Advances in Clinical Medicine
Vol. 13  No. 03 ( 2023 ), Article ID: 62930 , 10 pages
10.12677/ACM.2023.133616

Research Progress in Bacteroides Resistance to Carbapenems and Their Resistance Mechanism

Meiling Hou, Jichun Wang*

侯美玲,王继春*

内蒙古医科大学附属医院儿科,内蒙古 呼和浩特

收稿日期:2023年2月17日;录用日期:2023年3月15日;发布日期:2023年3月22日

摘要

拟杆菌是引起机会性内源性感染的重要病原体,碳青霉烯类抗菌药物是目前治疗拟杆菌感染的重要抗菌药物之一,近年来,拟杆菌对碳青霉烯类抗菌药物的耐药情况愈加严峻,在不同地区、不同人群间存在显著差异。耐碳青霉烯类拟杆菌可以通过cfiA基因介导碳青霉烯酶的生成、青霉素结合蛋白的构象改变、外膜蛋白和脂多糖的构成改变、外膜孔蛋白数量的减少或缺失及内源性外排系统突变及过度表达等导致碳青霉烯的耐药。了解耐碳青霉烯类拟杆菌的耐药性及耐药机制,对于防控耐药基因的广泛传播、指导临床用药等方面有重要价值。

关键词

拟杆菌,碳青霉烯类抗菌药物,耐药性,耐药机制

Department of Pediatrics, Affiliated Hospital of Inner Mongolia Medical University, Hohhot Inner Mongolia

Received: Feb. 17th, 2023; accepted: Mar. 15th, 2023; published: Mar. 22nd, 2023

拟杆菌对碳青霉烯类抗菌药物耐药性及耐药 机制研究进展

ABSTRACT

Bacteroides is an important pathogen that causes opportunistic endogenous infections, and carbapenems are one of the important antibacterial drugs for the treatment of bacteroides infection. In recent years, the resistance of bacteroides to carbapenems has become increasingly severe, and there are significant differences between different regions and different populations. Carbapenem-resistant Bacteroides can induce carbapenase resistance through cfiA gene mediated generation of carbapenase, conformational change of penicillin-binding protein, composition change of outer membrane protein and lipopolysaccharide, reduction or loss of outer membrane porin, mutation and overexpression of endogenous efflux system, etc. Understanding the drug resistance and mechanism of carbapenem-resistant Bacteroides is of great value for preventing and controlling the widespread spread of drug resistance genes and guiding clinical drug use.

Keywords:Bacteroides, Carbapenem Antibiotic, Antibiotic Resistance, Resistance Mechanism

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

人体结肠菌群主要由厌氧菌构成,其中25%是拟杆菌属细菌(Bacteroides) [1]。拟杆菌属细菌是一类革兰氏染色阴性的专性厌氧菌,无芽孢、无鞭毛、耐胆汁,能形成荚膜。拟杆菌通过阴道分娩垂直传递,新生儿肠腔内多于出生10天左右出现拟杆菌 [2],在生命的最早阶段,拟杆菌属细菌即成为肠腔菌群的重要组成部分 [3],通过参与机体营养代谢、生长发育、免疫等过程对宿主产生有利影响 [2] [4]。拟杆菌属包括约60个种类,人体肠腔内存在多种拟杆菌属细菌,如脆弱拟杆菌、卵圆拟杆菌、普通拟杆菌、单形拟杆菌、多形拟杆菌及粪拟杆菌等,其中以脆弱拟杆菌最为常见 [5]。

当机体出现免疫功能紊乱或肠道菌群失调时,肠腔内细菌可发生移位,引起拟杆菌内源性感染,在长期应用广谱抗菌药物、糖皮质激素及免疫抑制剂的人群中尤为常见。发生肠道细菌移位后,基于自身的结构及毒力特征 [6],拟杆菌感染常引发机体各部位脓肿形成,包括腹部、腹部、脑、肝脏、骨盆和肺等 [7] [8] [9] [10]。通过改变自身结构,拟杆菌能在一定程度上避免宿主的免疫反应 [11] [12],且因其对多种抗菌药物高度耐药 [13]。在临床诊疗中,拟杆菌感染及死亡率极高 [14],有报道称 [15] [16],脆弱拟杆菌的死亡率超过19%。

碳青霉烯类抗菌药物是除甲硝唑外治疗拟杆菌感染最有效的抗菌药物之一 [17] [18],临床实践中最常应用的碳青霉烯类药物包括亚胺培南、美罗培南、厄他培南和多尼培南,其中,多尼培南对脆弱拟杆菌的抑菌效果与亚胺培南和美罗培南相似,且比厄他培南的抑菌效果高2~4倍 [19] [20]。近年来国内外报道中,拟杆菌对碳青霉烯类药物的耐药性总体呈上升趋势,且在不同地区、人群中存在显著差异,为拟杆菌感染的临床诊疗带来了严峻挑战。因此,持续监测拟杆菌对碳青霉烯类抗菌药物的耐药情况,对于防控耐药基因的广泛传播、指导临床用药等方面均有重要价值。本文就拟杆菌对碳青霉烯类抗菌药物的耐药性及耐药机制进行了综述。

2. 拟杆菌对碳青霉烯类抗菌药物的耐药性

1986年,美国报道了拟杆菌属分离株对亚胺培南表现出高水平耐药性,值得注意的是,这些分离株对研究中其他所有β-内酰胺类抗菌药物均表现出高度耐药性 [21]。1990年,日本岐阜大学研究报道中,拟杆菌对碳青霉烯类抗菌药物的耐药率为1.38% [22],美国一项多中心研究报道称 [23],对1990~1996年间4000多株脆弱杆菌临床分离株进行抗菌药物敏感性试验,结果显示耐药率最低的是碳青霉烯类抗菌药物(亚胺培南和美罗培南),1995年只分离出1株耐药株,1996年没有分离到耐药株。2000年,欧洲对1284株拟杆菌进行药敏监测,亚胺培南和美罗培南的耐药率分别为0.8%和1.3% [7]。2004年,Sóki等人研究的显示 [24],碳青霉烯类耐药拟杆菌分离株在英国和匈牙利分别为3.8%和2.8%。2003~2008年,土耳其对66株来自不同部位的脆弱拟杆菌临床分离株进行抗菌药物敏感性试验,其对亚胺培南及美罗培南的耐药率分别为0.6%和7.5% [25]。总的来说,大多数国家和地区在上述时期内所报道拟杆菌属细菌对碳青霉烯类药物的耐药率均不超过10%,部分地区甚至无耐药菌株检出。近十年来,拟杆菌对碳青霉烯的耐药率明显上升,且存在显著地域差异。加拿大一项多中心研究报道 [26],2010~2011年间9家医院共收集387例脆弱拟杆菌,其中仅2个分离株对亚胺培南耐药,对这些菌株进行药物敏感性监测,其对亚胺培南的敏感性为97.7%,对厄他培南为92.0%,多尼培南为87.3%,总体结果显示这些分离株对碳青霉烯类抗菌药物耐药性均较低。从1973~1980年到2010~2015年,丹麦一项研究中脆弱拟杆菌对美罗培南耐药率从0%上升到2.5% [27]。2014~2019年,日本对50株来自血培养的脆弱拟杆菌临床分离株进行抗菌药物敏感性试验,其对亚胺培南及美罗培南的耐药率高达54%和100% [28]。2014~2016年,匈牙利对233株来自不同部位的脆弱拟杆菌药敏试验结果显示,其对美罗培南的耐药率为15.02% [29]。我国近年来加强了对拟杆菌耐药性的监测,部分报道中耐药率从0%上升至29.5% [30] [31]。2017~2019年,我院王俊瑞等人对80株来自不同部位的脆弱拟杆菌药敏试验结果显示,其对亚胺培南及美罗培南的耐药率高达25.1%和22.6% [32]。在抗菌治疗过程中,对各类广谱抗菌药物具有高度耐药性的拟杆菌多药耐药(MDR)分离株时有报道 [33] [34] [35],特别是在有抗菌药物应用史的病例中 [36],极大的增加了拟杆菌感染的治疗难度。2017年,丹麦一项研究对其收集来自粪便标本的359株脆弱拟杆菌进行了抗菌药物敏感性测定,结果显示其对美罗培南的耐药率为5%,既往接触碳青霉烯类药物,与其耐药具有相关性。2019年,复旦大学附属华山医院抗生素研究所调查了44株脆弱拟杆菌耐药情况,其对亚胺培南、美罗培南、厄他培南的耐药率分别高达18.2%、29.5%、22.7% [30]。不同地域耐药性的显著差异,可能是由于各地抗菌药物的应用方案各有不同,也可能是由于拟杆菌分离株遗传特征存在差异 [37]。

此外,在过去的报道中,耐碳青霉烯拟杆菌分离株主要为脆弱拟杆菌,而目前研究发现,检查粪便微生物种其他拟杆菌属菌株也存在很大比例对碳青霉烯类耐药。Sóki等人研究发现,约1%的可培养拟杆菌对碳青霉烯类药物具有耐药性 [38]。这也提示我们,不应忽视对除脆弱拟杆菌外的其他拟杆菌进行耐药性监测。

3. 脆弱拟杆菌对常用抗菌药物的耐药机制

拟杆菌对碳青霉烯类抗菌药物产生耐药存在不同机制 [39]。目前已经确定,生成可水解该类药物的碳青霉烯酶是其最主要的耐药机制,该酶由cfiA基因编码 [40]。其他可能的耐药机制包括:青霉素结合蛋白的构象改变、外膜蛋白和脂多糖的构成改变、外膜孔蛋白数量的减少或缺失 [40]。内源性外排系统突变及过度表达等 [34] [41]。

值得注意的是,即使没有抗生素的选择压力,耐药基因的遗传元件仍可保持长期稳定。维持这种稳定性可能的机制是,将抗生素耐药基因与为细菌提供有效定殖的酶进行整合,使其保持在同一整合子中 [42]。

YAMAZOE等人的研究报道中,在1992年至1994年间分离的脆弱拟杆菌耐药株(亚胺培南的MIC为32 mg/ml)既未检测到cfiA基因及其特定插入序列(IS),也未检测到金属β-内酰胺酶活性 [43],这也提示我们拟杆菌对碳青霉烯类药物产生耐药性可能存在其他机制。

3.1. cfiA基因编码碳青霉烯酶的产生

1990年,RASMUSSEN等人对脆弱拟杆菌的B类β-内酰胺酶编码基因ccrA进行了克隆与测序 [44],发现它存在于多种不同细菌中,与蜡样芽孢杆菌的已知耐药序列具有超过33%的同源性。ccrA基因在大肠杆菌内被发现,后更名为cfiA基因 [45]。cfiA基因在金属因子Zn2+的辅助下,编码产生碳青霉烯酶,水解碳青霉烯类药物,从而引起耐药。

拟杆菌所携带的cfiA基因表达与否,可能与该基因的上游的特定插入序列(IS)有关。细菌插入序列(IS)是许多细菌染色体的组成部分,属于可移动的双链DNA元件,通常只编码参与转位活性的蛋白质。这些插入序列(IS)元件可引起基因组突变和重排,促进基因获取,并通过形成复合转座子来动员DNA片段 [46]。这些元件的存在或移动可能影响细菌致病性或毒力 [47] [48],以及抗生素的耐药性 [49],并能调节特定基因的表达。目前,IS 942、IS 1186、IS 1187、IS 1188、IS 612、IS 613、IS 614、IS 615、IS 616、IS 4351与拟杆菌cfiA基因的表达相关 [50] [51] [52]。

1991年,RASMUSSEN发现了一种新的脆弱拟杆菌插入序列IS 942,并进行了鉴定、克隆和测序 [53]。该元件的长度为1598个碱基对,它的侧翼是一个15碱基对的不完全反向重复序列,并包含一个大开放阅读框,可以编码430氨基酸的蛋白质。IS 942整合在脆弱拟杆菌ccrA基因的起始密码子上游19bp处,为ccrA基因提供转录起始信号。Podglajen (法国,1994年)等人通过将可能的“耐药因子”转移到碳青霉烯敏感菌株中,探讨cfiA沉默基因激活的机制 [49],结果显示,碳青霉烯敏感菌株均突变为高度耐药表型,沉默的cfiA基因被激活,其编码的金属β-内酰胺酶活性在基础水平上增加了100倍。沉默的cfiA基因被激活,与该基因上游的核糖体结合部位插入序列IS 1186、IS 1187、IS 1188相关,这些元件为耐药基因的高效转录提供了启动子,这些启动子要么完全由IS元件携带,要么由IS和目标序列之间的杂交序列产生 [49]。IS 1186共有1.3 kb,有两个开放阅读框,编码41.2 kDa (0RF1)和22.5 kDa (0RF2)的蛋白质,这些蛋白与IS插入序列元件的开放阅读框架或DNA重复序列中编码的蛋白质具有同源性。IS 1187全长1026 bp,有21 bp的反向重复序列,包含一个主要的开放阅读框,可编码326氨基酸蛋白质,分子大小为37.5 kDa,终止密码子位于其右侧的反向重复序列内。IS 1188全长1691 bp,有17 bp的反向重复序列,包含两个主要的开放阅读框,可编码448氨基酸蛋白质,分子大小为52.5 kDa。IS 1186插入后转录由IS 1706右端的启动子驱动,每个基因组中检测到3~14个IS 1186拷贝。而IS 1187及IS 1188的插入都发生在cfiA基因起始密码子上游约90 bp的位置,非常接近已知或怀疑cfiA基因激活启动子的位置 [54]。

Sóki等人分析了来自美国、匈牙利和科威特的耐亚胺培南、cfiA阳性的脆弱拟杆菌分子特征,有5株在其耐药基因上游没有特定序列(IS)插入,但可产生碳青霉烯酶,提示cfiA基因可能存在其他活化机制 [55]。

不同亚型的cfiA基因编码产生不同碳青霉烯酶,其种类及对药物的水解能力各有不同。按照其一级分子结构的分子分类法,碳青霉烯酶可分为A、B、D三类,其中以B类金属-β内酰胺酶介导耐药最为常见,该酶由cfiA基因编码,以blaNDM (blaNDM-1~bla NDM-41)、bla IMP (bla IMP-1~bla IMP-91)、bla VIM (blaVIM-1~blaVIM-79)、blaGIM (blaGIM-1~blaGIM-2)和blaSPM型为主,需要金属锌作为其活化中心。Ayala等人对大肠埃希菌PBP3基因的同源基因(编码蛋白PBP2Bfr的pbpBBfr)和拟杆菌ccrA (cfiA)基因进行了测序,探讨分析PBP2Bfr和金属内酰胺酶在亚胺培南耐药机制中的作用,结果显示,不同菌株PBP2Bfr的氨基酸序列存在差异,与亚胺培南结合亲和力最高的PBP为PBP2Bfr [56]。

此外,与其他细菌一样,拟杆菌属细菌普遍具有多种移动遗传元件,包括质粒、转座子、接合转座子等,它们都与抗菌药物耐药基因的转移密切相关 [57]。目前,拟杆菌属细菌的质粒上已发现多种不同类别抗生素的耐药基因,在临床分离株的6.4 kb质粒上发现了cfiA基因 [58]。此外,由于一个菌株可以积累多个接合转座子,菌株中存在多于一个拷贝的接合转座子会导致反式激活。因此,理论上讲,环境中积累的携带耐药基因的接合转座子越多,这些基因向其他菌种的转移也会随之增加,抗生素的耐药性将不断上升 [59]。

3.2. 青霉素结合蛋白的构象改变

在脆弱拟杆菌的耐药菌株中观察到,80 kDa青霉素结合蛋白(PBP)对亚胺培南的亲和力降低 [60]。PBP 2表达水平降低与鲍曼不动杆菌 [61] 对碳青霉烯类抗菌药物的敏感性降低有关。PBP 2对亚胺培南亲和力降低可能是奇异变形杆菌对亚胺培南耐药的原因 [62]。在大肠杆菌中,PBP 2的突变已被证明与亚胺培南易感性降低相关,但与美罗培南无关,因为美罗培南也可以结合PBP3在一些脆弱拟杆菌菌株中 [63],PBP2Bfr亲和力的菌株差异可能与低水平的亚胺培南耐药性有关。一些菌株对亚胺培南耐药性的增加被认为是由于脆弱芽孢杆菌中缺乏PBP6Bfr [64] [65]。其中,主要是PBP 1和/或PBP 2的改变,大肠杆菌PBP 3基因的直系同源物pbpBBfr,编码蛋白质PBP2Bfr与亚胺培南的结合有关 [56] [65]。青霉素结合蛋白(PBPs)的改变已被研究为某些细菌对碳青霉烯耐药的机制。

3.3. 外膜孔蛋白数量的减少或缺失

拟杆菌外膜孔蛋白的变化也是目前可能的耐药机制之一。细菌的外膜孔(OMPs)是一种底物特异性结构,氨基酸、小肽和一些抗生素(包括碳青霉烯类抗菌药物)经其进入细菌细胞。降低OMPs的表达或修饰可以降低细菌对这些抗生素的敏感性 [66] [67]。目前有报道称,45 kDa类孔蛋白可能与脆弱拟杆菌耐药性相关 [68],而70 kDa孔蛋白可能与对β-内酰胺类药物的耐药性相关 [69]。然而,迄今为止,外膜孔蛋白与抗生素耐药性之间仍无明确相关性的证据。

3.4. 外膜蛋白和脂多糖的构成改变

脂多糖已被证明影响细菌外膜的整体通透性,并与孔蛋白通道形成一系列屏障 [70] [71] [72]。通透性降低,伴随孔蛋白含量的改变,已被证明是拟杆菌的耐药的机制之一 [73]。Edwards等人 [74] 对脆弱拟杆菌进行脂多糖和外膜蛋白检测,探索其结构特征,结果发现产金属内酰胺酶的菌株外膜蛋白和脂多糖的构成与未检出该酶的菌株有明显不同,反映了两者存在屏障通透性的差异。

3.5. 内源性外排系统突变及过度表达

目前拟杆菌对大多数抗菌药物表现出高度耐药,外排泵的过度表达已被证明是是其耐药的主要机制之一 [75] [76]。RND和Mate两种类型的外排泵被认为是导致抗菌药物耐药的主要结构,通过利用ATP能量或质子动力(PMF),将对菌体有害的化合物从细菌细胞中泵出 [77] [78]。有研究表明,RND外排系统可能是革兰氏阴性菌产生多重耐药性的主要原因之一,RND外排系统是抗菌药物和有毒物质的运输器,其结构包括接头蛋白、膜融合蛋白和细菌外膜中的通道 [79]。革兰氏阴性菌的外排系统一般有一个共同的基础结构,包括内膜转运蛋白、外膜通道和周质辅助蛋白。在这个组织中,外排泵通过内膜和外膜,从而使底物从细胞质直接输送到外部环境成为可能 [80] [81] [82]。目前,在拟杆菌中鉴定出16个RND家族外排泵 [80] [81] [82] [83]。抗菌药物的联合使用,会诱导拟杆菌多种外排泵过度表达,进而导致多重耐药 [84]。Pumbwe [85] 等人通过测定外排泵基因的转录产物,检测脆弱拟杆菌RND家族外排转运系统(BmeABC1-16)的表达和功能,结果显示,除bmeB9外,其余外排泵均有表达,ADB77 BmeB3和ADB77 Bme、B1 Bme、B3 Bme、B12对β-内酰胺类、氟喹诺酮类的敏感性分别增加3倍、5倍。抗菌药物的最小抑菌浓度(MIC)也有所增加,其中氨苄西林增加2.6倍、头孢哌酮增加3.4倍、头孢西丁增加1.8倍、四环素增加最为显著,为36.4倍,表明BmeB在脆弱拟杆菌中普遍表达。该研究证实,至少有七个BmeB外排泵可有效排出抗菌药物,其中四个BmeB外排泵与拟杆菌耐药性的形成密切相关。

已有研究表明,Bme-RND家族外排转运系统的运行模式和转录水平取决于分离株的临床来源。即使来自同一个体的不同解剖部位(如血液、脓肿和粪便等)的细菌分离株,也显示出不同的外排泵表达模式 [83]。当脆弱拟杆菌暴露于生理水平的胆盐(0.1%~1.3%)后,bme泵基因的表达也会随之变化。因此,Bme-RND家族的外排系统可能通其他机制使脆弱拟杆菌在胆盐存在下的生存下来。因此,接触胆盐会增强对抗菌药物的耐药性,并可能影响脆弱拟杆菌的发病。

4. 总结

大多数拟杆菌对碳青霉烯类抗菌药物仍较为敏感,但目前已出现敏感性下降及耐药菌株的相关报道,这也提醒我们,在临床工作中,应加强对拟杆菌耐药性的监测,合理使用特殊抗菌药物,严格把握用药指征,避免耐药基因通过移动遗传元件在各菌种中广泛传播。

拟杆菌作为耐药率最高的厌氧菌之一,产生耐药性的机制也最为复杂。不仅如此,拟杆菌携带多种毒力相关的致病岛 [86] [87] [88],可通过“基因共享”向肠道内其他菌种进行水平传递 [89] [90],这些基因编码多种毒力因素,且保持长期稳定,包括对抗菌药物耐药、菌株高粘附性、抑制宿主防御及外排泵等。拟杆菌耐药性的增长,不仅为其临床感染诊疗带来了严峻挑战,更可能诱发耐药基因在其他菌种中的传播,使肠道菌群成为各种耐药因子的储存库 [90]。

拟杆菌属细菌对碳青霉烯类抗菌药物耐药主要与cfiA基因编码的B类金属-β内酰胺酶的生成密切相关,此外,目前存在cfiA阳性的亚胺培南耐药拟杆菌,其耐药基因上游没有特定序列(IS)插入,但仍能产生碳青霉烯酶从而导致耐药,这些分离株的存在证实 [91],至少存在两种cfiA基因激活机制 [92]。其他可能的耐药机制包括:青霉素结合蛋白(PBP)亲和力改变、外膜孔蛋白的变化、外排系统的过度表达等。拟杆菌对碳青霉烯类等药物耐药机制方面的进一步深入研究,包括开展对拟杆菌耐药性的定期监测 [93] 、规范抗菌药物的使用、抑制外排系统、在耐药基因激活前根除临床环境中携带沉默cfiA基因的拟杆菌等,将会为控制临床感染、研发新型抗菌药物等提供思路。

文章引用

侯美玲,王继春. 拟杆菌对碳青霉烯类抗菌药物耐药性及耐药机制研究进展
Research Progress in Bacteroides Resistance to Carbapenems and Their Resistance Mechanism[J]. 临床医学进展, 2023, 13(03): 4291-4300. https://doi.org/10.12677/ACM.2023.133616

参考文献

  1. 1. Salyers, A.A. (1984) Bacteroides of the Human Lower Intestinal Tract. Annual Review of Microbiology, 38, 293-313. https://doi.org/10.1146/annurev.mi.38.100184.001453

  2. 2. Simon, G.L. and Gorbach, S.L. (1984) Intestinal Flora in Health and Disease. Gastroenterology, 86, 174-193. https://doi.org/10.1016/0016-5085(84)90606-1

  3. 3. Reid, G. (2004) When Microbe Meets Human. Clinical In-fectious Diseases: An Official Publication of the Infectious Diseases Society of America, 39, 827-830. https://doi.org/10.1086/423387

  4. 4. Rhee, K.-J., et al. (2004) Role of Commensal Bacteria in Development of Gut-Associated Lymphoid Tissues and Preimmune Antibody Repertoire. Journal of Immunology (Baltimore, Md.: 1950), 172, 1118-1124. https://doi.org/10.4049/jimmunol.172.2.1118

  5. 5. Wexler, H.M. (2007) Bacteroides: The Good, the Bad, and the Nitty-Gritty. Clinical Microbiology Reviews, 20, 593-621. https://doi.org/10.1128/CMR.00008-07

  6. 6. Tzianabos, A.O., et al. (1993) Structural Features of Polysaccharides That Induce Intra-Abdominal Abscesses. Science (New York, N.Y.), 262, 416-419. https://doi.org/10.1126/science.8211161

  7. 7. Sóki, J., et al. (2006) Examination of cfiA-Mediated Carbapenem Resistance in Bacteroides fragilis Strains from a European Antibiotic Susceptibility Survey. International Journal of Antimicrobial Agents, 28, 497-502. https://doi.org/10.1016/j.ijantimicag.2006.07.021

  8. 8. Akhi, M.T., et al. (2017) Nim Gene-Independent Metro-nidazole-Resistant Bacteroides fragilis in Surgical Site Infections. GMS Hygiene and Infection Control, 12, Doc13.

  9. 9. Akhi, M.T., et al. (2015) Antibiotic Susceptibility Pattern of Aerobic and Anaerobic Bacteria Isolated from Surgical Site Infection of Hospitalized Patients. Jundishapur Journal of Microbiology, 8, e20309. https://doi.org/10.5812/jjm.20309v2

  10. 10. Salipante, S.J., et al. (2015) Characterization of a Multidrug-Resistant, Novel Bacteroides Genomospecies. Emerging Infectious Diseases, 21, 95-98. https://doi.org/10.3201/eid2101.140662

  11. 11. Coyne, M.J., et al. (2003) Mpi Recombinase Globally Modulates the Surface Architecture of a Human Commensal Bacterium. Proceedings of the National Academy of Sciences of the United States of America, 100, 10446-10451. https://doi.org/10.1073/pnas.1832655100

  12. 12. Krinos, C.M., et al. (2001) Extensive Surface Diversity of a Commensal Microorganism by Multiple DNA Inversions. Nature, 414, 555-558. https://doi.org/10.1038/35107092

  13. 13. Rasmussen, B.A., et al. (1993) Antimicrobial Resistance in Bacteroides. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 16, S390-S400. https://doi.org/10.1093/clinids/16.Supplement_4.S390

  14. 14. Brook, I. (2002) Clinical Review: Bacteremia Caused by Anaerobic Bacteria in Children. Critical Care (London, England), 6, 205-211. https://doi.org/10.1186/cc1490

  15. 15. Wareham, D.W., et al. (2005) Anaerobic Sepsis Due to Multidrug-Resistant Bacteroides fragilis: Microbiological Cure and Clinical Response with Linezolid Therapy. Clinical Infectious Diseases, 40, e67-e68.

  16. 16. Goldstein, E.J. (1996) Anaerobic Bacteremia. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 23, S97-S101. https://doi.org/10.1093/clinids/23.Supplement_1.S97

  17. 17. Brook, I. (2002) Microbiology of Polymicrobial Ab-scesses and Implications for Therapy. The Journal of Antimicrobial Chemotherapy, 50, 805-810. https://doi.org/10.1093/jac/dkg009

  18. 18. Nakamura, I., et al. (2017) Fatal Sepsis Caused by Multidrug-Resistant Bacteroides fragilis, Harboring a cfiA Gene and an Upstream Insertion Sequence Element, in Japan. Anaerobe, 44, 36-39. https://doi.org/10.1016/j.anaerobe.2017.01.010

  19. 19. Snydman, D.R., et al. (2008) In Vitro Activities of Doripenem, a New Broad-Spectrum Carbapenem, against Recently Collected Clinical Anaerobic Isolates, with Emphasis on the Bacteroides fragilis Group. Antimicrobial Agents and Chemotherapy, 52, 4492-4496. https://doi.org/10.1128/AAC.00696-08

  20. 20. Goldstein, E.J.C., et al. (2008) In Vitro Activities of Doripenem and Six Comparator Drugs against 423 Aerobic and Anaerobic Bacterial Isolates from Infected Diabetic Foot Wounds. Anti-microbial Agents and Chemotherapy, 52, 761-766. https://doi.org/10.1128/AAC.01128-07

  21. 21. Cuchural, G.J., et al. (1986) Beta-Lactamase-Mediated Imipenem Resistance in Bacteroides fragilis. Antimicrobial Agents and Chemotherapy, 30, 645-648. https://doi.org/10.1128/AAC.30.5.645

  22. 22. Bandoh, K., et al. (1991) Biochemical Properties and Purification of Metallo-Beta-Lactamase from Bacteroides fragilis. Antimicrobial Agents and Chemotherapy, 35, 371-372. https://doi.org/10.1128/AAC.35.2.371

  23. 23. Snydman, D.R., et al. (1999) Multicenter Study of in Vitro Susceptibil-ity of the Bacteroides fragilis Group, 1995 to 1996, with Comparison of Resistance Trends from 1990 to 1996. Antimicrobial Agents and Chemotherapy, 43, 2417-2422. https://doi.org/10.1128/AAC.43.10.2417

  24. 24. Sóki, J., et al. (2004) Screening of Isolates from Faeces for Carbapenem-Resistant Bacteroides Strains; Existence of Strains with Novel Types of Resistance Mechanisms. Interna-tional Journal of Antimicrobial Agents, 24, 450-454. https://doi.org/10.1016/j.ijantimicag.2004.06.017

  25. 25. Toprak, N.U., et al. (2012) Susceptibility Profiles and Re-sistance Genes for Carbapenems (cfiA) and Metronidazole (Nim) among Bacteroides Species in a Turkish University Hospital. Anaerobe, 18, 169-171. https://doi.org/10.1016/j.anaerobe.2011.10.004

  26. 26. Karlowsky, J.A., et al. (2012) Prevalence of Antimicrobial Re-sistance among Clinical Isolates of Bacteroides fragilis Group in Canada in 2010-2011: CANWARD Surveillance Study. Antimicrobial Agents and Chemotherapy, 56, 1247-1252. https://doi.org/10.1128/AAC.05823-11

  27. 27. Ferløv-Schwensen, S.A., et al. (2017) Prevalence of Antimicrobial Resistance and the cfiA Resistance Gene in Danish Bacteroides fragilis Group Isolates since 1973. International Journal of Antimicrobial Agents, 50, 552-556. https://doi.org/10.1016/j.ijantimicag.2017.05.007

  28. 28. Ogane, K., et al. (2020) Antimicrobial Susceptibility and Prevalence of Resistance Genes in Bacteroides fragilis Isolated from Blood Culture Bottles in Two Tertiary Care Hos-pitals in Japan. Anaerobe, 64, Article ID: 102215. https://doi.org/10.1016/j.anaerobe.2020.102215

  29. 29. Sárvári, K.P., et al. (2018) A Multicentre Survey of the An-tibiotic Susceptibility of Clinical Bacteroides Species from Hungary. Infectious Diseases (London, England), 50, 372-380. https://doi.org/10.1080/23744235.2017.1418530

  30. 30. Gao, Q., et al. (2019) Emergence of Carbapenem Resistance in Bacteroides fragilis in China. International Journal of Antimicrobial Agents, 53, 859-863. https://doi.org/10.1016/j.ijantimicag.2019.02.017

  31. 31. Liang, C.H., et al. (2021) Trends and Correlation between Antibacterial Consumption and Carbapenem Resistance in Gram-Negative Bacteria in a Tertiary Hospital in China from 2012 to 2019. BMC Infectious Diseases, 21, 444. https://doi.org/10.1186/s12879-021-06140-5

  32. 32. Wang, Y.Y., et al. (2020) Higher Prevalence of Mul-ti-Antimicrobial Resistant Bacteroides spp. Strains Isolated at a Tertiary Teaching Hospital in China. Infection and Drug Resistance, 13, 1537-1546. https://doi.org/10.2147/IDR.S246318

  33. 33. Hartmeyer, G.N., et al. (2012) Multidrug-Resistant Bacteroides fragilis Group on the Rise in Europe? Journal of Medical Microbiology, 61, 1784-1788. https://doi.org/10.1099/jmm.0.049825-0

  34. 34. Pumbwe, L., et al. (2007) Genetic Analysis of Mechanisms of Mul-tidrug Resistance in a Clinical Isolate of Bacteroides fragilis. Clinical Microbiology and Infection: The Official Publi-cation of the European Society of Clinical Microbiology and Infectious Diseases, 13, 183-189. https://doi.org/10.1111/j.1469-0691.2006.01620.x

  35. 35. Sherwood, J.E., et al. (2011) Multi-Drug Resistant Bacteroides fragilis Recovered from Blood and Severe Leg Wounds Caused by an Improvised Explosive Device (IED) in Afghanistan. Anaerobe, 17, 152-155. https://doi.org/10.1016/j.anaerobe.2011.02.007

  36. 36. Hansen, K.C.M., et al. (2017) Antimicrobial Resistance in the Bacteroides fragilis Group in Faecal Samples from Patients Receiving Broad-Spectrum Antibiotics. Anaerobe, 47, 79-85. https://doi.org/10.1016/j.anaerobe.2017.04.013

  37. 37. Goldstein, E.J.C., et al. (2013) Comparative In Vitro Activity of Ceftaroline, Ceftaroline-Avibactam, and Other Antimicrobial Agents against Aerobic and Anaerobic Bacteria Cultured from Infected Diabetic Foot Wounds. Diagnostic Microbiology and Infectious Disease, 76, 347-351. https://doi.org/10.1016/j.diagmicrobio.2013.03.019

  38. 38. Sóki, J., et al. (2022) A Novel Bacteroides Metallo-β-Lactamase (MBL) and Its Gene (crxA) in Bacteroides xylanisolvens Revealed by Genomic Sequencing and Functional Analysis. The Journal of Antimicrobial Chemotherapy, 77, 1553-1556. https://doi.org/10.1093/jac/dkac088

  39. 39. Bonomo, R.A., et al. (2018) Carbapenemase-Producing Organisms: A Global Scourge. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 66, 1290-1297. https://doi.org/10.1093/cid/cix893

  40. 40. Livermore, D.M. and Woodford, N. (2000) Carbapenemases: A Problem in Waiting? Current Opinion in Microbiology, 3, 489-495. https://doi.org/10.1016/S1369-5274(00)00128-4

  41. 41. Pumbwe, L., et al. (2006) Clinical Significance of Overex-pression of Multiple RND-Family Efflux Pumps in Bacteroides fragilis Isolates. The Journal of Antimicrobial Chemo-therapy, 58, 543-548. https://doi.org/10.1093/jac/dkl278

  42. 42. Salyers, A.A. and Amábile-Cuevas, C.F. (1997) Why Are Antibiotic Resistance Genes So Resistant to Elimination? Antimicrobial Agents and Chemotherapy, 41, 2321-2325. https://doi.org/10.1128/AAC.41.11.2321

  43. 43. Yamazoe, K., et al. (1999) Distribution of the cfiA Gene among Bacteroides fragilis Strains in Japan and Relatedness of cfiA to Imipenem Resistance. Antimicrobial Agents and Chemotherapy, 43, 2808-2810. https://doi.org/10.1128/AAC.43.11.2808

  44. 44. Rasmussen, B.A., et al. (1990) Cloning and Sequencing of the Class B Beta-Lactamase Gene (ccrA) from Bacteroides fragilis TAL3636. Antimicrobial Agents and Chemotherapy, 34, 1590-1592. https://doi.org/10.1128/AAC.34.8.1590

  45. 45. Thompson, J.S. and Malamy, M.H. (1990) Sequencing the Gene for an Imipenem-Cefoxitin-Hydrolyzing Enzyme (CfiA) from Bacteroides fragilis TAL2480 Reveals Strong Similarity between CfiA and Bacillus cereus Beta-Lactamase II. Journal of Bacteriology, 172, 2584-2593. https://doi.org/10.1128/jb.172.5.2584-2593.1990

  46. 46. Mahillon, J., Leonard, C. and Chandler, M. (1999) IS Ele-ments as Constituents of Bacterial Genomes. Research in Microbiology, 150, 675-687. https://doi.org/10.1016/S0923-2508(99)00124-2

  47. 47. Hammerschmidt, S., et al. (1996) Modulation of Cell Sur-face Sialic Acid Expression in Neisseria meningitidis via a Transposable Genetic Element. The EMBO Journal, 15, 192-198. https://doi.org/10.1002/j.1460-2075.1996.tb00347.x

  48. 48. Ziebuhr, W., et al. (1999) A Novel Mechanism of Phase Variation of Virulence in Staphylococcus epidermidis: Evidence for Control of the Polysaccharide Intercellular Adhesin Synthesis by Alternating Insertion and Excision of the Insertion Sequence Element IS256. Molecular Microbiology, 32, 345-356. https://doi.org/10.1046/j.1365-2958.1999.01353.x

  49. 49. Podglajen, I., et al. (1994) Insertion of a Novel DNA Se-quence, 1S1186, Upstream of the Silent Carbapenemase Gene cfiA, Promotes Expression of Carbapenem Resistance in Clinical Isolates of Bacteroides fragilis. Molecular Microbiology, 12, 105-114. https://doi.org/10.1111/j.1365-2958.1994.tb00999.x

  50. 50. Whittle, G., et al. (2002) The Role of Bacteroides Con-jugative Transposons in the Dissemination of Antibiotic Resistance Genes. Cellular and Molecular Life Sciences: CMLS, 59, 2044-2054. https://doi.org/10.1007/s000180200004

  51. 51. Edwards, R. and Read, P.N. (2000) Expression of the Carbapenemase Gene (cfiA) in Bacteroides fragilis. The Journal of Antimicrobial Chemotherapy, 46, 1009-1012. https://doi.org/10.1093/jac/46.6.1009

  52. 52. Depardieu, F., et al. (2007) Modes and Modulations of Antibiotic Resistance Gene Expression. Clinical Microbiology Reviews, 20, 79-114. https://doi.org/10.1128/CMR.00015-06

  53. 53. Rasmussen, B.A. and Kovacs, E. (1991) Identification and DNA Sequence of a New Bacteroides fragilis Insertion Sequence-Like Element. Plasmid, 25, 141-144. https://doi.org/10.1016/0147-619X(91)90027-T

  54. 54. Podglajen, I., et al. (2001) Multiple Mobile Promoter Regions for the Rare Carbapenem Resistance Gene of Bacteroides fragilis. Journal of Bacteriology, 183, 3531-3535. https://doi.org/10.1128/JB.183.11.3531-3535.2001

  55. 55. Sóki, J., et al. (2004) Molecular Characterization of Imipenem-Resistant, cfiA-Positive Bacteroides fragilis Isolates from the USA, Hungary and Kuwait. Journal of Medical Microbiology, 53, 413-419. https://doi.org/10.1099/jmm.0.05452-0

  56. 56. Ayala, J., et al. (2005) Penicillin-Binding Proteins of Bacteroides fragilis and Their Role in the Resistance to Imipenem of Clinical Isolates. Journal of Medical Microbiology, 54, 1055-1064. https://doi.org/10.1099/jmm.0.45930-0

  57. 57. Smith, C.J., et al. (1998) Genetic Elements of Bacteroides Species: A Moving Story. Plasmid, 40, 12-29. https://doi.org/10.1006/plas.1998.1347

  58. 58. Nakano, V., et al. (2004) Plasmid-Related Beta-Lactamase Production in Bacteroides fragilis Strains. Research in Microbiology, 155, 843-846. https://doi.org/10.1016/j.resmic.2004.06.011

  59. 59. Salyers, A.A., Shoemaker, N.B., Stevens, A.M. and Li, L.Y. (1995) Conjugative Transposons: An Unusual and Diverse Set of Integrated Gene Transferelements. Microbiological Reviews, 59, 579-590. https://doi.org/10.1128/mr.59.4.579-590.1995

  60. 60. Georgopapadakou, N.H., Smith, S.A. and Sykes, R.B. (1983) Penicillin-Binding Proteins in Bacteroides fragilis. The Journal of Antibiotics (Tokyo), 36, 907-910. https://doi.org/10.7164/antibiotics.36.907

  61. 61. Fernández-Cuenca, F., et al. (2003) Relationship between Be-ta-Lactamase Production, Outer Membrane Protein and Penicillin-Binding Protein Profiles on the Activity of Carbapenems against Clinical Isolates of Acinetobacter baumannii. The Journal of Antimicrobial Chemotherapy, 51, 565-574. https://doi.org/10.1093/jac/dkg097

  62. 62. Neuwirth, C., et al. (1995) Imipenem Resistance in Clinical Isolates of Proteus mirabilis Associated with Alterations in Penicillin-Binding Proteins. The Journal of Antimicrobial Chemotherapy, 36, 335-342. https://doi.org/10.1093/jac/36.2.335

  63. 63. Sumita, Y. and Fukasawa, M. (1995) Potent Activity of Meropenem against Escherichia coli Arising from Its Simultaneous Binding to Penicillin-Binding Proteins 2 and 3. The Journal of Antimicrobial Chemotherapy, 36, 53-64. https://doi.org/10.1093/jac/36.1.53

  64. 64. Edwards, R. and Greenwood, D. (1992) An Investigation of be-ta-Lactamases from Clinical Isolates of Bacteroides Species. Journal of Medical Microbiology, 36, 89-95. https://doi.org/10.1099/00222615-36-2-89

  65. 65. Píriz, S., et al. (2004) Relationship between Penicillin-Binding Protein Patterns and beta-Lactamases in Clinical Isolates of Bacteroides fragilis with Different Susceptibility to be-ta-Lactam Antibiotics. Journal of Medical Microbiology, 53, 213-221. https://doi.org/10.1099/jmm.0.05409-0

  66. 66. Catel-Ferreira, M., et al. (2011) Structure-Function Relationships of CarO, the Carbapenem Resistance-Associated Outer Membrane Protein of Acinetobacter baumannii. The Journal of Antimicrobial Chemotherapy, 66, 2053-2056. https://doi.org/10.1093/jac/dkr267

  67. 67. Mussi, M.A., et al. (2007) CarO, an Acinetobacter baumannii Outer Membrane Protein Involved in Carbapenem Resistance, Is Essential for L-Ornithine Uptake. FEBS Letters, 581, 5573-5578. https://doi.org/10.1016/j.febslet.2007.10.063

  68. 68. Odou, M.F., et al. (1998) Isolation and Characterization of a Porin-Like Protein of 45 Kilodaltons from Bacteroides fragilis. FEMS Microbiology Letters, 166, 347-354. https://doi.org/10.1111/j.1574-6968.1998.tb13911.x

  69. 69. Behra-Miellet, J., et al. (2004) A Bacteroides Thetaiotamicron Porin That Could Take Part in Resistance to Beta-Lactams. International Journal of Antimicrobial Agents, 24, 135-143. https://doi.org/10.1016/j.ijantimicag.2004.01.008

  70. 70. Sawai, T., et al. (1988) Effect of Interaction between Outer Membrane Permeability and beta-Lactamase Production on Resistance to beta-Lactam Agents in Gram-Negative Bacteria. Reviews of Infectious Diseases, 10, 761-764. https://doi.org/10.1093/clinids/10.4.761

  71. 71. Hiruma, R., et al. (1984) The Effect of Lipopolysaccharide on Lipid Bilayer Permeability of beta-Lactam Antibiotics. FEBS Letters, 170, 268-272. https://doi.org/10.1016/0014-5793(84)81326-5

  72. 72. Yamaguchi, A., et al. (1982) Phospholipid Bilayer Permea-bility of beta-Lactam Antibiotics. The Journal of Antibiotics, 35, 1692-1699. https://doi.org/10.7164/antibiotics.35.1692

  73. 73. Cuchural, G.J., et al. (1988) Permeability to beta-Lactams in Bacteroides fragilis. The Journal of Antimicrobial Chemotherapy, 22, 785-790. https://doi.org/10.1093/jac/22.6.785

  74. 74. Edwards, R. and Greenwood, D. (1997) Distinctive Outer Membrane Protein and Lipopolysaccharide Composition of Bacteroides fragilis Strains That Produce Metallo-beta-Lactamase. Anaerobe, 3, 233-236. https://doi.org/10.1006/anae.1997.0103

  75. 75. Khalili, Y., et al. (2019) Characterization of Carbapenem-Resistant but Cephalosporin-Susceptible Pseudomonas aeruginosa. Acta Microbiologica et Immunologica Hungarica, 66, 529-540. https://doi.org/10.1556/030.66.2019.036

  76. 76. Ni, R.T., et al. (2020) The Role of RND-Type Efflux Pumps in Multidrug-Resistant Mutants of Klebsiella pneumoniae. Scientific Reports, 10, Article No. 10876. https://doi.org/10.1038/s41598-020-67820-x

  77. 77. Nikaido, H. (2011) Structure and Mechanism of RND-Type Multidrug Efflux Pumps. In: Advances in Enzymology and Related Areas of Molecular Biology, Vol. 77, John Wiley & Sons, Inc., Hoboken, 1-60. https://doi.org/10.1002/9780470920541.ch1

  78. 78. Poole, K. and Srikumar, R. (2001) Multidrug Efflux in Pseu-domonas aeruginosa: Components, Mechanisms and Clinical Significance. Current Topics in Medicinal Chemistry, 1, 59-71. https://doi.org/10.2174/1568026013395605

  79. 79. Li, X.-Z., et al. (2015) The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria. Clinical Microbiology Reviews, 28, 337-418. https://doi.org/10.1128/CMR.00117-14

  80. 80. Zgurskaya, H.I. and Nikaido, H. (2000) Multidrug Resistance Mechanisms: Drug Efflux across Two Membranes. Molecular Microbiology, 37, 219-225. https://doi.org/10.1046/j.1365-2958.2000.01926.x

  81. 81. Nikaido, H. and Zgurskaya, H.I. (1999) Antibiotic Efflux Mechanisms. Current Opinion in Infectious Diseases, 12, 529-536. https://doi.org/10.1097/00001432-199912000-00001

  82. 82. Blair, J.M., et al. (2014) Multidrug Efflux Pumps in Gram-Negative Bacteria and Their Role in Antibiotic Resistance. Future Microbiology, 9, 1165-1177. https://doi.org/10.2217/fmb.14.66

  83. 83. Ueda, O., et al. (2005) Sixteen Homologs of the Mex-Type Multidrug Re-sistance Efflux Pump in Bacteroides fragilis. Antimicrobial Agents and Chemotherapy, 49, 2807-2815. https://doi.org/10.1128/AAC.49.7.2807-2815.2005

  84. 84. Pumbwe, L., et al. (2006) Efflux Pump Overexpression in Multiple-Antibiotic-Resistant Mutants of Bacteroides fragilis. Antimicrobial Agents and Chemotherapy, 50, 3150-3153. https://doi.org/10.1128/AAC.00141-06

  85. 85. Pumbwe, L., et al. (2006) Bacteroides fragilis BmeABC Efflux Systems Additively Confer Intrinsic Antimicrobial Resistance. The Journal of Antimicrobial Chemotherapy, 58, 37-46. https://doi.org/10.1093/jac/dkl202

  86. 86. Gilmore, M.S. and Ferretti, J.J. (2003) Microbiology. The Thin Line between Gut Commensal and Pathogen. Science (New York, N.Y.), 299, 1999-2002. https://doi.org/10.1126/science.1083534

  87. 87. Silva, J.O., et al. (2014) In Vitro Effect of Antibiotics on Biofilm Formation by Bacteroides fragilis Group Strains Isolated from Intestinal Microbiota of Dogs and Their Antimicrobial Susceptibility. Anaerobe, 28, 24-28. https://doi.org/10.1016/j.anaerobe.2014.04.010

  88. 88. Amiri, R., et al. (2022) Identification of Enterotoxigenic Bacteroides fragilis in Patients with Diarrhea: A Study Targeting 16S rRNA, gyrB and nanH Genes. Anaerobe, 75, Ar-ticle ID: 102546. https://doi.org/10.1016/j.anaerobe.2022.102546

  89. 89. Shoemaker, N.B., et al. (2001) Evidence for Extensive Re-sistance Gene Transfer among Bacteroides spp. and among Bacteroides and Other Genera in the Human Colon. Applied and Environmental Microbiology, 67, 561-568. https://doi.org/10.1128/AEM.67.2.561-568.2001

  90. 90. Salyers, A.A., et al. (2004) Human Intestinal Bacteria as Reservoirs for Antibiotic Resistance Genes. Trends in Microbiology, 12, 412-416. https://doi.org/10.1016/j.tim.2004.07.004

  91. 91. Wang, Y.Y., et al. (2022) High Prevalence of cfiA Positive Bacteroides fragilis Isolates Collected at a Teaching Hospital in Hohhot, China. Anaerobe, 79, Article ID: 102691. https://doi.org/10.1016/j.anaerobe.2022.102691

  92. 92. Wallace, M.J., et al. (2022) Comparative Genomics of Bacteroides fragilis Group Isolates Reveals Species-Dependent Resistance Mechanisms and Validates Clinical Tools for Resistance Prediction. mBio, 13, e0360321. https://doi.org/10.1128/mbio.03603-21

  93. 93. 喻华, 等. 肠杆菌目细菌碳青霉烯酶的实验室检测和临床报告规范专家共识(第二版) [J]. 中国感染与化疗杂志 2022, 22(4): 463-474. https://doi.org/10.16718/j.1009-7708.2022.04.014

  94. NOTES

    *通讯作者Email: wangjichunemail@126.com

期刊菜单