Advances in Clinical Medicine
Vol. 14  No. 01 ( 2024 ), Article ID: 80012 , 11 pages
10.12677/ACM.2024.141214

抗衰老药物在非小细胞肺癌的研究现状

王美霞

延安大学附属医院肿瘤科,陕西 延安

收稿日期:2023年12月25日;录用日期:2024年1月19日;发布日期:2024年1月29日

摘要

肺癌一直是我国死亡率最高的肿瘤,给患者和家庭带来了巨大的痛苦和负担。长期以来,我们认为衰老具有保护个体免受肿瘤侵袭的作用,但最近几年我们发现,衰老的癌细胞也可以促进肿瘤的恶性进展,而消除癌细胞和可以有效地控制癌症的发生发展。针对衰老癌细胞的治疗称之为senotherapeutic,包括senolytic和senomorphic。其中senolytic主要争对衰老癌细胞的杀死和清除。而senomorphic则是消除衰老细胞SASP的产生和分泌。有大量研究表明消除治疗中产生的衰老肿瘤细胞,能促进患者的生存,在此我们主要讨论总结了肺癌癌细胞在治疗中产生的衰老以及肺癌衰老细胞senolytic治疗的进展。

关键词

衰老,肺癌,治疗

Research Status of Anti-Aging Drugs in Non-Small Cell Lung Cancer

Meixia Wang

Department of Oncology, Affiliated Hospital of Yan’an University, Yan’an Shaanxi

Received: Dec. 25th, 2023; accepted: Jan. 19th, 2024; published: Jan. 29th, 2024

ABSTRACT

Lung cancer has always been the tumor with the highest mortality rate in our country, bringing immense pain and burden to patients and their families. Long-term beliefs suggest that aging plays a protective role in preventing individuals from being invaded by tumors. However, in recent years, we have discovered that aging cancer cells can also promote the malignant progression of tumors. Eliminating cancer cells and effectively controlling the occurrence and development of cancer are crucial. Treatment targeting aging cancer cells is called senotherapeutic therapy, which includes senolytic and senomorphic approaches. Senolytic primarily focuses on killing and clearing aging cancer cells, while senomorphic aims to eliminate the production and secretion of senescence-associated secretory phenotype (SASP) in aging cells. Numerous studies have shown that eliminating senescent tumor cells generated during treatment can promote patients’ survival. In this article, we mainly discuss and summarize the aging of lung cancer cells during treatment and the progress of senolytic therapy for lung cancer senescent cells.

Keywords:Aging, Lung Cancer, Treatment

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

世界卫生组织国际癌症研究机构(IARC)公布的数据显示,2020年全世界癌症死亡人数达996万余例,其中我国肺癌180余万,占比超过18%,位于癌症死亡因素之首。在我国,肺癌也是发病率和死亡率位居第一的癌症。2020年,中国新患肺癌占总癌种比17.6%,死亡占比为23.8%。肺癌肿瘤细胞在受到外界不同的压力如放疗、化疗、靶向的诱导会导致肿瘤衰老表型的增加,而这些衰老的肿瘤细胞会形成独特的微环境以影响治疗在肺癌中的疗效。而且有研究表明,衰老的肿瘤细胞不是永久的生长停滞状态,肿瘤细胞亚群能够恢复增殖能力。而且在最近的研究中发现,清除衰老细胞可以延缓肿瘤的进展,提高患者的生存期。因此,理解和利用衰老(通过衰老疗法)似乎对发现新的预防和治疗策略非常重要。在这篇文章中我们讨论总结了肺癌癌细胞在治疗中产生的衰老以及肺癌衰老细胞senolytic治疗的进展。

2. 治疗肺癌诱导的癌细胞衰老

2.1. 化学治疗

2.1.1. 阿霉素

阿霉素(Alimta)是一种被广泛应用于非小细胞肺癌(NSCLC)的治疗中的化疗药物。最近的研究表明,阿霉素可以通过诱导肺癌细胞的早期衰老来抑制肿瘤的生长。研究人员发现,经过阿霉素处理NCI-H460细胞可以上调4.3倍的BMP4表达水平。过表达的BMP4,使细胞增殖能力下降,且衰老标志物SA-β-gal阳性细胞率上升。抑癌基因p16和p21的表达也上调了。之后通过ChIP实验,Smad信号通路的抑制剂Smad6可以降低BMP4诱导下调p16和p21基因启动子区域与Smad的结合程度。这表明BMP4是通过激活Smad通路来影响这两个基因的表达的。综上所述,我们的研究表明BMP4-Smad信号通路在阿霉素诱导NSCLC细胞早期衰老过程中起重要作用,为阿霉素的抗肿瘤机制提供了新的见解 [1] 。

2.1.2. 博来霉素

博来霉素是一种磺胺类抗生素,在临床上主要用于肿瘤的姑息治疗。博来霉素被证明导致G2期和有丝分裂中的细胞周期停滞,导致DNA中的单链断裂 [2] 。有研究使用博来霉素处理A549细胞和原代大鼠II型细胞可诱导细胞衰老 [3] [4] 。

2.2. 靶向治疗

2.2.1. CDK4/6抑制剂

CDK4/6抑制剂帕博西尼是一种选择性药物,其作用是抑制癌细胞的增殖并诱导细胞周期阻滞,可以诱导肺癌细胞衰老 [5] 。研究表明缺乏CDK4会阻止侵袭性肺腺癌的发展 [6] 。

2.2.2. 表观遗传调节器

5-氮杂-2’-脱氧胞苷(地西他滨,5-Aza-2’-deoxycytidine,Decitabine)是一种脱氧胞苷类似物和DNA甲基转移酶抑制剂 [7] 。它通过甲基化后直接不可逆地替代DNA中的胞嘧啶,从而将DNA甲基转移酶共价捕获到DNA中。这种作用导致细胞G2/M期停滞,并诱导细胞凋亡,发挥其抗癌活性。作为一种表观遺传调节器,Decitabine能够诱导肺癌细胞衰老 [8] 。

2.2.3. SIRT抑制剂

Sirtinol作为SIRT家族蛋白的抑制剂,是一种可以抑制NAD依赖性组蛋白脱乙酰酶活性的化合物 [9] 。Sirtinol的抑制作用主要是通过抑制组蛋白脱乙酰酶的活性来实现的,从而导致组蛋白乙酰化水平的升高。研究发现,在人类乳腺癌MCF-7细胞和H1299细胞中处理Sirtinol后,细胞活性下降,Ras的活性减少。同时,Sirtinol还可以增加衰老相关的β-半乳糖苷酶活性和上调纤溶酶原激活物抑制因子1 (PAI-1)的表达。这表明,Sirtinol可能正是通过抑制组蛋白脱乙酰酶活性,从而影响Ras-MAPK信号通路,而参与诱导细胞衰老的过程 [10] 。

2.2.4. AUR抑制剂

Aurora激酶抑制剂是一类参与细胞分裂和细胞周期调控的丝氨酸/苏氨酸激酶家族 [11] ,有研究发现,其治疗A549 KRAS突变的肺癌细胞会诱导显著的衰老反应,并且在进一步的研究中ABT263对靶向Aurora激酶抑制剂诱导的衰老细胞具有敏感性。代表性的Aurora激酶抑制剂包括Aliertib、Tozasertib和Barasertib [12] 。

2.2.5. PLK抑制剂

PLK抑制剂BI-2536不仅可以抑制PLK1和Bromodomain 4 (BRD4)的活性,还能抑制干扰素β基因和c-Myc的表达,从而诱导细胞凋亡并减弱自噬作用,从而诱导肺癌细胞衰老 [13] 。Volasertib是一种高效的PLK1抑制剂,也能抑制PLK2和PLK3,在多种癌症模型中显示出显著的抗肿瘤活性。11此外,研究还显示含有野生型p53的肺癌细胞系对volasertib更为敏感,这可能因为p53失活会促进细胞凋亡,而p53野生型细胞则更易选择衰老途径。这表明p53可能是PLK1抑制诱导肺癌细胞衰老的一个重要影响因子 [14] 。

2.2.6. SKP2抑制剂剂

研究发现,SKP2抑制剂在降低肿瘤耐药性显示出潜在作用。作为E3泛素连接酶的SKP2可以促进p27Kip1的降解,进而促进细胞周期的进行。研究还发现,SKP2的抑制可以诱导肺癌细胞进入衰老状态而非凋亡,这为癌症治疗提供了新的思路。具体来说,在A549/DDP细胞系中,FAM60A的过表达可以上调SKP2表达,增加细胞对化疗药物的耐药性 [15] 。因此,SKP2抑制剂可以增强肺癌细胞对化疗药物的敏感性,并通过诱导细胞衰老来抑制其获得的耐药性。目前,新型苦参碱衍生物YF-18、丹参、桦木酸(BA)、Agrimol B、乌藤提取物(WU)、穿心莲内酯(AD)等多种物质被发现都能抑制SKP2活性,从而在肺癌治疗中发挥作用 [15] - [20] 。

2.2.7. MEK抑制剂

MEK作为MAPK信号通路中的关键激酶,它可以磷酸化并激活下游的ERK蛋白,从而影响细胞的增殖和生存 [21] 。选择性MEK抑制剂如曲美替尼(Trametinib)能抑制MEK1/2的激酶活性,阻断MAPK/ERK通路的激活,这可以激活自噬程序并诱导肿瘤细胞进入衰老状态 [22] 。研究发现,MAPK信号通路与CDK4/6通路联合抑制可有效抑制Kras突变型非小细胞肺癌细胞的增殖,同时可以激活NK细胞导致肿瘤细胞死亡。此外,在p53缺失的模型系统中,MAPK和CDK4/6抑制联合可以促进由Rb介导的细胞衰老和增加SASP的激活。而且在BRAF突变型肿瘤中,MAPK负反馈机制缺失,使得MEK抑制剂在这些肿瘤细胞中更加有效 [23] 。

2.3. 放射治疗

放射治疗在控制局部肿瘤方面确实很有效,但是也会引起一定的副作用,如氧化应激、炎症反应、免疫调节机能紊乱以及促进细胞外基质和间质组织早期衰老。研究还发现放射可诱导肺腺癌细胞的早期衰老和自噬,而自噬通过STAT3-Beclin-1信号通路调节放射诱导的肺腺癌细胞衰老,形成正向反馈,增加抗癌活性。而且,放射诱导的细胞衰老途径,不依赖P53/P21这两种蛋白,这与程序性衰老不同。

3. 清除肺癌衰老癌细胞药物的最新进展

3.1. BH3模拟物

用ABT737清除表达CSDR1和/或P16的衰老巨噬细胞可以降低p16-FDR小鼠KRAS驱动肺癌模型中肿瘤细胞的增殖和向腺癌的恶性进展。在此模型中,衰老巨噬细胞和内皮细胞是主要的衰老细胞类型,人体肺癌早期病变中也存在这种表型类似的衰老巨噬细胞 [24] 。Tareq Saleh等人的研究证明了ABT-263通过抑制BCL-XL与BAX的相互作用,诱导凋亡,在小鼠Lewis衰老的肺癌(LLC)细胞中发挥其清除衰老细胞活性。并且提出了逃避ABT-263诱导的细胞死亡的细胞可能不会衰老的猜想 [25] 。另一项研究发现,BH3模拟物ABT-263可以增强紫杉醇对Bcl-xl高表达癌细胞的杀伤效果。研究人员将ABT-263与紫杉醇联合用药,结果发现联合治疗明显提高了细胞死亡率。其原因是ABT-263可以清除Bcl-xl的抗凋亡功能,从而在紫杉醇诱导的有丝分裂停滞期间促进癌细胞凋亡。这表明BH3模拟物可以利用癌细胞的弱点来增强化疗药物的效果,实现更好的治疗效果。而40%的非鳞状NSCLC患者组织中Bcl-xl的表达水平相对较高,这决定了很大一部分肺癌患者可从紫杉醇与Bcl-xl抑制剂联合使用中获益 [26] 。ABT-236能够在放射治疗中发挥协同效应,增加清除衰老细胞的敏感性,从而有助于降低放射剂量,减轻正常组织的损伤。联合使用清除衰老细胞的BH3模拟物ABT-737和双TOR抑制剂INK-128/雷帕霉素,可以显著减轻放射诱导的组织衰老,有效控制肿瘤生长,改善预后。这是因为它们能消除放射诱导的12-脂氧合酶(12-LOX,具有促肿瘤作用)的表达 [20] 。

3.2. 自噬调节剂

3.2.1. mTOR抑制剂(如雷帕霉素、依维莫司)

靶向mTOR用于抗衰老和抗癌治疗,mTOR抑制剂雷帕霉素、依维莫司被证明可以延缓衰老,进一步延缓癌症,甚至预防癌症。mTOR激活剂MHY1485通过抑制自噬体和溶酶体之间的融合来抑制自噬(autophagy)。可促进细胞凋亡,抑制肿瘤细胞生长。MHY1485联合放射治疗可促进细胞衰老 [27] 。

3.2.2. AMPK激活剂(如二甲双胍)

众多研究显示二甲双胍可通过调节LKB1、p53、IGF-1R、Gpx4、SLC7A11、Nrf2、HO-1等蛋白和miR-148/-152家族,抑制NSCLC的发展。但单独使用高剂量二甲双胍容易产生毒副作用。一项II期随机对照临床试验发现,二甲双胍与EGFR-TKI联合能显著延长EGFR突变晚期肺腺癌患者的无进展生存期 [28] 。二甲双胍通过激活AMPK抑制自噬,增强EGFR抑制剂奥希替尼对NSCLC的敏感性 [29] 。另有研究发现二甲双胍联合ALK抑制剂艾乐替尼,可以抑制HGF/MET信号活化导致的艾乐替尼耐药性,提高其疗效 [30] 。但一线EGFR-TKI治疗同时添加二甲双胍,可能会增加不良反应和毒性 [31] 。二甲双胍还在许多联合方案中显示出良好的效果,如与免疫治疗联合可延长NSCLC患者生存期 [32] ;与叶酸拮抗剂培美曲塞(Pemetrexed)联合对NSCLC具有抗增殖和抗血管生成的作用 [33] ;与HSP90抑制剂联合通过抑制EGFR/PI3K/AKT途径和自噬上调细胞凋亡。二甲双胍还能增强顺铂和放疗联合治疗NSCLC的效果 [34] 。最新研究显示MET和水飞蓟宾的联合也能显著增加A549细胞的敏感性 [35] 。

3.3. 心苷类

强心苷是一类可加强心肌收缩的药物,常用于治疗心力衰竭和部分心律失常。常用的药物包括地高辛、去乙酰毛花苷、毒毛花苷K等。Francisco等人证明了强心苷类药物如哇巴因通过抑制Na+/K+ATP酶,影响细胞内钠和钾浓度,从而引起细胞膜电位下降和细胞酸化,进而通过细胞凋亡杀死衰老细胞 [36] 。Ana等进一步研究发现,哇巴因对多种衰老细胞如肿瘤衰老细胞和癌前细胞均具有广泛的抗衰老作用。它还可以抑制RAS增强的IMR90细胞生长,表明其抗衰老作用不仅与细胞衰老相关,还与RAS信号通路有协同杀伤作用 [37] 。Pavel等进一步证实,哇巴因能明显抑制A549细胞衰老,但对H2O2诱导的人骨髓间充质干细胞和子宫内膜干细胞的早期衰老细胞却无显著影响。这说明不同来源和类型的衰老细胞对抗衰老药物的敏感性不同,这也可能是衰老细胞是否能响应抗衰老药物的关键所在 [38] 。

3.4. 蟾毒类

蟾毒灵是一种心脏糖苷化合物。在I期临床试验中,未观察到剂量限制毒性(DLT),且表明其能有效控制Lewis肺肿瘤小鼠模型中的肿瘤体积增长,延长患者生存时间 [39] 。后续研究发现,蟾毒灵与阿霉素联合使用可以显著抑制人非小细胞肺癌A549细胞的生长 [40] 。与吉非替尼联合也能显著抑制H1955细胞的生长和诱导细胞凋亡 [41] 。此外,对于吉非替尼耐药的人非小细胞肺癌NCI-H460细胞系,蟾毒灵单独使用能抑制其侵袭和转移能力 [42] 。与奥西替尼联合应用能逆转非小细胞肺癌中MCL-1上调导致的奥西替尼获得性耐药性 [43] 。与索拉菲尼联合应用对人非小细胞肺癌NCI-H292细胞系的毒性大于单独应用 [44] 。此外,研究发现蟾毒灵的一种衍生物BF211对A549细胞系的抗癌活性更强,且毒性更低。转铁蛋白和叶酸共修饰的bufalin脂质体对A549细胞具有选择性抑制作用,可实现靶向递送 [45] [46] 。在小鼠异种移植模型中,华蟾毒灵通过非凋亡性细胞死亡途径抑制了人肺癌A549细胞的生长。与吉非替尼联合应用对A549细胞具有显著的协同抑制作用,并促进其凋亡 [47] 。

3.5. 黄酮类

天然黄酮类物质具有抗癌潜力,例如Dasatinib (达沙替尼)和槲皮素都是多靶点酪氨酸激酶抑制剂,可以通过抑制PI3K等上游途径来阻断BCL-XL的表达,从而影响细胞的生长、迁移和侵袭等多个方面,发挥抗肿瘤的作用。与槲皮素相比,漆黄素的抗衰老活性更强。研究表明,漆黄素单独或与其他药物联合使用可抑制多种癌症类型。

体外细胞实验结果表明,槲皮素可以抑制人肺腺癌A549细胞的转移能力,其中ERK1/2信号通路在此过程中起关键作用 [48] 。后续研究发现,槲皮素可以削弱非小细胞肺癌细胞A549和H1299的上皮间充质转化,抑制β-catenin、NF-κB、EGFR和STAT-3等多种信号蛋白的表达,并减弱H1299细胞在软琼脂上的集落形成能力,从而抑制非小细胞肺癌细胞的迁移和侵袭。此外,槲皮素还可以增强EGFR酪氨酸激酶抑制剂埃罗替尼的细胞毒性 [49] 。Parimala等人将埃罗替尼和槲皮素共形成固体脂质纳米颗粒,靶向核EGFR和PI3K/AKT途径,结果明显下调了nEGFR的表达 [50] ,最近的动物实验显示,漆黄素的一种新型4’-溴衍生物可以通过诱导细胞周期阻滞和凋亡,抑制EGFR/ERK1/2/STAT3途径抗非小细胞肺癌,且对小鼠无毒性 [51] 。

3.6. HDAC

组蛋白脱乙酰酶抑制剂在非小细胞肺癌衰老治疗中的应用显示出不同程度的效果。上面提到Sirtinol作为一种NAD依赖性组蛋白脱乙酰酶抑制剂,研究发现它可以通过Ras-MAPK信号通路的受损来诱导肺癌细胞的衰老。然而,另一组蛋白脱乙酰酶抑制剂帕比司他(LBH589)在NSCLC中的研究结果表现出不同的趋势。具体来说,帕比司他作为NSCLC预处理的II期临床研究显示出良好的安全性和有效性,且被评估为一种潜在的化疗后去除衰老细胞的药物 [52] 。但将其与卡铂和依托泊苷组合应用于NSCLC的I期临床试验显示不耐受反应较大,不建议此三药联合。相比之下,帕比司他与放疗或放化疗的联合应用以及用于III期NSCLC则表现出更好的安全性和有效性 [53] 。另一项I期临床研究评估了帕比司他与放疗或放化疗联合治疗无法手术的III期NSCLC患者,结果显示该联合治疗安全且有效 [54] 。此外,帕比司他也可通过增加顺铂和卡铂的细胞毒性来增强化疗效果 [55] [56] ,且在克服ALK抑制剂耐药方面也取得了初步成效。帕比司他还可能作为EGFR酪氨酸激酶抑制剂的潜在增敏剂,具有反耐药作用 [57] 。另一种HDAC抑制剂贝利诺司他通过调节肿瘤细胞线粒体代谢,可有效杀死KRAS突变的肿瘤细胞 [58] 。此外Vorinostat是HDAC (1、2、3、6、7、11)的抑制剂,可诱导细胞凋亡,还可以有效的抑制HPV-18DNA的扩增。而且Wataru Nakajima等人的研究发现vorinostat联合ABT-263克服小细胞肺癌耐药,可有效诱导多种SCLC细胞系的死亡,Noxa和/或BIM在这个过程中发挥作用 [59] 。总体来说,不同的HDAC抑制剂在机制和细胞类型上的差异可能导致它们在NSCLC细胞衰老上的不同结果,但其确切机制差异还需进一步研究。

4. 其他抗肺癌的衰老相关治疗方式

除此之外,还有一些其他针对衰老细胞或其分泌物SASP的抗肿瘤治疗方式,例如:在研究比较充分的BH3模拟物中,有研究利用衰老细胞中高水平的β-半乳糖苷酶(SA-β-gal),将其与ABT-263结合产生了一种强效的抗衰老前体药物(Nav-Gal),在非小细胞肺癌的异种移植模型和原位模型中表现出良好的抗肿瘤活性。其原理是,在衰老肿瘤细胞中优先被sa-β-gal激活,诱导衰老细胞凋亡而不影响非衰老细胞的活力,而且不影响血小板的功能。进一步研究显示对顺铂诱导的衰老细胞具有更高的抗肿瘤效果 [60] 。还有是一种利用细胞内泛素–蛋白酶体(Ubiquitin-Proteasome System, UPS)选择性降解靶标蛋白的新技术PROTAC (proteolysis-targeting chimeras)。DT2216是基于PROTAC技术的BCL-XL的强效选择性降解剂。AZD-8055是mTOR抑制剂,通过mTOR信号通路可以调节MCL1的合成、降解、磷酸化来调控细胞的存活和凋亡。AZD8055可诱导半胱天冬酶依赖的凋亡和自噬。在Sajid Khan等人的研究中显示:DT2216 + AZD8055组合分别增加BCL-XL和MCL-1的降解,选择性的清除BCL-XL/MCL-1共依赖性SCLC细胞。在其实验中多种模型中肿瘤生长被抑制,比如SCLC异种移植物和PDX模型、Rb1/p53/p130 GEM模型 [61] 。

直接清除衰老的肿瘤细胞在理论上可以直接消除其对肿瘤发生和发展的影响。但是,现有技术对肿瘤细胞的靶向能力还不够强,可能会影响正常细胞并产生未知的副作用。因此,一些研究提出了针对衰老细胞相关分泌表型SASP的治疗策略。SASP是衰老细胞分泌的一系列生长因子、炎症因子和化学信号分子,是衰老细胞的一个关键特征。而且有研究发现改变SASP表型而不杀死衰老细胞的senomorphic药物可以减弱衰老细胞的不利影响而且保留对衰老细胞的免疫监视 [62] 。SASP受MAPK/ERK、PI3K/AKT、mTOR和JAK/STAT通路的调控 [63] 。有研究发现,放射诱导的细胞衰老还可能通过衰老相关分泌型表型(SASP)影响周围正常组织,从而间接促进肿瘤生长 [19] 。基于潜在治疗策略是靶向这些转录因子和SASP相关通路。SASP基因在不同癌症类型中的表达水平差异导致SASP组成不同 [25] 。鉴于目前对SASP作用机制的不明确性和其本身的复杂性,需要更深入研究以寻找更好的治疗策略。

5. 总结

在非小细胞肺癌的治疗中各种治疗方式的联合使用,使得患者的生存得到了极大的获益,本文对各种清除衰老细胞药物在模型中的研究情况的介绍,可以看出清除肿瘤衰老细胞在不同程度上可以抑制肿瘤的发生和发展。抗衰老药物通过与放疗、化疗、靶向的联合运用可以增强抗肿瘤的效果,比如在放射或化疗的治疗过程中可诱导肿瘤细胞衰老,清除衰老细胞药物可其诱导的衰老细胞清除从而增强其疗效。比如文章中提到的,蟾毒类药物与化疗药物的联合应用可显著增强抑制肿瘤细胞生长的效果;二甲双胍等药物与靶向治疗药物的联合应用能提高后者的敏感性和延长生存期;清除衰老细胞药物与放疗联合应用可增强放疗效果。

清除肿瘤相关衰老细胞可以提高靶向药物和化疗药物的敏感性,甚至扭转肿瘤细胞的耐药性,延长患者的生存期。比如文章中提到的,SKP2抑制剂可以有效增强非小细胞肺癌细胞对化疗药物的敏感性,抑制其获得的耐药性。蟾毒灵能抑制对吉非替尼耐药的人非小细胞肺癌NCI-H460细胞系的侵袭和转移能力。二甲双胍联合ALK抑制剂艾乐替尼,可以抑制HGF/MET信号活化导致的艾乐替尼耐药性,提高其疗效。帕比司他可能作为EGFR酪氨酸激酶抑制剂的潜在增敏剂,具有增强EGFR-TKI敏感性和延缓耐药的潜在作用。

然而清除衰老肿瘤细胞的药物目前处于体外研究阶段,缺乏临床研究对比其在人类身上的疗效,且抗衰老药物在不同类型的肿瘤细胞中的疗效都不尽相同,因此临床转化还需更多研究证实。

总体来说清除衰老细胞药物的前景广阔,在精准治疗的时代下肿瘤清除衰老细胞的技术手段也得到了飞速的发展,在不断深入探讨其机制下,优化药物选择与联合方式,开展更多临床研究,以提高其在NSCLC治疗中的应用价值。

文章引用

王美霞. 抗衰老药物在非小细胞肺癌的研究现状
Research Status of Anti-Aging Drugs in Non-Small Cell Lung Cancer[J]. 临床医学进展, 2024, 14(01): 1490-1500. https://doi.org/10.12677/ACM.2024.141214

参考文献

  1. 1. Su, D., Zhu, S., Han, X., Feng, Y., Huang, H., Ren, G., Pan, L., Zhang, Y., Lu, J. and Huang, B. (2009) BMP4-Smad Signaling Pathway Mediates Adriamycin-Induced Premature Senescence in Lung Cancer Cells. The Journal of Biological Chemistry, 284, 12153-12164. https://doi.org/10.1074/jbc.M807930200

  2. 2. Chen, J.Y. and Stubbe, J. (2005) Bleomycins: Towards Better Therapeutics. Nature Reviews. Cancer, 5, 102-112. https://doi.org/10.1038/nrc1547

  3. 3. Qiu, T., Tian, Y., Gao, Y., Ma, M., Li, H., Liu, X., Wu, H., et al. (2019) PTEN Loss Regulates Alveolar Epithelial Cell Senescence in Pulmonary Fibrosis Depending on Akt Activation. Aging, 11, 7492-7509. https://doi.org/10.18632/aging.102262

  4. 4. Aoshiba, K., Tsuji, T. and Nagai, A. (2003) Bleomycin Induces Cellu-lar Senescence in Alveolar Epithelial Cells. The European Respiratory Journal, 22, 436-443. https://doi.org/10.1183/09031936.03.00011903

  5. 5. Pack, L.R., Daigh, L.H., Chung, M.Y. and Meyer, T. (2021) Clinical CDK4/6 Inhibitors Induce Selective and Immediate Dissociation of p21 from Cyclin D-CDK4 to Inhibit CDK2. Nature Communications, 12, Article No. 3356. https://doi.org/10.1038/s41467-021-23612-z

  6. 6. Puyol, M., Martín, A., Dubus, P., Mulero, F., Pizcueta, P., Khan, G., Guerra, C., Santamaría, D. and Barbacid, M. (2010) A Synthetic Lethal Interaction between K-Ras Oncogenes and Cdk4 Unveils a Therapeutic Strategy for Non-Small Cell Lung Carcinoma. Cancer Cell, 18, 63-73. https://doi.org/10.1016/j.ccr.2010.05.025

  7. 7. Daifuku, R., Hu, Z.B. and Saunthararajah, Y. (2017) 5-aza-2’,2’-Difluroro Deoxycytidine (NUC013): A Novel Nucleoside DNA Methyl Transferase Inhibitor and Ribonu-cleotide Reductase Inhibitor for the Treatment of Cancer. Pharmaceuticals, 10, Article No. 65. https://doi.org/10.3390/ph10030065

  8. 8. Amatori, S., Bagaloni, I., Viti, D. and Fanelli, M. (2011) Premature Se-nescence Induced by DNA Demethylating Agent (Decitabine) as Therapeutic Option for Malignant Pleural Mesothelioma. Lung Cancer, 71, 113-115. https://doi.org/10.1016/j.lungcan.2010.10.016

  9. 9. Kaeberlein, M., McDonagh, T., Heltweg, B., Hixon, J., West-man, E.A., Caldwell, S.D., Napper, A., et al. (2005) Substrate-Specific Activation of Sirtuins by Resveratrol. The Jour-nal of Biological Chemistry, 280, 17038-17045. https://doi.org/10.1074/jbc.M500655200

  10. 10. Ota, H., Tokunaga, E., Chang, K., Hikasa, M., Iijima, K., Eto, M., Kozaki, K., Akishita, M., Ouchi, Y. and Kaneki, M. (2006) Sirt1 Inhibitor, Sirtinol, Induces Senescence-Like Growth Arrest with Attenuated Ras-MAPK Signaling in Human Cancer Cells. Oncogene, 25, 176-185. https://doi.org/10.1038/sj.onc.1209049

  11. 11. Cacioppo, R. and Lindon, C. (2022) Regulating the Regulator: A Sur-vey of Mechanisms from Transcription to Translation Controlling Expression of Mammalian Cell Cycle Kinase Aurora A. Open Biology, 12, Article ID: 220134. https://doi.org/10.1098/rsob.220134

  12. 12. Wang, L.Q., de Oliveira, R.L., Wang, C., Fernandes Neto, J.M., Mainardi, S., Evers, B., Lieftink, C., et al. (2017) High-Throughput Functional Genetic and Compound Screens Identify Targets for Senescence Induction in Cancer. Cell Reports, 21, 773-783. https://doi.org/10.1016/j.celrep.2017.09.085

  13. 13. Szlachta, K., Kuscu, C., Tufan, T., Adair, S.J., Shang, S., Michaels, A.D., Mullen, M.G., et al. (2018) CRISPR Knockout Screening Identifies Combinatorial Drug Targets in Pancreatic Cancer and Models Cellular Drug Response. Nature Communications, 9, Article No. 4275. https://doi.org/10.1038/s41467-018-06676-2

  14. 14. Van den Bossche, J., Deben, C., De Pauw, I., Lambrechts, H., Hermans, C., De-schoolmeester, V., Jacobs, J., et al. (2019) In Vitro Study of the Polo-Like Kinase 1 Inhibitor Volasert-ib in Non-Small-Cell Lung Cancer Reveals a Role for the Tumor Suppressor P53. Molecular Oncology, 13, 1196-1213. https://doi.org/10.1002/1878-0261.12477

  15. 15. Hou, Q., Jiang, Z., Li, Y., Wu, H., Yu, J. and Jiang, M. (2020) FAM60A Promotes Cisplatin Resistance in Lung Cancer Cells by Activating SKP2 Expression. Anti-Cancer Drugs, 31, 776-784. https://doi.org/10.1097/CAD.0000000000000952

  16. 16. Liu, J., Zheng, X., Li, W., Ren, L., Li, S., Yang, Y., Yang, H., et al. (2022) Anti-Tumor Effects of Skp2 Inhibitor AAA-237 on NSCLC by Arresting Cell Cycle at G0/G1 Phase and Inducing Senescence. Pharmacological Research, 181, Article ID: 106259. https://doi.org/10.1016/j.phrs.2022.106259

  17. 17. Huang, T., Yang, L., Wang, G., Ding, G., Peng, B., Wen, Y. and Wang, Z. (2017) Inhibition of Skp2 Sensitizes Lung Cancer Cells to Paclitaxel. OncoTargets and Therapy, 10, 439-446. https://doi.org/10.2147/OTT.S125789

  18. 18. Huo, K.G., Notsuda, H., Fang, Z., Liu, N.F., Gebregiworgis, T., Li, Q., Pham, N.A., et al. (2022) Lung Cancer Driven by BRAFG469V Mutation Is Targetable by EGFR Kinase Inhibitors. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 17, 277-288. https://doi.org/10.1016/j.jtho.2021.09.008

  19. 19. Tian, Y.T., Ma, L.P., Ding, C.Y., Liu, M.M., Wang, S.N., Tian, M., Gao, L. and Liu, Q.J. (2022) Autophagy Regulates X-Ray Radiation-Induced Premature Senescence through STAT3-Beclin1-P62 Pathway in Lung Adenocarcinoma Cells. International Journal of Radiation Biology, 98, 1432-1441. https://doi.org/10.1080/09553002.2022.2055799

  20. 20. Patil, S., Reedy, J.L., Scroggins, B.T., White, A.O., Kwon, S., Shankavaram, U., López-Coral, A., Chung, E.J. and Citrin, D.E. (2022) Senescence-Associated Tumor Growth Is Promoted by 12-Lipoxygenase. Aging, 14, 1068-1086. https://doi.org/10.18632/aging.203890

  21. 21. Guo, Y.-J., Pan, W.-W., Liu, S.-B., Shen, Z.-F., Xu, Y. and Hu, L.-L. (2020) ERK/MAPK Signalling Pathway and Tumorigenesis. Experimental and Therapeutic Medicine, 19, 1997-2007. https://doi.org/10.3892/etm.2020.8454

  22. 22. Odogwu, L., Mathieu, L., Blumenthal, G., Larkins, E., Goldberg, K.B., Griffin, N., Bijwaard, K., et al. (2018) FDA Approval Summary: Dabrafenib and Trametinib for the Treatment of Meta-static Non-Small Cell Lung Cancers Harboring BRAF V600E Mutations. The Oncologist, 23, 740-745. https://doi.org/10.1634/theoncologist.2017-0642

  23. 23. Ruscetti, M., Leibold, J., Bott, M.J., Fennell, M., Kulick, A., Salgado, N.R., Chen, C.-C., et al. (2018) NK Cell-Mediated Cytotoxicity Contributes to Tumor Control by a Cytostatic Drug Combination. Science (New York, N.Y.), 362, 1416-1422. https://doi.org/10.1126/science.aas9090

  24. 24. Haston, S., Gonzalez-Gualda, E., Morsli, S., Ge, J.F., Reen, V., Calderwood, A., Moutsopoulos, I., et al. (2023) Clearance of Senescent Macrophages Ameliorates Tumorigenesis in KRAS-Driven Lung Cancer. Cancer Cell, 41, 1242-1260.e6. https://doi.org/10.1016/j.ccell.2023.05.004

  25. 25. Jochems, F., Thijssen, B., De Conti, G., Jansen, R., Pogacar, Z., Groot, K., Wang, L.Q., et al. (2021) The Cancer SENESCopedia: A Delineation of Cancer Cell Senescence. Cell Reports, 36, Article ID: 109441. https://doi.org/10.1016/j.celrep.2021.109441

  26. 26. Tan, N., Malek, M., Zha, J.P., Yue, P., Kassees, R., Berry, L., Fairbrother, W.J., Sampath, D. and Belmont, L.D. (2011) Navitoclax Enhances the Efficacy of Taxanes in Non-Small Cell Lung Cancer Models. Clinical Cancer Research, 17, 1394-1404. https://doi.org/10.1158/1078-0432.CCR-10-2353

  27. 27. Sun, L., Morikawa, K., Sogo, Y. and Sugiura, Y. (2021) MHY1485 Enhances X-Irradiation-Induced Apoptosis and Senescence in Tumor Cells. Journal of Radiation Research, 62, 782-792. https://doi.org/10.1093/jrr/rrab057

  28. 28. Arrieta, O., Barrón, F., Padilla, M.S., Avilés-Salas, A., Ramírez-Tirado, L.A., Arguelles Jiménez, M.J., Vergara, E., et al. (2019) Effect of Metformin plus Tyrosine Kinase In-hibitors Compared with Tyrosine Kinase Inhibitors Alone in Patients with Epidermal Growth Factor Receptor-Mutated Lung Adenocarcinoma: A Phase 2 Randomized Clinical Trial. JAMA Oncology, 5, e192553. https://doi.org/10.1001/jamaoncol.2019.2553

  29. 29. Chen, H., Lin, C., Lu, C., Wang, Y., Han, R., Li, L., Hao, S. and He, Y. (2019) Metformin-Sensitized NSCLC Cells to Osimertinib via AMPK-Dependent Autophagy Inhibition. The Clinical Respiratory Journal, 13, 781-790. https://doi.org/10.1111/crj.13091

  30. 30. Chen, H., Lin, C., Peng, T., Hu, C., Lu, C., Li, L., Wang, Y., et al. (2020) Metformin Reduces HGF-Induced Resistance to Alectinib via the Inhibition of Gab1. Cell Death & Disease, 11, Article No. 111. https://doi.org/10.1038/s41419-020-2307-5

  31. 31. Li, L., Jiang, L., Wang, Y., Zhao, Y., Zhang, X.J., Wu, G., Zhou, X., et al. (2019) Combination of Metformin and Gefitinib as First-Line Therapy for Nondiabetic Advanced NSCLC Pa-tients with EGFR Mutations: A Randomized, Double-Blind Phase II Trial. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 25, 6967-6975. https://doi.org/10.1158/1078-0432.CCR-19-0437

  32. 32. Afzal, M.Z., Dragnev, K., Sarwar, T. and Shirai, K. (2019) Clinical Outcomes in Non-Small-Cell Lung Cancer Patients Receiving Concurrent Metformin and Immune Checkpoint Inhibitors. Lung Cancer Management, 8, LMT11. https://doi.org/10.2217/lmt-2018-0016

  33. 33. Wang, J.L., Lan, Y.W., Tsai, Y.T., Chen, Y.C., Staniczek, T., Tsou, Y.A., Yen, C.C. and Chen, C.M. (2021) Additive Antiproliferative and Antiangiogenic Effects of Metformin and Pemetrexed in a Non-Small-Cell Lung Cancer Xenograft Model. Frontiers in Cell and Developmental Biology, 9, Article ID: 688062. https://doi.org/10.3389/fcell.2021.688062

  34. 34. Riaz, M.A., Sak, A., Erol, Y.B., Groneberg, M., Thomale, J. and Stuschke, M. (2019) Metformin Enhances the Radiosensitizing Effect of Cisplatin in Non-Small Cell Lung Cancer Cell Lines with Different Cisplatin Sensitivities. Scientific Reports, 9, Article No. 1282. https://doi.org/10.1038/s41598-018-38004-5

  35. 35. Salmani-Javan, E., Jafari-Gharabaghlou, D., Bonabi, E. and Zarghami, N. (2023) Fabricating Niosomal-PEG Nano-Particles Co-Loaded with Metformin and Silibinin for Effective Treatment of Human Lung Cancer Cells. Frontiers in Oncology, 13, Article ID: 1193708. https://doi.org/10.3389/fonc.2023.1193708

  36. 36. Triana-Martínez, F., Picallos-Rabina, P., Da Silva-Álvarez, S., Pietrocola, F., Llanos, S., Rodilla, V., Soprano, E., et al. (2019) Identification and Characterization of Cardiac Glycosides as Senolytic Compounds. Nature Communications, 10, Article No. 4731. https://doi.org/10.1038/s41467-019-12888-x

  37. 37. Guerrero, A., Herranz, N., Sun, B., Wagner, V., Gallage, S., Guiho, R., Wolter, K., et al. (2019) Cardiac Glycosides Are Broad-Spectrum Senolytics. Nature Metabolism, 1, 1074-1088. https://doi.org/10.1038/s42255-019-0122-z

  38. 38. Deryabin, P.I., Shatrova, A.N. and Borodkina, A.V. (2021) Apoptosis Resistance of Senescent Cells Is an Intrinsic Barrier for Senolysis Induced by Cardiac Glycosides. Cellular and Molecular Life Sciences: CMLS, 78, 7757-7776. https://doi.org/10.1007/s00018-021-03980-x

  39. 39. Meng, Z., Yang, P., Shen, Y., Bei, W., Zhang, Y., Ge, Y., Newman, R.A., et al. (2009) Pilot Study of Huachansu in Patients with Hepatocellular Carcinoma, Nonsmall-Cell Lung Cancer, or Pancreatic Cancer. Cancer, 115, 5309-5318. https://doi.org/10.1002/cncr.24602

  40. 40. Zhang, C. and Fu, L. (2017) Effects of Bufalin Combined with Doxorubi-cin on the Proliferation and Apoptosis of Human Lung Cancer Cell Line A549 in Vitro. Journal of Central South Uni-versity. Medical Sciences, 42, 762-768.

  41. 41. Kang, X.-H., Gong, Y.-B., Wang, L.-F., Wang, Z.-Q., Deng, H.-B., Zhao, X.-Z., Wu, J. and Xu, Z.-Y. (2013) Effect of Bufalin Combined Gefitinib on Lung Cancer H1975 Cells and Its Mecha-nisms Research. Chinese Journal of Integrated Traditional and Western Medicine, 33, 1081-1085.

  42. 42. Huang, A.C., Yang, M.D., Hsiao, Y.T., Lin, T.S., Ma, Y.S., Peng, S.F., Hsia, T.C., Cheng, Y.D., Kuo, C.L. and Chung, J.G. (2016) Bufalin Inhibits Gefitinib Resistant NCI-H460 Human Lung Cancer Cell Migration and Invasion in Vitro. Journal of Ethnopharmacology, 194, 1043-1050. https://doi.org/10.1016/j.jep.2016.11.004

  43. 43. Cao, F., Gong, Y.B., Kang, X.H., Lu, Z., Wang, Y., Zhao, K.L., Miao, Z., Liao, M.J. and Xu, Z.Y. (2019) Degradation of MCL-1 by Bufalin Re-verses Acquired Resistance to Osimertinib in EGFR-Mutant Lung Cancer. Toxicology and Applied Pharmacology, 379, Article ID: 114662. https://doi.org/10.1016/j.taap.2019.114662

  44. 44. Kuo, J.Y., Liao, C.L., Ma, Y.S., Kuo, C.L., Chen, J.C., Huang, Y.P., Huang, W.W., Peng, S.F. and Chung, J.G. (2022) Combination Treatment of Sorafenib and Bufalin Induces Apoptosis in NCI-H292 Human Lung Cancer Cells in Vitro. In Vivo (Athens, Greece), 36, 582-595. https://doi.org/10.21873/invivo.12741

  45. 45. Liu, M., Feng, L.X., Sun, P., Liu, W., Wu, W.Y., Jiang, B.H., Yang, M., Hu, L.H., Guo, D.A. and Liu, X. (2016) A Novel Bufalin Derivative Exhibited Stronger Apoptosis-Inducing Effect than Bufalin in A549 Lung Cancer Cells and Lower Acute Toxicity in Mice. PLOS ONE, 11, e0159789. https://doi.org/10.1371/journal.pone.0159789

  46. 46. Chen, Q. and Liu, J. (2018) Transferrin and Folic Acid Co-Modified Bufalin-Loaded Nanoliposomes: Preparation, Characterization, and Application in Anticancer Activity. In-ternational Journal of Nanomedicine, 13, 6009-6018. https://doi.org/10.2147/IJN.S176012

  47. 47. Han, Y., Ma, R., Cao, G., Liu, H., He, L., Tang, L., Li, H. and Luo, Q. (2021) Combined Treatment of Cinobufotalin and Gefitinib Exhibits Potent Efficacy against Lung Cancer. Evi-dence-Based Complementary and Alternative Medicine: eCAM, 2021, Article ID: 6612365. https://doi.org/10.1155/2021/6612365

  48. 48. Liao, Y.C., Shih, Y.W., Chao, C.H., Lee, X.Y. and Chiang, T.A. (2009) Involvement of the ERK Signaling Pathway in Fisetin Reduces Invasion and Migration in the Human Lung Cancer Cell Line A549. Journal of Agricultural and Food Chemistry, 57, 8933-8941. https://doi.org/10.1021/jf902630w

  49. 49. Tabasum, S. and Singh, R.P. (2019) Fisetin Suppresses Migration, Inva-sion and Stem-Cell-Like Phenotype of Human Non-Small Cell Lung Carcinoma Cells via Attenuation of Epithelial to Mesenchymal Transition. Chemico-Biological Interactions, 303, 14-21. https://doi.org/10.1016/j.cbi.2019.02.020

  50. 50. Ganthala, P.D., Alavala, S., Chella, N., Andugulapati, S.B., Bathini, N.B. and Sistla, R. (2022) Co-Encapsulated Nanoparticles of Erlotinib and Quercetin for Targeting Lung Cancer through Nuclear EGFR and PI3K/AKT Inhibition. Colloids and Surfaces B, Biointerfaces, 211, Article ID: 112305. https://doi.org/10.1016/j.colsurfb.2021.112305

  51. 51. Sabarwal, A., van Rooyen, J.C., Caburet, J., Avgenikos, M., Dheeraj, A., Ali, M., Mishra, D., et al. (2022) A Novel 4’-Brominated Derivative of Fisetin Induces Cell Cycle Arrest and Apoptosis and Inhibits EGFR/ERK1/2/STAT3 Pathways in Non-Small-Cell Lung Cancer without Any Adverse Ef-fects in Mice. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 36, e22654. https://doi.org/10.1096/fj.202200669RR

  52. 52. De Marinis, F., Atmaca, A., Tiseo, M., Giuffreda, L., Rossi, A., Gebbia, V., D’Antonio, C., et al. (2013) A Phase II Study of the Histone Deacetylase Inhibitor Panobinostat (LBH589) in Pretreated Patients with Small-Cell Lung Cancer. Journal of Thoracic Oncology: Official Publication of the Interna-tional Association for the Study of Lung Cancer, 8, 1091-1094. https://doi.org/10.1097/JTO.0b013e318293d88c

  53. 53. Zhu, L., Wu, K., Ma, S. and Zhang, S. (2015) HDAC Inhib-itors: A New Radiosensitizer for Non-Small-Cell Lung Cancer. Tumori Journal, 101, 257-262. https://doi.org/10.5301/tj.5000347

  54. 54. Hs, T., Singhal, N., Gowda, R., Penniment, M., Takhar, P. and Brown, M.P. (2015) Phase I Study Evaluating the Safety and Efficacy of Oral Panobinostat in Combination with Radiotherapy or Chemoradiotherapy in Patients with Inoperable Stage III Non-Small-Cell Lung Cancer. Anti-Cancer Drugs, 26, 1069-1077. https://doi.org/10.1097/CAD.0000000000000282

  55. 55. Fischer, C., Leithner, K., Wohlkoenig, C., Quehenberger, F., Bertsch, A., Olschewski, A., Olschewski, H. and Hrzenjak, A. (2015) Panobinostat Reduces Hypoxia-Induced Cisplatin Resistance of Non-Small Cell Lung Carcinoma Cells via HIF-1α Destabilization. Molecular Cancer, 14, Article No. 4. https://doi.org/10.1186/1476-4598-14-4

  56. 56. Wang, L., Syn, N.L., Subhash, V.V., Any, Y., Thuya, W.L., Cheow, E.S.H., Kong, L., et al. (2018) Pan-HDAC Inhibition by Panobinostat Mediates Chemosensitization to Carboplatin in Non-Small Cell Lung Cancer via Attenuation of EGFR Signaling. Cancer Letters, 417, 152-160. https://doi.org/10.1016/j.canlet.2017.12.030

  57. 57. Greve, G., Schiffmann, I., Pfeifer, D., Pantic, M., Schüler, J. and Lübbert, M. (2015) The Pan-HDAC Inhibitor Panobinostat Acts as a Sensitizer for Erlotinib Activity in EGFR-Mutated and -Wildtype Non-Small Cell Lung Cancer Cells. BMC Cancer, 15, Article No. 947. https://doi.org/10.1186/s12885-015-1967-5

  58. 58. Peter, R.M., Sarwar, M.S., Mostafa, S.Z., Wang, Y., Su, X. and Kong, A.N. (2023) Histone Deacetylase Inhibitor Belinostat Regulates Metabolic Reprogramming in Killing KRAS-Mutant Human Lung Cancer Cells. Molecular Carcinogenesis, 62, 1136-1146. https://doi.org/10.1002/mc.23551

  59. 59. Nakajima, W., Sharma, K., Hicks, M.A., Le, N., Brown, R., Krystal, G.W. and Harada, H. (2016) Combination with Vorinostat Overcomes ABT-263 (Navitoclax) Resistance of Small Cell Lung Cancer. Cancer Biology & Therapy, 17, 27-35. https://doi.org/10.1080/15384047.2015.1108485

  60. 60. González-Gualda, E., Pàez-Ribes, M., Lozano-Torres, B., Macias, D., et al. (2020) Galacto-Conjugation of Navitoclax as an Efficient Strategy to Increase Senolytic Specificity and Reduce Plate-Let Toxicity. Aging Cell, 19, e13142. https://doi.org/10.1111/acel.13142

  61. 61. Khan, S., Kellish, P., Connis, N., Thummuri, D., Wiegand, J., Zhang, P., Zhang, X., et al. (2023) Co-Targeting BCL-XL and MCL-1 with DT2216 and AZD8055 Synergistically Inhibit Small-Cell Lung Cancer Growth without Causing On-Target Toxicities in Mice. Cell Death Discovery, 9, Article No. 1. https://doi.org/10.1038/s41420-022-01296-8

  62. 62. Kaiser, M., Semeraro, M.D., Herrmann, M., Absenger, G., Gerger, A. and Renner, W. (2021) Immune Aging and Immunotherapy in Cancer. International Journal of Molecular Sciences, 22, Article No. 7016. https://doi.org/10.3390/ijms22137016

  63. 63. Ohtani, N. (2019) Deciphering the Mechanism for Induction of Senes-cence-Associated Secretory Phenotype (SASP) and Its Role in Aging and Cancer Development. Journal of Biochemistry, 166, 289-295. https://doi.org/10.1093/jb/mvz055

期刊菜单