Advances in Clinical Medicine
Vol. 13  No. 11 ( 2023 ), Article ID: 76065 , 11 pages
10.12677/ACM.2023.13112585

缺氧诱导因子-1与缺血性脑卒中的研究进展

姚境1,齐子有2*

1济宁医学院临床医学院,山东 济宁

2济宁医学院附属医院神经内科,山东 济宁

收稿日期:2023年10月25日;录用日期:2023年11月19日;发布日期:2023年11月27日

摘要

脑卒中是一种由脑内血管突然破裂或血管堵塞引起的急性脑血管疾病,现已成为我国居民死亡的主要原因之一。脑梗死时,缺氧诱导因子-1 (hypoxia-inducible factor-1, HIF-1)作为缺氧条件下重要的转录调节因子,通过调节糖代谢、血管生成、红细胞生成、细胞存活等多种途径参与脑梗死的病理过程。HIF-1在脑卒中中的调节机制包括能量代谢、氧化应激、血管重塑、神经炎症和细胞坏死、自噬、凋亡。然而,HIF-1在卒中中的作用仍存在争议,具体作用与脑组织缺血时间和缺血程度有关。同时,针对HIF-1与神经系统变性病(如阿尔兹海默症、帕金森病等)之间的关系也有越来越多的研究。基于HIF-1在神经系统疾病中的作用,HIF-1有望成为卒中治疗的潜在靶点,同时解决脑梗死期间对HIF-1何时以及采取何种干预措施的问题将为缺血性脑血管病治疗提供新的策略。

关键词

HIF-1,缺血性脑卒中,氧化应激,血管重塑,神经炎症

Research Progress of Hypoxia-Inducible Factor-1 and Ischemic Stroke

Jing Yao1, Ziyou Qi2*

1Clinical Medical College of Jining Medical University, Jining Shandong

2Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining Shandong

Received: Oct. 25th, 2023; accepted: Nov. 19th, 2023; published: Nov. 27th, 2023

ABSTRACT

Stroke is an acute cerebrovascular disease caused by sudden rupture or blockage of blood vessels in the brain, which has become one of the major causes of death in China. As an important transcriptional regulator under hypoxic conditions, hypoxia-inducible factor-1 (HIF-1) is involved in the pathological process of cerebral infarction by regulating glucose metabolism, angiogenesis, erythropoiesis, cell survival, etc. The regulatory mechanisms of HIF-1 in stroke include energy metabolism, oxidative stress, vascular remodelling, neuroinflammation, cell necrosis, autophagy and apoptosis. However, the role of HIF-1 in stroke remains controversial, and the specific role is related to the duration and degree of cerebral ischaemia. Meanwhile, the relationship between HIF-1 and neurodegenerative diseases (e.g., Alzheimer’s disease, Parkinson’s disease, etc.) has been increasingly studied. Based on its role in neurological diseases, HIF-1 is expected to be a potential target for stroke therapy. Meanwhile, solving the problem of when and what interventions for HIF-1 should be taken at the time of cerebral infarction will provide a new strategy for the treatment of ischaemic cerebrovascular disease.

Keywords:HIF-1, Ischemic Stroke, Oxidative Stress, Angiogenesis, Neuroinflammation

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

脑卒中,是一种由脑内血管突然破裂或血管堵塞引起的急性脑血管疾病,包括缺血性卒中和出血性卒中。脑卒中具有高发病率、高死亡率和高致残率的特点。近年来,我国脑卒中的发病率、患病率和死亡率不断增高,现已成为居民的第一位死亡原因。脑卒中主要分为出血性脑卒中和缺血性脑卒中,其中缺血性脑卒中又称脑梗死,其致死率占所有卒中的75%~90% [1] 。脑梗死发生后,脑组织供血减少,脑组织供氧及营养不足,造成大脑局部缺血缺氧 [2] ,进而导致大脑中的各种蛋白质和分子发生改变,这些与炎症、细胞凋亡、氧化应激和能量失调有关,最终导致脑组织坏死或软化,中枢神经系统功能丧失。

缺氧诱导因子-1 (hypoxia-inducible factor-1, HIF-1)是一种在缺氧条件下维持氧稳态的具有转录活性的核蛋白,介导一系列基因的表达。在缺血性脑卒中中,HIF-1通过调节能量代谢 [3] 、血管生成 [4] 、红细胞生成 [5] 、细胞自噬及凋亡 [6] 等多种途径参与脑梗死的病理过程。目前,HIF-1在脑梗死中的作用仍有争议。实验研究发现,缺氧预处理(hypoxic preconditioning, HPC)和HIF-1诱导因子(铁沙明和氯化钴)或HIF-1降解抑制剂(二甲基乙二酰甘氨酸,DMOG)通过提高脑缺血后的HIF-1水平来发挥神经保护作用 [7] 。然而,也有其他研究证明抑制HIF-1具有的神经保护作用 [8] 。本文综述了HIF-1在缺血性脑卒中中的作用和调控机制,对了解脑卒中的发病机制和开展相关治疗靶点具有重要意义。

2. HIF-1的分子结构

HIF-1是一种转录激活因子,可根据细胞内氧浓度的变化调节基因表达,是由氧调节亚基HIF-1α (120 kDa)和结构亚基HIF-1β (91 kDa)组成的异源二聚体。HIF-1的表达受氧浓度、磷脂酰肌醇3激酶(PI3K)和ERK丝裂原活化蛋白激酶通路的调控。该途径由生长因子(包括PDGF,IGF和EGF),转化生长因子(TGF),肿瘤坏死因子-α和白细胞介素-1β激活 [9] 。HIF-1β在细胞中的表达不受氧浓度的影响,在正常细胞和缺氧细胞的细胞核和细胞质中恒定表达。而HIF-1α是HIF-1的活性亚基,其表达受氧浓度的调节。这两个亚基都是bHLH-PAS蛋白家族成员,HIF-1α的N端有bHLH结构域和PAS结构域,与二聚化、DNA结合和信号转导相关 [10] 。除了bHLH和PAS结构域外,HIF-1α亚基还具有C端反式激活结构域(C-TAD)、N端反式激活结构域(N-TAD)、氧依赖降解结构域(ODD)和抑制结构域(ID)。C-TAD结构域通过与转录激活因子CBP和p300结合来调节基因表达。而缺氧诱导因子-1羟化酶调节缺氧感应,包含三种脯氨酰羟化酶(PHD1-3)和天冬酰羟化酶,又称HIF抑制因子(FIH)。HIF-1羟化酶通过阻断C-TAD和p300/CBP转录共激活因子之间的相互作用来抑制HIF-1的转录活性 [11] 。常氧条件下,ODD结构域可被脯氨酸羟化酶2 (PHD-2)羟基化,导致HIF-1α降解 [12] [13] 。羟基化的底物和共激活剂(如O2、Fe2+和2-OG)减少,从而导致PHD、FIH羟基化作用减弱,最终致HIF-1α蓄积、活性升高。稳定的HIF α亚基可以转移到细胞核,在那里它们结合HIF响应基因的调节DNA区域内的缺氧反应元件(HRE)以增强转录 [14] 。目前已知有数百个基因具有HIF反应性,包括促红细胞生成素(EPO),血管内皮生长因子(VEGF)和葡萄糖转运蛋白(Glut-1)等。因此,HIF转录因子的活性以复杂的方式调节,这允许HIF依赖性缺氧反应的时间和动态性质的可变性根据每种细胞类型的特定需求进行调整。

3. 脑缺血缺氧时HIF-1α在神经系统中的表达

值得注意的是,单个细胞类型中典型HIF反应的时间、表达量及性质是可变的,且取决于缺氧暴露的程度和持续时间以及氧传感途径成分的表达和亚型。HIF-1α的病理作用可能与中枢神经系统的细胞类型密切相关。缺氧时,神经元HIF-1α的缺失降低了神经元活力,增加了神经元对缺氧诱导死亡的易感性,而星形胶质细胞内HIF-1α功能的选择性丧失保护神经元免受缺氧诱导的神经元死亡 [15] 。在小鼠MCAO模型轻度缺血缺氧预处理情况下,在15 min时引起神经元中HIF-1α的快速瞬时增加,而星形胶质细胞中HIF-1α的增加缓慢但持续时间较长。神经元HIF-1α的增加依赖于HIF-1α降解酶的抑制,而星形胶质细胞则通过P2X7受体依赖机制诱导HIF-1α的持续表达 [16] 。同时也有研究发现缺血缺氧预处理诱导的星形细胞HIF-1α通过P2X7受体的调节参与缺血耐受,而神经元HIF-1α的增加不参与缺血耐受 [17] 。此外,在大鼠的MCAO模型中,HIF-1在神经元和脑内皮细胞中均可诱导表达,YC-1可抑制HIF-1及其下游基因,显着增加死亡率并扩大脑梗死体积,但HIF-1抑制显着改善了缺血诱导的血脑屏障(BBB)破坏。YC-1对HIF-1的抑制对梗死体积和血脑屏障的通透性不同的作用与YC-1介导的脑损伤加重及BBB保护可能分别与抑制神经元及血管内皮细胞中HIF-1的表达有关,这表明HIF-1在不同的脑细胞中可能具有不同的功能。进一步的分析表明,缺血上调神经元和脑内皮细胞中的HIF-1及其下游基因EPO、VEGF和Glut,并且YC-1抑制其表达,而HIF-1诱导的VEGF增加了BBB通透性,而由HIF-1下游基因编码的某些其他蛋白质(如EPO)在脑梗死时提供神经保护作用 [18] 。HIF-1α缺陷的小胶质细胞在趋化、吞噬作用、活性氧(ROS)产生和肿瘤坏死因子α (TNF-α)分泌方面功能受损,从而减少缺血性脑卒中急性期神经元的存活。综上,HIF-1在特定细胞中的不同表达在卒中后发挥不同的作用 [19] 。

4. 脑梗死时HIF 的作用及相关机制

4.1. HIF-1与能量代谢

大脑是人体消耗氧气和葡萄糖最多的器官。常氧条件下,神经系统依靠葡萄糖氧化代谢产生能量。葡萄糖代谢的一个重要功能是通过氧化磷酸化、糖酵解和戊糖磷酸途径来维持细胞还原环境,葡萄糖转运蛋白和糖酵解酶作为能量代谢的关键基因受HIF-1调控,在细胞生存中发挥重要作用 [20] 。当大脑缺血缺氧时,能量代谢的平衡以及氧化还原稳态被破坏,HIF-1通过调节Glut-1以及磷酸戊糖途径的关键酶,如葡萄糖-6-磷酸脱氢酶和6-磷酸葡萄糖酸脱氢酶的表达,通过葡萄糖运输及糖酵解途径增强,从而促进神经细胞对葡萄糖的摄取 [21] 。阻断PHD对HIF-1α的降解可以是更多的葡萄糖分流到抗氧化剂磷酸戊糖途径(PPP)中,同时减少糖酵解通量,最终维持神经元在缺血缺氧时维持氧化还原稳态 [22] 。因此,维持细胞氧化还原稳态是HIF-1保护缺氧缺血暴露的重要机制之一,通过HIF-1维持细胞氧化还原状态可以保护细胞免受缺氧缺血介导的损伤 [23] 。

缺血缺氧预处理会使小鼠对脑缺血产生耐受性,阻塞预处理小鼠的大脑中动脉后,与未经预处理小鼠相比脑梗死体积减小,但是在内源性阻断EPO后这种神经保护作用明显减弱 [24] 。HIF-1可以促进EPO的表达以增加红细胞生成,进而增强氧气输送,保护细胞免受缺氧缺血损伤 [5] 。抑制HIF-1的表达的同时EPO 、Glut-1表达也减少,并且神经系统功能损伤加重 [25] 。

另外,神经元钠钙交换器1 (NCX1)是维持钠和钙稳态的关键。脑缺血缺氧预处理前敲低HIF-1会导致NCX1表达减少,同时加重神经损伤。这表明HIF-1通过上调NCX1来维持细胞内环境的稳定,从而调节神经元钠钙稳态 [26] [27] 。聚合酶I和转录释放因子(PTRF)在调节细胞衰老、葡萄糖耐受不良、脂质代谢和线粒体生物能量学中起关键作用,神经元PTRF的过表达通过减少蛋白酶体介导的降解途径增强了PLA2G4A的活性和稳定性。脑缺血再灌注(I/R)损伤后神经元细胞中HIF-1α和STAT3通过与PTRF在神经元细胞中的启动子结合来调控PTRF的I/R依赖性表达,进而调节PLA2G4A的活性和稳定性来加重脑I/R损伤 [28] 。

4.2. HIF-1与氧化应激

大量临床前和临床观察表明,脑梗死后自由基的形成明显增加。与脑梗死有关的自由基包括超氧阴离子自由基、羟基自由基和一氧化氮 [29] 。缺血性脑卒中的氧自由基主要由线粒体产生,线粒体在电子传递过程中产生超氧阴离子自由基。超氧阴离子自由基的增加导致PHD失活,导致HIF-1α的稳定和积累 [30] 。然而,在线粒体DNA缺失细胞模型中没有观察到这种现象,提示线粒体作为氧传感器起作用,并通过向细胞质释放活性氧(ROS)来信号维持缺氧HIF-1α稳定 [31] 。此外,增强的ROS可以激活NF-κB通路,进而通过HIF-1α启动子中一个新的NF-κB结合位点诱导HIF-1α,导致HIF-1α表达升高 [32] 。

在小鼠MCAO模型中,HIF-1可在缺血核心区、缺血周围区及同侧海马通过结合与一氧化氮合酶(iNOS)启动子结合来上调诱导型iNOS基因表达 [33] ,进而通过增加一氧化氮(NO)产生可以增强NMDA受体介导的缺氧缺血性损伤引起的神经元死亡 [34] 。也有报道表明异氟醚后处理导致HIF-1α和iNOS的积累,HIF-1α的转录活性增强,HIF-1α和iNOS的共定位。在初级皮层神经元中敲低HIF-1α可减少iNOS的积累和异氟醚后处理的保护作用,提示HIF-1α参与对异氟醚后处理诱导的脑缺血耐受过程中iNOS的调节 [35] 。

4.3. HIF-1与血管重塑

脑梗死后神经血管重建中血管新生是一个非常重要的过程,为给缺血损伤的脑组织提供氧气和营养物质,最终促进大脑功能恢复奠定基础。(Roles of HIFs and VEGF in angiogenesis in the retina and brain)血管新生是一个紧密协调的过程,可产生动脉、静脉和毛细血管模式和密度,这些模式和密度经过精确校准以满足局部组织要求。血管发育和体内平衡的主要调节因子是血管内皮生长因子(VEGF),由靶组织响应缺氧而产生。VEGF激活血管内皮细胞(EC)上的受体,以调节EC存活、增殖、通透性和迁移,这是毛细血管新生和维持的重要步骤 [4] 。HIF-1可控制VEGF的表达以确保在需要的时间和组织部位发生血管新生。根据HIF/VEGF系统的激活水平和发育环境,结果可能是血管生长、稳定或消退 [36] 。脑缺血缺氧时,HIF-1通过上调VEGF的表达,增加缺血脑组织的氧气和营养供应,从而促进新生血管的形成在小鼠MCAO模型中,阻塞大脑中动脉后48~72 h,梗死边缘新生血管明显增多,HIF-1也显著诱导VEGF和VEGFR的表达,提示HIF-1调控VEGF介导的血管生成 [37] 。有研究发现,恩格列净,作为钠–葡萄糖共转运蛋白2抑制剂,可以通过HIF-1α/VEGF通路显著减少脑缺血大鼠的梗死面积及神经功能缺损 [38] 。因此,在卒中恢复期,HIF-1通过调节VEGF介导的血管生成发挥保护作用。

但是,脑缺血缺氧时激活的HIF-1信号传导可能会扰乱内皮功能,增加BBB通透性并改变BBB细胞间相互作用。周细胞位于循环系统的毛细血管、毛细血管前小动脉和毛细血管后小静脉上,但CNS微血管的周细胞与内皮细胞占比最高 [39] 。周细胞与内皮共享基底膜,参与BBB的形成和维持、血管成熟、血流调节和免疫细胞运输等。有研究表明,HIF-1可能通过p53诱导周细胞凋亡,HIF-1信号传导的缺失维持血管周围周细胞覆盖,改善了梗死周围区域的紧密连接排列、维持了血脑屏障完整性,也减轻了血管渗漏以及梗死周围区域神经元损伤,改善了神经功能缺损 [40] 。

HIF-1在损伤条件下调节多个靶基因,脑缺血缺氧损伤后其在血管腔室中的稳定明显改变脑血管功能和稳态。一方面,HIF-1可以促进血管重塑进而为缺血脑组织提供的氧气及营养物质,促进神经组织修复。但另一方面,脑卒中期间HIF-1信号传导的激活会产生不良的血管效应。值得注意的是,应激条件下HIF-1在所有细胞类型中均被诱导,根据细胞对损伤的耐受性不同而达到不同的表达水平,HIF-1稳定表达很可能在脑梗死期间的不同BBB细胞中产生不同的影响。

4.4. HIF-1与神经炎症

神经炎症是脑梗死后再灌注损伤的重要原因。神经胶质细胞的类型包括少突胶质细胞、小胶质细胞和星形胶质细胞 [41] 。小胶质细胞是中枢神经系统中的主要常驻免疫细胞类型,小胶质细胞通过吞噬凋亡细胞及细胞碎片来维持大脑稳态 [42] 。星形胶质细胞数量最多、分布最广,它是神经元细胞数的5倍,占脑内胶质细胞数的50% [43] 。同时,星形胶质细胞是构成神经血管单元(neurovascular unit, NVU)的重要细胞,在生理及病理状态下对神经元保护和大脑结构与功能的维持均发挥重要调节作用。

缺血性脑卒中后,神经细胞因缺血缺氧而死亡,激活大脑固有免疫反应,促进神经毒性物质的产生,如炎症细胞因子、趋化因子、ROS和NO,介导一系列炎症级联反应,导致血脑屏障破坏和神经功能障碍 [44] 。HIF-1通过调节炎症因子释放和炎症细胞浸润参与缺氧诱导的神经炎症反应 [45] 。有研究表明,HIF-1诱导炎症因子和趋化因子的表达,如IL-20、MCP-1和MCP-5,加重炎症损伤 [46] 。在缺血性脑卒中急性期,HIF-1通过CD36和MFG-E8通路促进小胶质细胞趋化、ROS和TNF-α的产生,从而干扰神经再生 [19] 。toll样受体4 (Toll-like receptor 4, TLR4)是一种介导神经炎症的重要受体,与小胶质细胞活化和中性粒细胞浸润密切相关 [47] 。TLR4缺乏可抑制小胶质细胞极化、中性粒细胞浸润和炎症因子释放,改善脑卒中和脑出血的病理过程 [48] 。缺氧条件下,HIF-1通过直接结合TLR4基因启动子调控TLR4的表达,TLR4也可通过NF-κb通路刺激HIF-1的表达 [49] 。在体外缺氧刺激的BV2细胞中,抑制HIF-1可降低TLR4的表达,减轻神经炎症 [50] 。同样,研究发现HIF-1α的抑制减轻了炎症反应并减弱了小胶质细胞的激活。HIF-1α可激活脑梗死后小胶质细胞中NOD样受体蛋白-3 (NLRP3)炎症小细胞介导的焦亡,并促进脑梗死诱导的行为和认知缺陷,这进一步增强了我们对HIF-1α在缺血性脑血管病中的详细作用的理解 [51] [52] 。

中枢神经系统(CNS)受到缺血缺氧刺激时,HIF-1α可通过刺激经典炎症介质激活小胶质细胞 [53] 通过分泌IL-1α、TNF和C1q诱导星形胶质细胞转化为多种神经系统疾病的神经毒性A1表型 [54] 。该亚型具有很强的神经毒性并迅速使神经元死亡。除了释放有效的神经毒素外,A1星形胶质细胞失去促进新突触的形成、促进CNS神经元的功能丧失 [55] 。

另外,神经胶质淋巴通路是在啮齿动物大脑中发现的液体清除通路 [56] 。该通路中脑脊液(cerebrospinal fluid, CSF)沿着动脉血管周围空间流入大脑,在水通道蛋白-4 (AQP4)水通道的作用下进入脑间质,形成脑间质液(interstitial fluid, ISF)。ISF由组织的代谢活动以及液体和代谢物的毛细血管分泌,以及一些回收的脑脊液组成 [57] 。在淋巴通路中,脑脊液的对流流入与ISF的静脉周围外排相平衡,ISF可清除神经细胞产生的有毒蛋白质代谢废物(例如Aβ、Tau蛋白)等 [58] 。神经胶质淋巴通路的结构基础就是位于星形胶质细胞足的水通道蛋白-4 (AQP4)。AQP4可调节血脑屏障完整性、促进脑脊液(CSF)进入大脑和清除代谢废物 [59] 。HIF-1α是AQP4的上游转录调节因子,可驱动AQP4表达上调。有研究表明,AQP4过表达可有效改善蛛网膜下腔出血(subarachnoid hemorrhage, SAH)诱导的AQP4去极化和BBB损伤,并显着减少了SAH后转铁蛋白浸润和神经元铁死亡。但脑组织损伤后敲低HIF-1α、AQP4的表达可以明显增加神经元存活,并减轻脑水肿以及神经功能缺损 [60] 。

然而,神经胶质细胞异常与多种神经系统疾病高度相关。由于AQP4促进CSF与ISF的交换,可能为淀粉样蛋白-β (Aβ)和tau等蛋白质提供清除途径,这些蛋白质被发现在患有很多神经系统变性病的大脑中积累,包括阿尔茨海默病 [61] 、帕金森病 [62] 。

此外,小胶质细胞和星形胶质细胞也是神经发育过程中突触修剪和大脑神经元可塑性以及神经元营养支持的关键参与者 [63] [64] 脑缺血缺氧时大量增殖的神经胶质细胞可能分泌神经营养因子,可减轻大鼠的神经系统损伤 [64] 。

4.5. HIF-1与细胞凋亡、坏死、自噬

细胞死亡是兴奋性中毒、炎性反应、能量代谢障碍、水和离子失衡等一系列病理过程的终末结局。目前研究的脑细胞死亡途径大致分为三种:凋亡(apoptosis)、坏死(necrosis)及自噬(autophagy)三条途径。坏死是由极端的病理性因素诱发的,作为一种早期、快速的死亡途径在脑缺血中有巨大影响,细胞凋亡是一种程序性细胞死亡的形式。大鼠脑缺血模型研究中发现神经元坏死主要发生在梗死中心区域,而神经元凋亡主要发生在梗死周围缺血缺氧较轻的区域。当神经元发生缺氧时,胞外和内质网钙离子内流致胞浆内钙离子浓度会增加,钙蛋白酶等细胞坏死相关蛋白得到激活。细胞缺血缺氧后的30 min,钙蛋白酶显著升高,激活的钙蛋白酶在缺氧条件下参与HIF1α的降解,抑制了细胞内钙离子浓度升高 [65] 。在缺氧时经动脉I型细胞中胞浆内钙离子浓度增加激活HIF-1α转录。有研究发现,在缺氧条件下HIF-1α的稳定性对细胞的坏死有促进作用 [66] 。

在脑卒中中,HIF-1对细胞凋亡具有双相调节作用。在缺血早期抑制HIF-1α可减少脑损伤和凋亡细胞的数量 [67] 。相反,在晚期敲低HIF-1α会增加神经元损伤和凋亡细胞数量。HIF-1可通过上调促凋亡分子激活凋亡信号通路。Bcl-2家族包括促凋亡蛋白分子,如Bax、Bak、bni3l、Nip3和BNIP3。缺氧时,HIF-1诱导BNIP3L的表达,并与Bcl-2、Bcl-x (L)、E1B19K等抗凋亡蛋白相互作用,抑制抗凋亡蛋白的功能,从而促进细胞凋亡 [68] 。此外,HIF-1α通过抑制p53泛素连接酶(Mdm2)介导的p53降解和核易位,增加p53的稳定性来调控细胞凋亡 [69] 。然而,HIF-1α也可以通过上调EPO和VEGF来减弱缺氧条件下的神经元凋亡,使组织和细胞适应缺氧环境 [70] 。HIF-1还可以通过表达EPO发挥脑保护作用。有研究表明EPO可以抑制脑缺血时兴奋性氨基酸(EAA)的释放 [71] 。有研究报道在缺氧情况下大量谷氨酸从体外培养的小脑神经元颗粒中释放出来加入rEPO后谷氨酸产生减少且神经元数目明显增加。同时,EPO和胰岛素样生长因子-1联合使用可以减少N-甲基-D-天冬氨酸介导的细胞凋亡和神经损伤 [72] 。

自噬是真核细胞在长期进化过程中形成的一种自我保护机制,其作用与内质网应激以及自噬的持续时间和程度有关 [73] 。自噬在缺血性卒中中的作用是双向的,激活自噬有助于清除所积累的蛋白质,有利于神经细胞存活,而过度激活自噬则可能导致神经细胞死亡 [74] 。有研究表明HPC在缺血性卒中中发挥保护作用,可能是通过HIF-1α/beclin1调节自噬 [75] 。在SH-SY5Y细胞的OGD模型中,HIF-1增强自噬,导致缺血缺氧脑损伤 [76] 。HIF-1可以通过多种途径调控自噬,其中BNIP3是HIF-1α最重要的靶基因之一。BNIP3可促进Beclin1与Bcl-2的分离,并通过与beclin-1竞争结合Bcl-2激活自噬 [75] 。BNIP3还通过抑制Rheb mTOR/S6 K/4E-BP信号通路的上游激活因子和mTOR激活自噬 [77] 。HIF-1α诱导的p53上调也有助于自噬激活。在全脑缺血大鼠模型中,HIF-1α的上调可诱导p53的稳定,通过凋亡和自噬介导兴奋性毒性 [78] 。此外,缺氧时HIF-1通过促进BNIP3和Beclin-1/Atg5复合物的表达来诱导线粒体自噬,从而减少ROS的产生 [79] 。

5. 前景展望

HIF-1是核转录因子,可协调对缺氧的适应性生理和病理生理反应。HIF-1由氧调节α亚基(HIF-1α)和组成型表达的β亚基(HIF-1β)组成。脑缺血梗死后HIF-1被激活,通过调控其靶基因在脑卒中病理过程中发挥重要作用,涉及能量代谢、氧化应激、血管重塑、神经炎症、细胞坏死、凋亡、自噬等多种机制。HIF-1在脑梗死中的作用取决于细胞类型及缺血的持续时间和程度。在缺血性卒中早期,抑制HIF-1α可减轻脑损伤、脑水肿和凋亡,主要与抑制促凋亡基因有关。然而,在卒中恢复期,促凋亡基因并未显著升高,而血管生成基因继续高表达。因此,抑制HIF-1α可促进神经元损伤。此外,HIF-1可促进血管重塑,有利于新生血管生成以尽早恢复缺血脑组织血液供应,但同时可能会损伤血脑屏障稳定性,加重神经系统水肿等。HIF-1α对神经胶质细胞的刺激最终对中枢神经系统产生作用也是两面性的,一方面加重神经炎症,另一方面可能会刺激星形胶质细胞分泌神经营养因子,减轻神经功能缺损。因此,目前对于其在脑梗死中的具体作用尚有争议,HIF-1α可能促进脑缺血缺氧后神经修复和再生的过程,也可能加重脑梗死后的神经细胞死亡和神经功能缺损。另外,异常的HIF-1激活参与多种脑部病变,包括神经退行性疾病和创伤性脑损伤等。所以,HIF-1α在脑梗死中的具体作用还有待进一步深入探究和明确,以期为临床治疗缺血性脑血管病提供一定理论依据。

文章引用

姚 境,齐子有. 缺氧诱导因子-1与缺血性脑卒中的研究进展
Research Progress of Hypoxia-Inducible Factor-1 and Ischemic Stroke[J]. 临床医学进展, 2023, 13(11): 18407-18417. https://doi.org/10.12677/ACM.2023.13112585

参考文献

  1. 1. Ganesh, A., Luengo-Fernandez, R., Wharton, R.M., et al. (2017) Time Course of Evolution of Disability and Cause-Specific Mortality after Ischemic Stroke: Implications for Trial Design. Journal of the American Heart Association, 6, e005788. https://doi.org/10.1161/JAHA.117.005788

  2. 2. Rhim, T., Lee, D.Y. and Lee, M. (2013) Hypoxia as a Target for Tissue Specific Gene Therapy. Journal of Controlled Release, 172, 484-494. https://doi.org/10.1016/j.jconrel.2013.05.021

  3. 3. Yu, M., Pan, Q., Li, W., et al. (2023) Isoliquiritigenin Inhibits Gastric Cancer Growth through Suppressing GLUT4 Mediated Glucose Uptake and Inducing PDHK1/PGC-1α Mediat-ed Energy Metabolic Collapse. Phytomedicine, 121, Article ID: 155045. https://doi.org/10.1016/j.phymed.2023.155045

  4. 4. Rattner, A., Williams, J. and Nathans, J. (2019) Roles of HIFs and VEGF in Angiogenesis in the Retina and Brain. Journal of Clinical Investigation, 129, 3807-3820. https://doi.org/10.1172/JCI126655

  5. 5. Wu, Y., Zhang, L., Sun, Z., et al. (2023) Preferred Conformation-Guided Discovery of Potent and Orally Active HIF Prolyl Hydroxylase 2 Inhibitors for the Treatment of Anemia. Journal of Me-dicinal Chemistry, 66, 8545-8563. https://doi.org/10.1021/acs.jmedchem.3c00231

  6. 6. Qiu, B., Yuan, P., Du, X., et al. (2023) Hypoxia Inducible Factor-1α Is an Important Regulator of Macrophage Biology. Heliyon, 9, e17167. https://doi.org/10.1016/j.heliyon.2023.e17167

  7. 7. Chen, W., Jadhav, V., Tang, J., et al. (2008) HIF-1alpha Inhibi-tion Ameliorates Neonatal Brain Injury in a Rat Pup Hypoxic-Ischemic Model. Neurobiology of Disease, 31, 433-441. https://doi.org/10.1016/j.nbd.2008.05.020

  8. 8. Helton, R., Cui, J., Scheel, J.R., et al. (2005) Brain-Specific Knock-Out of Hypoxia-Inducible Factor-1alpha Reduces Rather than Increases Hypoxic-Ischemic Damage. Journal of Neuroscience, 25, 4099-4107. https://doi.org/10.1523/JNEUROSCI.4555-04.2005

  9. 9. Xie, Y., Shi, X., Sheng, K., et al. (2019) PI3K/Akt Sig-naling Transduction Pathway, Erythropoiesis and Glycolysis in Hypoxia (Review). Molecular Medicine Reports, 19, 783-791. https://doi.org/10.3892/mmr.2018.9713

  10. 10. Wang, G.L., Jiang, B.H., Rue, E.A., et al. (1995) Hypox-ia-Inducible Factor 1 Is a Basic-Helix-Loop-Helix-PAS Heterodimer Regulated by Cellular O2 Tension. Proceedings of the National Academy of Sciences of the United States of America, 92, 5510-5514. https://doi.org/10.1073/pnas.92.12.5510

  11. 11. Wu, Y., Li, Z., Mcdonough, M.A., et al. (2021) Inhibition of the Oxygen-Sensing Asparaginyl Hydroxylase Factor Inhibiting Hypoxia-Inducible Factor: A Potential Hypoxia Response Modulating Strategy. Journal of Medicinal Chemistry, 64, 7189-7209. https://doi.org/10.1021/acs.jmedchem.1c00415

  12. 12. Masoud, G.N. and Li, W. (2015) HIF-1α Pathway: Role, Reg-ulation and Intervention for Cancer Therapy. Acta Pharmaceutica Sinica B, 5, 378-389. https://doi.org/10.1016/j.apsb.2015.05.007

  13. 13. Semenza, G.L. (2001) HIF-1, O(2), and the 3 PHDs: How Animal Cells Signal Hypoxia to the Nucleus. Cell, 107, 1-3. https://doi.org/10.1016/S0092-8674(01)00518-9

  14. 14. Wenger, R.H., Stiehl, D.P. and Camenisch, G. (2005) Inte-gration of Oxygen Signaling at the Consensus HRE. Science’s STKE, 2005, re12. https://doi.org/10.1126/stke.3062005re12

  15. 15. Vangeison, G., Carr, D., Federoff, H.J., et al. (2008) The Good, the Bad, and the Cell Type-Specific Roles of Hypoxia Inducible Factor-1 Alpha in Neurons and Astrocytes. Journal of Neu-roscience, 28, 1988-1993. https://doi.org/10.1523/JNEUROSCI.5323-07.2008

  16. 16. Hirayama, Y., Anzai, N. and Koizumi, S. (2021) Mecha-nisms Underlying Sensitization of P2X7 Receptors in Astrocytes for Induction of Ischemic Tolerance. Glia, 69, 2100-2110. https://doi.org/10.1002/glia.23998

  17. 17. Hirayama, Y., Ikeda-Matsuo, Y., Notomi, S., et al. (2015) As-trocyte-Mediated Ischemic Tolerance. Journal of Neuroscience, 35, 3794-3805. https://doi.org/10.1523/JNEUROSCI.4218-14.2015

  18. 18. Kong, L., Ma, Y., Wang, Z., et al. (2021) Inhibition of Hypoxia Inducible Factor 1 by YC-1 Attenuates Tissue Plasminogen Activator Induced Hemorrhagic Transformation by Suppressing HMGB1/TLR4/NF-κB Mediated Neutrophil Infiltration in Thromboembolic Stroke Rats. International Immunopharmacology, 94, Article ID: 107507. https://doi.org/10.1016/j.intimp.2021.107507

  19. 19. Bok, S., Kim, Y.-E., Woo, Y., et al. (2017) Hypoxia-Inducible Factor-1α Regulates Microglial Functions Affecting Neuronal Survival in the Acute Phase of Ischemic Stroke in Mice. Oncotarget, 8, 111508-111521. https://doi.org/10.18632/oncotarget.22851

  20. 20. Mergenthaler, P., Lindauer, U., Dienel, G.A., et al. (2013) Sugar for the Brain: The Role of Glucose in Physiological and Pathological Brain Function. Trends in Neurosciences, 36, 587-597. https://doi.org/10.1016/j.tins.2013.07.001

  21. 21. Guo, S., Miyake, M., Liu, K.J., et al. (2009) Specific In-hibition of Hypoxia Inducible Factor 1 Exaggerates Cell Injury Induced by in Vitro Ischemia through Deteriorating Cel-lular Redox Environment. Journal of Neurochemistry, 108, 1309-1321. https://doi.org/10.1111/j.1471-4159.2009.05877.x

  22. 22. Quaegebeur, A., Segura, I., Schmieder, R., et al. (2016) Deletion or Inhibition of the Oxygen Sensor PHD1 Protects against Ischemic Stroke via Reprogramming of Neuronal Metabolism. Cell Metabolism, 23, 280-291. https://doi.org/10.1016/j.cmet.2015.12.007

  23. 23. Guo, S., Bragina, O., Xu, Y., et al. (2008) Glucose Up-Regulates HIF-1 Alpha Expression in Primary Cortical Neurons in Response to Hypoxia through Maintaining Cellular Redox Sta-tus. Journal of Neurochemistry, 105, 1849-1860. https://doi.org/10.1111/j.1471-4159.2008.05287.x

  24. 24. Bernaudin, M., Nedelec, A.-S., Divoux, D., et al. (2002) Normobaric Hypoxia Induces Tolerance to Focal Permanent Cerebral Ischemia in Association with an Increased Expres-sion of Hypoxia-Inducible Factor-1 and Its Target Genes, Erythropoietin and VEGF, in the Adult Mouse Brain. Journal of Cerebral Blood Flow & Metabolism, 22, 393-403. https://doi.org/10.1097/00004647-200204000-00003

  25. 25. Yan, J., Zhou, B., Taheri, S., et al. (2011) Differential Effects of HIF-1 Inhibition by YC-1 on the Overall Outcome and Blood-Brain Barrier Damage in a Rat Model of Is-chemic Stroke. PLOS ONE, 6, e27798. https://doi.org/10.1371/journal.pone.0027798

  26. 26. Formisano, L., Guida, N., Mascolo, L., et al. (2020) Transcrip-tional and Epigenetic Regulation of ncx1 and ncx3 in the Brain. Cell Calcium, 87, Article ID: 102194. https://doi.org/10.1016/j.ceca.2020.102194

  27. 27. Valsecchi, V., Pignataro, G., Del Prete, A., et al. (2011) NCX1 Is a Novel Target Gene for Hypoxia-Inducible Factor-1 in Ischemic Brain Preconditioning. Stroke, 42, 754-763. https://doi.org/10.1161/STROKEAHA.110.597583

  28. 28. Jin, W., Zhao, J., Yang, E., et al. (2022) Neuronal STAT3/HIF-1α/PTRF Axis-Mediated Bioenergetic Disturbance Exacerbates Cerebral Ischemia-Reperfusion Injury via PLA2G4A. Theranostics, 12, 3196-3216. https://doi.org/10.7150/thno.71029

  29. 29. El Kossi, M.M. and Zakhary, M.M. (2000) Oxidative Stress in the Context of Acute Cerebrovascular Stroke. Stroke, 31, 1889-1892. https://doi.org/10.1161/01.STR.31.8.1889

  30. 30. Wu, L.-Y., He, Y.-L. and Zhu, L.-L. (2018) Possible Role of PHD Inhibitors as Hypoxia-Mimicking Agents in the Maintenance of Neural Stem Cells’ Self-Renewal Properties. Frontiers in Cell and Developmental Biology, 6, Article No. 169. https://doi.org/10.3389/fcell.2018.00169

  31. 31. Guzy, R.D., Hoyos, B., Robin, E., et al. (2005) Mitochondrial Com-plex III Is Required for Hypoxia-Induced ROS Production and Cellular Oxygen Sensing. Cell Metabolism, 1, 401-408. https://doi.org/10.1016/j.cmet.2005.05.001

  32. 32. Lluis, J.M., Buricchi, F., Chiarugi, P., et al. (2007) Dual Role of Mitochondrial Reactive Oxygen Species in Hypoxia Signaling: Activation of Nuclear Factor-{kappa}B via c-SRC and Oxidant-Dependent Cell Death. Cancer Research, 67, 7368-7377. https://doi.org/10.1158/0008-5472.CAN-07-0515

  33. 33. Matrone, C., Pignataro, G., Molinaro, P., et al. (2004) HIF-1alpha Reveals a Binding Activity to the Promoter of iNOS Gene after Permanent Middle Cerebral Artery Occlusion. Journal of Neurochemistry, 90, 368-378. https://doi.org/10.1111/j.1471-4159.2004.02483.x

  34. 34. Hewett, S.J., Muir, J.K., Lobner, D., et al. (1996) Potentia-tion of Oxygen-Glucose Deprivation-Induced Neuronal Death after Induction of iNOS. Stroke, 27, 1586-1591. https://doi.org/10.1161/01.STR.27.9.1586

  35. 35. Fang, L.Q., Xu, H., Sun, Y., et al. (2012) Induction of Inducible Nitric Oxide Synthase by Isoflurane Post-Conditioning via Hypoxia Inducible Factor-1α during Tolerance against Is-chemic Neuronal Injury. Brain Research, 1451, 1-9. https://doi.org/10.1016/j.brainres.2012.02.055

  36. 36. Semenza, G.L. (2014) Oxygen Sensing, Hypoxia-Inducible Factors, and Disease Pathophysiology. Annual Review of Pathology, 9, 47-71. https://doi.org/10.1146/annurev-pathol-012513-104720

  37. 37. Sun, P., Zhang, K., Hassan, S.H., et al. (2020) Endo-thelium-Targeted Deletion of microRNA-15a/16-1 Promotes Poststroke Angiogenesis and Improves Long-Term Neuro-logical Recovery. Circulation Research, 126, 1040-1057. https://doi.org/10.1161/CIRCRESAHA.119.315886

  38. 38. Abdel-Latif, R.G., Rifaai, R.A. and Amin, E.F. (2020) Empagliflozin Alleviates Neuronal Apoptosis Induced by Cerebral Ischemia/Reperfusion Injury through HIF-1α/VEGF Signaling Pathway. Archives of Pharmacal Research, 43, 514-525. https://doi.org/10.1007/s12272-020-01237-y

  39. 39. Daneman, R., Zhou, L., Kebede, A.A., et al. (2010) Pericytes Are Required for Blood-Brain Barrier Integrity during Embryogenesis. Nature, 468, 562-566. https://doi.org/10.1038/nature09513

  40. 40. Tsao, C.-C., Baumann, J., Huang, S.-F., et al. (2021) Pericyte Hypox-ia-Inducible Factor-1 (HIF-1) Drives Blood-Brain Barrier Disruption and Impacts Acute Ischemic Stroke Outcome. An-giogenesis, 24, 823-842. https://doi.org/10.1007/s10456-021-09796-4

  41. 41. Allen, N.J. and Lyons, D.A. (2018) Glia as Architects of Central Nervous System Formation and Function. Science, 362, 181-185. https://doi.org/10.1126/science.aat0473

  42. 42. Borst, K., Dumas, A.A. and Prinz, M. (2021) Microglia: Immune and Non-Immune Functions. Immunity, 54, 2194-2208. https://doi.org/10.1016/j.immuni.2021.09.014

  43. 43. Freeman, M.R. (2010) Specification and Morphogenesis of Astrocytes. Science, 330, 774-778. https://doi.org/10.1126/science.1190928

  44. 44. Yates, D. (2017) Glia: A Toxic Reaction. Nature Reviews Neurosci-ence, 18, 130. https://doi.org/10.1038/nrn.2017.13

  45. 45. Chen, C., Ostrowski, R.P., Zhou, C., et al. (2010) Sup-pression of Hypoxia-Inducible Factor-1alpha and Its Downstream Genes Reduces Acute Hyperglycemia-Enhanced Hemorrhagic Transformation in a Rat Model of Cerebral Ischemia. Journal of Neuroscience Research, 88, 2046-2055. https://doi.org/10.1002/jnr.22361

  46. 46. Mojsilovic-Petrovic, J., Callaghan, D., Cui, H., et al. (2007) Hypox-ia-Inducible Factor-1 (HIF-1) Is Involved in the Regulation of Hypoxia-Stimulated Expression of Monocyte Chemoat-tractant Protein-1 (MCP-1/CCL2) and MCP-5 (Ccl12) in Astrocytes. Journal of Neuroinflammation, 4, Article No. 12. https://doi.org/10.1186/1742-2094-4-12

  47. 47. Tsan, M.-F. (2006) Toll-Like Receptors, Inflammation and Cancer. Seminars in Cancer Biology, 16, 32-37. https://doi.org/10.1016/j.semcancer.2005.07.004

  48. 48. Fang, H., Wang, P.F., Zhou, Y., et al. (2013) Toll-Like Re-ceptor 4 Signaling in Intracerebral Hemorrhage-Induced Inflammation and Injury. Journal of Neuroinflammation, 10, Ar-ticle No. 794. https://doi.org/10.1186/1742-2094-10-27

  49. 49. Rius, J., Guma, M., Schachtrup, C., et al. (2008) NF-kappaB Links Innate Immunity to the Hypoxic Response through Transcriptional Regulation of HIF-1alpha. Nature, 453, 807-811. https://doi.org/10.1038/nature06905

  50. 50. Yao, L., Kan, E.M., Lu, J., et al. (2013) Toll-Like Receptor 4 Mediates Microglial Activation and Production of Inflammatory Mediators in Neonatal Rat Brain Following Hypoxia: Role of TLR4 in Hypoxic Microglia. Journal of Neuroinflammation, 10, Article No. 23. https://doi.org/10.1186/1742-2094-10-23

  51. 51. An, P., Xie, J., Qiu, S., et al. (2019) Hispidulin Exhibits Neuropro-tective Activities against Cerebral Ischemia Reperfusion Injury through Suppressing NLRP3-Mediated Pyroptosis. Life Sciences, 232, Article ID: 116599. https://doi.org/10.1016/j.lfs.2019.116599

  52. 52. Yuan, D., Guan, S., Wang, Z., et al. (2021) HIF-1α Aggravated Traumatic Brain Injury by NLRP3 Inflammasome-Mediated Pyroptosis and Activation of Microglia. Journal of Chemical Neuroanatomy, 116, Article ID: 101994. https://doi.org/10.1016/j.jchemneu.2021.101994

  53. 53. Taylor, C.T. and Scholz, C.C. (2022) The Effect of HIF on Metabolism and Immunity. Nature Reviews Nephrology, 18, 573-587. https://doi.org/10.1038/s41581-022-00587-8

  54. 54. Giulian, D. (1993) Reactive Glia as Rivals in Regulating Neu-ronal Survival. Glia, 7, 102-110. https://doi.org/10.1002/glia.440070116

  55. 55. Liddelow, S.A., Guttenplan, K.A., Clarke, L.E., et al. (2017) Neuro-toxic Reactive Astrocytes Are Induced by Activated Microglia. Nature, 541, 481-487. https://doi.org/10.1038/nature21029

  56. 56. Pollay, M. (2010) The Function and Structure of the Cerebrospinal Fluid Outflow System. Cerebrospinal Fluid Research, 7, Article No. 9. https://doi.org/10.1186/1743-8454-7-9

  57. 57. Rasmussen, M.K., Mestre, H. and Nedergaard, M. (2018) The Glym-phatic Pathway in Neurological Disorders. The Lancet Neurology, 17, 1016-1024. https://doi.org/10.1016/S1474-4422(18)30318-1

  58. 58. Iliff, J.J., Wang, M., Liao, Y., et al. (2012) A Paravascular Pathway Facilitates CSF Flow through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β. Science Translational Medicine, 4, 147ra11. https://doi.org/10.1126/scitranslmed.3003748

  59. 59. Mestre, H., Hablitz, L.M., Xavier, A.L., et al. (2018) Aqua-porin-4-Dependent Glymphatic Solute Transport in the Rodent Brain. Elife, 7, e40070. https://doi.org/10.7554/eLife.40070

  60. 60. Xiong, A., Li, J., Xiong, R., et al. (2022) Inhibition of HIF-1α-AQP4 Axis Ameliorates Brain Edema and Neurological Functional Deficits in a Rat Controlled Cortical Injury (CCI) Model. Scientific Reports, 12, Article No. 2701. https://doi.org/10.1038/s41598-022-06773-9

  61. 61. Leng, F. and Edison, P. (2021) Neuroinflammation and Micro-glial Activation in Alzheimer Disease: Where Do We Go from Here? Nature Reviews Neurology, 17, 157-172. https://doi.org/10.1038/s41582-020-00435-y

  62. 62. Yun, S.P., Kam, T.-I., Panicker, N., et al. (2018) Block of A1 Astrocyte Conversion by Microglia Is Neuroprotective in Models of Parkinson’s Disease. Nature Medicine, 24, 931-938. https://doi.org/10.1038/s41591-018-0051-5

  63. 63. Vidal-Itriago, A., Radford, R.A.W., Aramideh, J.A., et al. (2022) Microglia Morphophysiological Diversity and Its Implications for the CNS. Frontiers in Immunology, 13, Article ID: 997786. https://doi.org/10.3389/fimmu.2022.997786

  64. 64. Ikeda, T., Xia, X.Y., Xia, Y.X., et al. (2000) Glial Cell Line-Derived Neurotrophic Factor Protects against Ischemia/Hypoxia-Induced Brain Injury in Neonatal Rat. Acta Neu-ropathologica, 100, 161-167. https://doi.org/10.1007/s004019900162

  65. 65. Te Boekhorst, V., Jiang, L., Mählen, M., et al. (2022) Calpain-2 Reg-ulates Hypoxia/HIF-Induced Plasticity toward Amoeboid Cancer Cell Migration and Metastasis. Current Biology, 32, 412-427.E8. https://doi.org/10.1016/j.cub.2021.11.040

  66. 66. Deng, H., Tian, X., Sun, H., et al. (2022) Calpain-1 Mediates Vas-cular Remodelling and Fibrosis via HIF-1α in Hypoxia-Induced Pulmonary Hypertension. Journal of Cellular and Mo-lecular Medicine, 26, 2819-2830. https://doi.org/10.1111/jcmm.17295

  67. 67. Yeh, S.-H., Ou, L.-C., Gean, P.-W., et al. (2011) Selective Inhibition of Early—but Not Late—Expressed HIF-1α Is Neuroprotective in Rats after Focal Ischemic Brain Damage. Brain Patholo-gy, 21, 249-262. https://doi.org/10.1111/j.1750-3639.2010.00443.x

  68. 68. Peña-Blanco, A. and García-Sáez, A.J. (2018) Bax, Bak and Beyond-Mitochondrial Performance in Apoptosis. The FEBS Journal, 285, 416-431. https://doi.org/10.1111/febs.14186

  69. 69. Chen, D., Li, M., Luo, J., et al. (2003) Direct Interactions between HIF-1 Alpha and Mdm2 Modulate p53 Function. Journal of Biological Chemistry, 278, 13595-13598. https://doi.org/10.1074/jbc.C200694200

  70. 70. Li, J., Tao, T., Xu, J., et al. (2020) HIF-1α Attenuates Neuronal Apoptosis by Upregulating EPO Expression Following Cerebral Ischemia-Reperfusion Injury in a Rat MCAO Model. International Journal of Molecular Medicine, 45, 1027-1036. https://doi.org/10.3892/ijmm.2020.4480

  71. 71. Garibotto, G., Gurreri, G., Robaudo, C., et al. (1993) Erythropoietin Treatment and Amino Acid Metabolism in Hemodialysis Patients. Nephron, 65, 533-536. https://doi.org/10.1159/000187559

  72. 72. Kang, Y.-J., Digicaylioglu, M., Russo, R., et al. (2010) Erythropoietin plus Insulin-Like Growth Factor-I Protects against Neuronal Damage in a Murine Model of Human Immunodeficiency Vi-rus-Associated Neurocognitive Disorders. Annals of Neurology, 68, 342-352. https://doi.org/10.1002/ana.22070

  73. 73. Naama, M. and Bel, S. (2023) Autophagy-ER Stress Crosstalk Controls Mucus Secretion and Susceptibility to Gut Inflammation. Autophagy, 19, 3014-3016. https://doi.org/10.1080/15548627.2023.2228191

  74. 74. Jaeger, P.A. and Wyss-Coray, T. (2009) All-You-Can-Eat: Autophagy in Neurodegeneration and Neuroprotection. Molecular Neurodegeneration, 4, Article No. 16. https://doi.org/10.1186/1750-1326-4-16

  75. 75. Lu, N., Li, X., Tan, R., et al. (2018) HIF-1α/Beclin1-Mediated Au-tophagy Is Involved in Neuroprotection Induced by Hypoxic Preconditioning. Journal of Molecular Neuroscience, 66, 238-250. https://doi.org/10.1007/s12031-018-1162-7

  76. 76. Niu, G., Zhu, D., Zhang, X., et al. (2018) Role of Hypox-ia-Inducible Factors 1α (HIF1α) in SH-SY5Y Cell Autophagy Induced by Oxygen-Glucose Deprivation. Medical Sci-ence Monitor, 24, 2758-2766. https://doi.org/10.12659/MSM.905140

  77. 77. Daskalaki, I., Gkikas, I. and Tavernarakis, N. (2018) Hypoxia and Se-lective Autophagy in Cancer Development and Therapy. Frontiers in Cell and Developmental Biology, 6, Article No. 104. https://doi.org/10.3389/fcell.2018.00104

  78. 78. Wang, Y., Dong, X.-X., Cao, Y., et al. (2009) p53 Induction Con-tributes to Excitotoxic Neuronal Death in Rat Striatum through Apoptotic and Autophagic Mechanisms. European Jour-nal of Neuroscience, 30, 2258-2270. https://doi.org/10.1111/j.1460-9568.2009.07025.x

  79. 79. Zhang, H., Bosch-Marce, M., Shimoda, L.A., et al. (2008) Mitochondrial Autophagy Is an HIF-1-Dependent Adaptive Metabolic Response to Hypoxia. Journal of Biological Chemistry, 283, 10892-10903. https://doi.org/10.1074/jbc.M800102200

  80. NOTES

    *通讯作者。

期刊菜单