĭ's-Guo不动点定理,三阶微分方程

Existence of Positive Periodic Solutions for a Third-Order Differential Equation with an Indefinite Singularity

Juan Song*, Zhibo Cheng

School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo Henan

Received: Oct. 7th, 2022; accepted: Nov. 1st, 2022; published: Nov. 10th, 2022

ABSTRACT

The study of periodic solutions of indefinite singular differential equations is an important part of differential equations which has a wide range of applications in a variety of disciplines such as electron beam focusing model, boundary layer theory and Bose-Einstein condensates. In recent years, much research has been concerned with the existence of positive periodic solutions of third-order differential equations with a repulsive singularity. As an extension of this result, in this paper, we consider the existence of positive periodic solutions to a class of third-order differential equation with an indefinite singularity

u + M u = h ( t ) u ρ + e ( t ) ,

where M is a real constant and M > 0 , h L 1 ( / T ) and e L 1 ( / T ) is a positive. The weight function h ( t ) is allowed to change signon [ 0 , T ] . By using Krasnoselskiĭ’s-Guo fixed point theorem and some analysis skills, sufficient conditions for the existence of at least one positive periodic solution of this equation are established.

Keywords:Positive Periodic Solutions, Indefinite Singularity, Krasnoselskiĭ’s-Guo Fixed Point Theorem, Third-Order Differential Equation

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

奇性微分方程在众多科学技术领域都发挥着重要的作用,近年来在电子束模型、边界层理论、玻色–爱因斯坦凝聚体与光信号传输等多种学科中拥有广泛应用,其中部分应用事例可详见 [1]。对奇性微分方程的研究最早可追溯到1987年,Lazer和Solimini [2] 讨论了下列两类奇性微分方程

u ± υ u λ = p ( t ) (1.1)

周期正解的存在性,其中 p C ( , ) 是一个周期函数, υ 是正常数。利用截断函数和上下解方法,他们证明了方程(1.1)周期正解的存在性。并给出如果 υ > 0 称其为吸引型奇性,如果 υ < 0 称其为排斥型奇性;如果 0 < λ < 1 称其为弱奇性,如果 λ > 1 称其为强奇性。

受此影响,越来越多的学者投入到奇性微分方程周期正解的研究当中,并取得很好的成果 [3] - [10]。其中主要的研究方法有:Schauder不动点定理 [3] [4] [5]、Leray-Schauder选择原理 [6] [7] [8]、Krasnoselskiĭ’s-Guo不动点定理 [7] [8]、拓扑度理论 [9] [10] 等。

一开始,奇性微分方程的研究主要是针对二阶的奇性微分方程,正如上面提到的参考文献,而对三阶微分方程的研究却较少涉及。近年来国内外学者发表了一些关于三阶奇性微分方程的结果 [11] - [16]。2006年,储继峰和周中成在 [13] 中利用Leray-Schauder选择原理和锥压缩锥拉伸不动点定理,考虑下列三阶奇性微分方程

u + κ 3 u = f ( t , u ( t ) ) , 0 t 2 π (1.2)

周期解存在性问题,其中 κ 是正常数,非线性项 f ( t , u ( t ) ) u = 0 时有排斥型奇性。他们证明了在 κ ( 0 , 1 3 ) 时方程(1.2)存在周期正解。随后,李永祥 [14] 研究了下列三阶奇性微分方程

u = f ( t , u ( t ) , u ( t ) , u ( t ) ) (1.3)

周期正解的存在性,其中非线性项 f C ( × ( 0 , + ) × × , ) 是关于t的周期函数且在 u = 0 时有排

斥型奇性。通过应用锥中不动点定理,李永祥证明了方程(1.3)至少存在一个周期正解。

以上所提及的结论主要是关于排斥型三阶奇性微分方程周期正解的研究。那么如果方程是具有不定奇性的三阶微分方程呢?运用之前的方法显然不能直接适用。进而,如何证明这类具有不定奇性的三阶微分方程周期正解存在性的研究,也是值得思考的。为了回答这个问题,本文讨论了以下一类具有不定奇性的三阶微分方程

u + M u = h ( t ) u ρ + e ( t ) (1.4)

周期正解的存在性,其中M是正常数, h , e L 1 ( / T ) 且对任意 t [ 0 , T ] e ( t ) > 0 。本文的理论证明主要依赖第二部分介绍的格林函数的性质以及Krasnoselskiĭ’s-Guo不动点定理。文章的最后给出一个例子来验证定理的适用性。

2. 预备知识

本节中,我们介绍以下几个引理将用于证明方程(1.4)周期正解的存在性。

引理2.1. (Krasnoselskiĭ's-Guo不动点定理 [17]) 令X是一个Banach空间,并且K是X中的一个锥。假设 Ω 1 , Ω 2 是X的开子集并且 0 Ω 1 , Ω 1 ¯ Ω 2 。此外假设

Q : Κ ( Ω 2 ¯ \ Ω 1 ) Κ

是一个全连续算子使得

(i) 对 u Κ Ω 1 ,有 Q u u ;并且对 u Κ Ω 2 ,有 Q u u

(ii) 对 u Κ Ω 1 ,有 Q u u ;并且对 u Κ Ω 2 ,有 Q u u

则Q在 Κ ( Ω 2 ¯ \ Ω 1 ) 中有不动点。

接下来,考虑三阶非齐次线性微分方程

{ u + M u = f ( t ) , u ( 0 ) = u ( T ) , u ( 0 ) = u ( T ) , (2.1)

其中 f ( t ) L 1 ( / T ) ,M为正常数。在2011年,任景莉等 [18] 讨论了格林函数 G ( t , s ) 的符号,得出下列结论。

引理2.2. (见 [18]) 方程(2.1)存在唯一的T-周期解,即

u ( t ) = 0 T G ( t , s ) f ( s ) d s ,

其中

G ( t , s ) = { 2 exp ( 1 2 M 1 3 ( t s ) ) [ sin ( 3 2 M 1 3 ( t s ) π 6 ) exp ( 1 2 M 1 3 T ) sin ( 3 2 M 1 3 ( t s T ) π 6 ) ] 3 M 2 3 ( 1 + exp ( M 1 3 T ) 2 exp ( 1 2 M 1 3 T ) cos ( 3 2 M 1 3 T ) ) + exp ( M 1 3 ( s t ) ) 3 M 2 3 ( 1 exp ( M 1 3 T ) ) , 0 s < t T , 2 exp ( 1 2 M 1 3 ( t + T s ) ) [ sin ( 3 2 M 1 3 ( t + T s ) π 6 ) exp ( 1 2 M 1 3 T ) sin ( 3 2 M 1 3 ( t s ) π 6 ) ] 3 M 2 3 ( 1 + exp ( M 1 3 T ) 2 exp ( 1 2 M 1 3 T ) cos ( 3 2 M 1 3 T ) ) + exp ( M 1 3 ( s t T ) ) 3 M 2 3 ( 1 exp ( M 1 3 T ) ) , 0 t s T .

我们给出以下定义

A : = min 0 s , t T G ( t , s ) = 1 3 M 2 3 ( exp ( M 1 3 T ) 1 ) , B : = max 0 s , t T G ( t , s ) = 3 + 2 exp ( M 1 3 T 2 ) 3 M 2 3 ( 1 exp ( M 1 3 T 2 ) ) 2 , σ : = A B . (2.2)

显然,我们有 0 < σ 1

引理2.3. (见 [18]) 如果 M < 64 π 3 81 3 T 3 ,则对任意 ( t , s ) [ 0 , T ] × [ 0 , T ] ,有 0 < A G ( t , s ) B 。进一步,我们得到 0 T G ( t , s ) d s = 1 M

定义

Κ : = { u C T : min t u ( t ) σ u } ,

其中 C T : = { u C ( ) : u ( t + T ) = u ( t ) , t } ,其范数定义为 u : = max t | u ( t ) | 。显而易见,K是 C T 中的一个锥。

最后,为了方便,对于任意给定的T-周期函数 h ( t ) ,我们定义

h + ( t ) : = max { 0 , h ( t ) } , h ( t ) : = min { 0 , h ( t ) } , h ¯ : = 1 T 0 T h ( t ) d t .

3. 主要结论

在本节中,我们将利用格林函数的相关性质和Krasnoselskiĭ’s-Guo不动点定理,得到下面的结论。

定理2.1假设 h , e L 1 ( / T ) 且对任意 t [ 0 , T ] e ( t ) > 0 。更进一步,假设 M < 64 π 3 81 3 T 3

h + ¯ > 1 A T σ 1 + ρ ( h e * ) 1 + ρ ρ (3.1)

成立,则方程(1.4)至少有一个T-周期正解。

证明:定义算子Q为

( Q u ) ( t ) : = 0 T G ( t , s ) ( h ( s ) u ρ + e ( s ) ) d s ,

很容易证明方程(1.4)的一个T-周期解就是算子方程 Q u = u 的不动点。并且由引理2.3,我们可以得

到对于任意的 ( t , s ) [ 0 , T ] × [ 0 , T ] ,有 G ( t , s ) > 0

定义两个开集

Ω 1 : = { u C T : u < r 1 } Ω 2 : = { u C T : u < r 2 } ,

其中 r 1 , r 2 是两个常数且由(3.1)有

r 2 > r 1 = ( A T h + ¯ ) 1 1 + ρ > 1 σ ( h e * ) 1 ρ .

首先,证明 Q ( Κ ( Ω 2 ¯ \ Ω 1 ) ) Κ 。事实上,对任意的 u Κ ( Ω 2 ¯ \ Ω 1 ) ,有

σ r 1 u ( t ) r 2 , t .

因为 r 1 > 1 σ ( h e * ) 1 ρ ,我们可得到

h ( t ) u ρ + e ( t ) = h + ( t ) u ρ h ( t ) u ρ + e ( t ) > h ( t ) u ρ + e * > h ( σ r 1 ) ρ + e * > 0. (3.2)

由(2.2)和(3.2),可以得到

min t ( Q u ) ( t ) = min t 0 T G ( t , s ) ( h ( s ) u ρ + e ( s ) ) d s A 0 T ( h ( s ) u ρ + e ( s ) ) d s = σ B 0 T ( h ( s ) u ρ + e ( s ) ) d s σ max t 0 T G ( t , s ) ( h ( s ) u ρ + e ( s ) ) d s > σ Q u .

从而证明了 Q ( Κ ( Ω 2 ¯ \ Ω 1 ) ) Κ 。因此,利用Arzela-Ascoli定理,易知 Q : Κ ( Ω 2 ¯ \ Ω 1 ) Κ 是一个

全连续算子。

接下来,我们证明

Q u u , u Κ Ω 2 . (3.3)

事实上,对任意的 u Κ Ω 2 ,有 u = r 2

σ r 2 u ( t ) r 2 , t .

由(2.2)和对任意 t [ 0 , T ] ,有 e ( t ) > 0 ,可以得到

( Q u ) ( t ) = 0 T G ( t , s ) ( h ( s ) u ρ + e ( s ) ) d s = 0 T G ( t , s ) ( h + ( s ) u ρ h ( s ) u ρ + e ( s ) ) d s B T ( h + ¯ ( σ r 2 ) ρ + e ¯ ) .

显然,我们可以选择适当大的 r 2 使

B T ( h + ¯ ( σ r 2 ) ρ + e ¯ ) r 2

成立。因此,可以得到 Q u u ,即(3.3)成立。

最后,我们证明

Q u u , u Κ Ω 1 . (3.4)

事实上,对任意的 u Κ Ω 1 ,显然 u = r 1

σ r 1 u ( t ) r 1 , t .

从(2.2)得到

( Q u ) ( t ) = 0 T G ( t , s ) ( h + ( s ) u ρ h ( s ) u ρ + e ( s ) ) d s > 0 T G ( t , s ) ( h + ( s ) u ρ ) d s A T h + ¯ ( r 1 ) ρ = r 1 ,

其中 r 1 = ( A T h + ¯ ) 1 1 + ρ 。因此,(3.4)成立。

从引理2.1可知,Q有一个不动点 u Κ ( Ω 2 ¯ \ Ω 1 ) 。显然,这个不动点就是方程(1.4)的T-周期正解且 u [ σ r 1 , r 2 ]

推论2.1由(2.2),易见A和 σ 是关于M和T的函数。事实上,充分条件(3.1)可表达为

h + ¯ > 3 M 2 3 ( exp ( M 1 3 T ) 1 ) 2 + ρ T [ 3 + 2 exp ( M 1 3 T 2 ) ( 1 exp ( M 1 3 T 2 ) ) 2 ] 1 + ρ ( h e * ) 1 + ρ ρ .

通过下面的例子来阐明我们的定理。

例2.1考虑下面具有不定奇性的三阶微分方程

u + u = h ( t ) u + e ( t ) , (3.5)

其中

h ( t ) = { 30 π sin 8 t , t [ 0 , π 8 ] , sin 8 t , t [ π 8 , π 4 ] ,

e ( t ) = sin 8 t + 22.

M = 1 , T = π 4 , ρ = 1 ,通过简单的计算,我们很容易验证 M = 1 < 64 π 3 81 3 T 3 29.3

h + ¯ = 30 > 1 A T σ 1 + ρ ( h e * ) 1 + ρ ρ 25.8.

因此,通过定理2.1,我们能得到方程(3.5)至少有一个 π 4 -周期解。

文章引用

宋 娟,程志波. 具有不定奇性的三阶微分方程周期正解的存在性
Existence of Positive Periodic Solutions for a Third-Order Differential Equation with an Indefinite Singularity[J]. 应用数学进展, 2022, 11(11): 7688-7695. https://doi.org/10.12677/AAM.2022.1111814

参考文献

  1. 1. Torres, P. (2015) Mathematical Models with Singularities—A Zoo of Singular Creatures. Atlantis Briefs in Differential Equations, Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-106-2

  2. 2. Lazer, A. and Solimini, S. (1987) On Periodic Solutions of Nonlinear Differential Equations with Singularities. Proceedings of the American Mathematical Society, 99, 109-114. https://doi.org/10.1090/S0002-9939-1987-0866438-7

  3. 3. Cheng, Z. and Ren, J. (2018) Pe-riodic Solution for Second Order Damped Differential Equations with Attractive-Re- pulsive Singularities. Rocky Moun-tain Journal of Mathematics, 48, 753-768. https://doi.org/10.1216/RMJ-2018-48-3-753

  4. 4. Chu, J. and Torres, P. (2007) Applications of Schauder’s Fixed Point Theorem to Singular Differential Equations. Bulletin of the London Mathematical Society, 39, 653-660. https://doi.org/10.1112/blms/bdm040

  5. 5. Li, X. and Zhang, Z. (2009) Periodic Solutions for Damped Differential Equations with a Weak Repulsive Singularity. Nonlinear Analysis, Theory, Methods and Applications, 70, 2395-2399. https://doi.org/10.1016/j.na.2008.03.023

  6. 6. Cheng, Z. and Ren, J. (2013) Studies on a Damped Differential Equation with Repulsive Singularity. Mathematical Methods in the Applied Sciences, 36, 983-992. https://doi.org/10.1002/mma.2659

  7. 7. Chu, J., Torres, P. and Zhang, M. (2007) Periodic Solution of Second Or-der Non-Autonomous Singular Dynamical Systems. Journal of Differential Equations, 239, 196-212. https://doi.org/10.1016/j.jde.2007.05.007

  8. 8. Jiang, D., Chu, J. and Zhang, M. (2005) Multiplicity of Positive Pe-riodic Solutions to Superlinear Repulsive Singular Equations. Journal of Differential Equations, 211, 282-302. https://doi.org/10.1016/j.jde.2004.10.031

  9. 9. Yu, X. and Lu, S. (2019) A Multiplicity Result for Periodic Solu-tions of Liénard Equations with an Attractive Singularity. Applied Mathematics and Computation, 346, 183-192. https://doi.org/10.1016/j.amc.2018.10.013

  10. 10. Lu, S., Guo, Y. and Chen, L. (2019) Periodic Solutions for Liénard Equation with an Indefinite Singularity. Nonlinear Analysis: Real World Applications, 45, 542-556. https://doi.org/10.1016/j.nonrwa.2018.07.024

  11. 11. Sun, Y. (2005) Positive Solution of Singular Third-Order Three-Point Boundary Value Problem. Journal of Mathematical Analysis and Applications, 306, 586-603. https://doi.org/10.1016/j.jmaa.2004.10.029

  12. 12. Liu, Z., Ume, J. and Kang, S. (2007) Positive Solutions of a Sin-gular Nonlinear Third Order Two-Point Boundary Value Problem. Journal of Mathematical Analysis and Applications, 326, 589-601. https://doi.org/10.1016/j.jmaa.2006.03.030

  13. 13. Chu, J. and Zhou, Z. (2006) Positive Solutions for Singular Non-Linear Third-Order Periodic Boundary Value Problems. Nonlinear Analysis, Theory, Methods and Applications, 64, 1528-1542. https://doi.org/10.1016/j.na.2005.07.005

  14. 14. Li, Y. (2010) Positive Periodic Solutions for Fully Third-Order Ordinary Differential Equations. Computers & Mathematics with Applications, 59, 3464-3471. https://doi.org/10.1016/j.camwa.2010.03.035

  15. 15. Ren, J., Cheng, Z. and Chen, Y. (2013) Existence Results of Pe-riodic Solutions for Third-Order Nonlinear Singular Differential Equation. Mathematische Nachrichten, 286, 1022-1042. https://doi.org/10.1002/mana.200910173

  16. 16. Cheng, Z. and Ren, J. (2015) Positive Solutions for Third-Order Variable-Coefficient Nonlinear Equation with Weak and Strong Singularities. Journal of Difference Equations and Ap-plications, 21, 1003-1020. https://doi.org/10.1080/10236198.2015.1040402

  17. 17. Guo, D. and Lakshmikantham, V. (1988) Nonlinear Prob-lems in Abstract Cones. Academic Press, Boston.

  18. 18. Ren, J., Siegmund, S. and Chen, Y. (2011) Positive Periodic Solutions for Third-Order Nonlinear Differential Equations. Electronic Journal of Differential Equations, 2011, 1-19.

  19. NOTES

    *通讯作者。

期刊菜单