Advances in Clinical Medicine
Vol. 14  No. 02 ( 2024 ), Article ID: 81494 , 7 pages
10.12677/ACM.2024.142532

有限元在口腔正畸学中的研究新进展

闫麒安,周静文,米丛波*

新疆医科大学第一附属医院(附属口腔医院)口腔正畸科,新疆 乌鲁木齐

收稿日期:2024年1月27日;录用日期:2024年2月21日;发布日期:2024年2月28日

摘要

有限元分析(FEA)是研究生物力学的重要方法之一,尤其在正畸学中的应用十分广泛,通过计算机模拟正畸牙齿移动进行力学分析,具有重要的临床指导意义。本文对近年来三维有限元分析在口腔正畸领域的研究进行综述。

关键词

口腔医学,三维有限元,生物力学

New Progress in the Study of Finite Element in Orthodontics

Qi’an Yan, Jingwen Zhou, Congbo Mi*

Department of Orthodontics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Jan. 27th, 2024; accepted: Feb. 21st, 2024; published: Feb. 28th, 2024

ABSTRACT

Finite element analysis (FEA) is one of the important methods in the study of biomechanics, especially in orthodontics is widely used. The mechanical analysis by computer simulation of orthodontic tooth movement has important clinical guiding significance. This article reviews the research of 3D finite element analysis in the field of orthodontics in recent years.

Keywords:Stomatology, Three-Dimensional Finite Element Analysis, Biomechanics

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

有限元法(FEM)是一种现代数值分析方法。有限元法的原理是基于将一个复杂的结构划分为更小的部分,称为单元,其中的物理特性,如弹性模量,被用于表示物体对外部刺激的反应 [1] 。有限元分析是一种十分可靠的实验分析方法,它操作简单、经济、耗时少 [2] 。该方法对生物体内几乎不可测量的生物材料属性及对不同应力反应变化的分析十分常见 [3] 。最后通过有限元法可视化应力分布图来研究不同设计下应力分布情况。本文对近年来三维有限元分析法在口腔正畸领域的研究进展进行综述。

1956年特纳 [4] 等研究学者首次应用有限元分析在航空领域。1973年Thresher [5] 和Farah [6] 使用有限元法首次在口腔医学领域就牙齿和牙周韧带应力分布发表文章。1989年,周书敏等 [7] 首次在国内发表有限元研究在牙根尖区牙周韧带应力分布的报道,奠定有限元在国内的发展基础。在计算机技术的快速发展下有限元得以广泛使用,实现了从二维到三维的转变,建模方法不断优化以更加符合真实情况,逐渐从以意见为基础的实践转变为以证据为基础的实践。对组织的任何治疗方式和组织对其反应的证据有一个科学的理论基础是十分重要的 [8] 。

2. 三维有限元法在功能矫形治疗方面的研究

近年来早期骨性错牙合的发病率日渐增长 [9] ,因此对早期矫治的设计分析十分重要。传统的应力分析法,如光测弹性法、干涉全息法、脆性漆法,分析过程复杂费时,而有限元可以快速准确的分析不同骨性矫治的受力分布 [10] ,为早期矫治提过一个准确的临床理论指导。

Zahra [11] 等研究发现在Herbst矫治器中粘弹性模型比弹性模型更准确地模拟临床效果。该研究主要关注了短期内骨骼的应力和位移变化,未来的研究可以通过模拟更长时间的治疗过程,预测骨骼的长期应力和位移变化,以更好地评估正畸治疗效果。Cheng Zhu [12] 等证实了Advanced Mandibular Spring (AMS)产生的应力为青少年下颌后缩畸形的下颌生长创造了良好的生物力学条件。该研究全面分析了下颌骨及颞下颌关节的应力分布,具有临床指导意义。Afrah [13] 等研究发现Power Scope 2矫治器具是一种有效的II类错𬌗矫治器。可观察到一个明显的前导下颌运动,下颌骨前部以及相邻的牙槽骨明显观察到受力。但是未见软组织的模拟,需进一步研究软组织前导后的变化。

在颅颌面结构中,建立与人颅骨相同的三维有限元模型可以更好地说明这些应力分布情况 [14] [15] 。Marta [16] 等研究对骨性II类高角患者使用Teuscher在与𬌗平面成30°是最符合生长发育期患者的II类错𬌗治疗目标。引导了牙齿和上颌骨整体后退,同时有垂直向压低的作用。该研究只讨论了高角患者的应力分析,未来可进一步分析其他类型患者。

Manuel [17] 等发现传统快速扩弓器对伴有上颌骨宽度发育不足的II类患者骨骼的翼状突产生较高的拉应力和位移,蝶鞍压应力相对较低。该研究只对传统快速扩弓器进行评估,未见对其他类型扩弓器进行分析。Rajkumar [18] 等通过建立三种扩弓器模型比较最佳的应力分布。得出牙骨支持式扩弓器能更有效地治疗上颌宽度发育不足的问题。Rafał [19] 等通过比较外科辅助下建立牙支持式和牙骨支持式扩弓器的应力分布得出与牙支持式扩弓器相比,牙骨支持式扩弓器在所有模型截骨方式和模型中均可减少牙周组织的负荷。但也有研究 [20] 发现牙骨支持式扩弓器在额上颌缝处应力分布较小,在种植钉和支持牙颊侧处应力分布较小,并且第一磨牙会有一定程度的颊侧倾斜。

3. 三维有限元法在支抗钉方面中的研究

支抗是正畸治疗的一个重要组成部分。支抗钉是提供绝对支抗的方法之一,由于其具有稳定性、易于植入和取出、有效性等优点得以广泛使用 [21] 。Fataneh [22] 等发现圆柱形支抗钉在植入和取出过程中对皮质骨应力分布更小。说明圆柱形支抗钉初期稳定性更好,可为临床提供治疗方案。Omar [23] 等建立不同角度植入支抗钉模型。结果表明应避免在骨表面60˚植入支抗钉。Yushan Ye [24] 等研究了支抗钉在转矩力作用下螺纹深度(D)和螺距(P)的最佳取值范围。结果显示要降低皮质骨应力,螺距是一个关键的重要因素,同时为了减少支抗钉的移动,螺纹深度起着至关重要的作用。结果证明在0.55 mm ≤ P ≤ 1 mm和0.1 mm ≤ D ≤ 0.35 mm时,支抗钉的初始稳定性趋于最佳。但是该研究只分析支抗钉单一长度和植入角度,在未来不同长度和植入角度有待进一步分析。

Marzieh [25] 等通过建立支抗钉和支抗牙之间的刚性和非刚性连接对上颌第二磨牙近中移动进行分析。结果显示,当前磨牙不移动或前磨牙根存在吸收问题时,建议采用支抗钉加力。并且种植钉加力方法更能让磨牙的整体移动。由此可体现出支抗钉移动牙齿的优势。Lorena [26] 等通过建立颊侧和腭侧支抗钉远移上颌磨牙模型得出通过腭侧支抗钉加力远移磨牙产生更多整体移动趋势。该研究为临床提供远移磨牙新的选择方案。Omar [27] 等研究支抗钉压低伸长伴有牙槽骨退缩的前磨牙。正常牙槽骨高度加力25cN的牙周膜受力分布为参考。结果显示双侧种植钉压低时,牙槽骨降低2 mm、4 mm和6 mm的正畸力分别降低了16% (21cN)、32% (17cN)和48% (13cN),颊侧种植钉压低的减少率更高:20% (20cN)、36% (16cN)和56% (11cN)。该研究提供了临床中压低伸长牙齿的理论指导,未来可与临床结合进一步研究。

4. 三维有限元法在隐形矫治器移动牙齿方面的研究

由于隐形矫治器具有美学、治疗性舒适和新型生物材料 [28] 的优势,对隐形矫治器治疗的需求急剧增加。但是由于其矫治方式的不同,隐形矫治器表现出与唇侧托槽不同的正畸力,而有限元恰好可以对不同的移动进行分析,从而提高隐形矫治器对牙齿移动的控制。Mohammad [29] 等建立舌侧矫治模型得出度为8 mm牵引钩放置于侧切牙和尖牙齿之间,可作为舌侧治疗中整体内收前牙时的首选受力方向。但该研究未指出明确的转矩来辅助前牙整体内收,未来可进一步研究。

Won-Hyeon [30] 等建立不同形状及位置的附件控制牙齿移动的模型中得出使用圆柱形附件时,可以观察到理想的应力分布。当附件位于尖牙的舌侧时,可以更好实现转矩控制和预期的移动。因此,在隐形矫治器中建议在压低尖牙时舌侧附加一个圆柱形附件,可以减少尖牙的往复移动。Xinwei Lyu [31] 等研究了不同厚度及牙龈边缘形态对牙齿移动的应力分布。结果显示,牙齿移动控制能力与隐形矫治器的厚度没有明显的相关性。不同的边缘长度,距牙龈边缘−2 mm时,牙周膜应力显著降低。在牙龈高度−2 mm处,直线形边缘形状产生的牙周膜应力更大。因此,隐形矫治器边缘设计影响正畸力的表达,从而影响牙齿的移动。

Qiuyu Wang [32] 等研究得出在隐形矫治器中II类弹性牵引有利于前牙的转矩控制,但是会加重后牙近中倾斜。建议使用磨牙近中舌侧II类弹性牵引可以最小化后牙的近中倾斜。该研究全面分析不同位置下的II类弹性牵引时下颌牙列的应力分布,为临床提供充分理论指导。

5. 三维有限元法在固定矫治器方面的研究

在正畸治疗中,适当的力可以使牙齿移动速率最大,而牙根吸收程度最小 [33] 。复杂的解剖生理环境使得在人体内研究不可行,因此,牙齿移动对力学生物学负荷的反应尚待研究 [34] 。Pandurangan [35] 等研究发现托槽的变形随转矩角度的增大而增大,托槽转矩范围只有在30˚内才会有弹性变形。临床医生可以控制在这个转矩范围内,以避免塑性变形导致牙齿位置改。Pandurangan [36] 等研究得出六翼托槽受到倾斜的应力分布在托槽翼和槽沟连接处,近中切翼和远中切翼的变形最大,中切翼的变形最小。

Xin Zhang [37] 等建立了对存在水平吸收的中切牙最佳压低力模型。结果显示当上颌中切牙水平吸收长度小于1/2根长时,理论上可以用尝试压低,但如果超过1/2根长,则不建议压低。该研究就不同程度水平吸收中切牙压低进行全面研究分析,为临床提供有力指导依据。

6. 有限元法在建模优化的研究

有限元分析临床问题时,准确的模型建立直接影响最后的应力分布。因此,精确的模型是有限元发展的基础。Gauthier [38] 等。研究发现模拟的纤维结构的牙周膜比固体的牙周膜在牙槽骨有相当大的应变。因此,牙周膜纤维结构以及准确的骨形态的未来有限元模型,将有助于提高我们对正畸牙齿运动的认识。Jianlei Wu [39] 等。采用有限元分析来模拟牙周膜在体外和体内的实验过程,建立牙周膜的模型。通过有限元模拟体内测量结果,施加0.2 mm移动时,牙齿所受反力约为0.6258 N,这与离体实验中所测得的结果基本一致。所建立的PDL模型比线弹性模型能更好地反映PDL的生物力学特性,提供了可靠的PDL模型。Nuttapol [40] 等利用实验和模拟方法尝试确定一个更精确的人类第一前磨牙牙周韧带弹性模量(EPDL)值。实验和仿真结果表明,第一前磨牙的平均EPDL为9.64 × 10−4 GPa。提出的更精确的EPDL将有助于获得更精确可靠的有限元模拟结果,更好地了解牙体的应力分布和变形。在口腔医学有限元分析中,合适的EPDL是获得准确的有限元分析结果的关键。由于EPDL来源于有科学依据的实验,新提出的EPDL将有助于牙科应用的有限元模拟。

Yubohan Zhang [41] 等研究牙槽骨生物型与一种新的模拟虚拟空间区域即牙龈楔状间隙(OGE)区域发生的关系。研究结果显示,随着牙齿倾斜度的增加或唇骨组织变薄,周围组织受力增大,在OGE区应变范围增大。这些发现提示临床医生应更加关注牙齿较唇倾或牙槽骨生物型较薄的患者,以防止OGE、牙根吸收和骨开窗的出现。该研究首次设计牙龈楔状间隙并分析与其相关的影响因素,在临床中OGE十分常见,可提供临床治疗参考。

7. 总结与展望

在临床中,熟悉不同的牙齿移动的应力分布对正畸医生至关重要。由于牙体解剖结构的特异性、不同组织材料间的物理和化学性质的差异性和周围结构接触关系的复杂性,很多实验方法不能得到准确可靠的结果 [42] 。而有限元作为一种与现代计算机技术相结合的应力分析方法,在口腔医学领域中的应用是十分有效、操作简单、占有绝对优势的 [43] 。理论上更适合特殊的临床病例,这种方法可提供具体的临床分析,根据已知的力来模拟正确的牙齿运动可以为临床提供直观的参考 [44] 。

同时FEA也有其局限性,临床中,力是持续变化过程,而有限元大多数模拟静态瞬间反应,并且模型建立也需要进一步提升,不同材料的性质设定也会影响模型的精确性,因此建立更精确的三维模型成为有限元应用发展的首要问题 [45] 。有研究 [46] [47] 发现不精确的牙周膜材料性能可能导致不准确的结果,特别是当使用线性弹性。即使模型用到了非线性建模方式,已经好于绝大多数同类研究,但离现实仍有差距,获得的结果并不能直接进入临床。因此如何建立更精确的三维模型成为其应用的关键问题。目前临床与实验相结合的文献较少,有待进一步的分析和研究。现阶段,有限元更适合分析不同的新方法新设计,可以为临床研究提供受力分析,需要在未来进行更加深入的研究,为我们理论指导临床实践提供证据。

基金项目

国家自然科学基金(项目编号:81960196)。

文章引用

闫麒安,周静文,米丛波. 有限元在口腔正畸学中的研究新进展
New Progress in the Study of Finite Element in Orthodontics[J]. 临床医学进展, 2024, 14(02): 3818-3824. https://doi.org/10.12677/ACM.2024.142532

参考文献

  1. 1. Knop, L., Gandini, L.G., Shintcovsk, R.L., et al. (2015) Scientific Use of the Finite Element Method in Orthodontics. Dental Press Journal of Orthodontics, 20, 119-125. https://doi.org/10.1590/2176-9451.20.2.119-125.sar

  2. 2. Li, H., Li, J., Zou, Z., et al. (2011) Fracture Simulation of Restored Teeth Using a Continuum Damage Mechanics Failure Model. Dental Materials, 27, E125-E133. https://doi.org/10.1016/j.dental.2011.03.006

  3. 3. Kamble, R.H., Lohkare, S., Hararey, P.V., et al. (2012) Stress Distribution Pattern in a Root of Maxillary Central Incisor Having Various Root Morphologies: A Finite Element Study. The Angle Orthodontist, 82, 799-805. https://doi.org/10.2319/083111-560.1

  4. 4. Tuener, M.S., Clough, R.W. and Martin, H.C. (1956) Stiffness and De-flection Analysis Complex Structure. Journal of the Aeronautical Sciences, 23, 805-809. https://doi.org/10.2514/8.3664

  5. 5. Thresher, R.W. and Saito, G.E. (1973) The Stress Analysis of Human Teeth. Journal of Biomechanics, 6, 443-449. https://doi.org/10.1016/0021-9290(73)90003-1

  6. 6. Farah, J.W., Craig, R.G. and Sikarskie, D.L. (1973) Photoe-lastic and Finite Element Stress Analysis of a Restored Axisymmetric First Molar. Journal of Biomechanics, 6, 511-520. https://doi.org/10.1016/0021-9290(73)90009-2

  7. 7. 周书敏. 用三维有限单元法对健康牙周膜在11种载荷下应力分布的研究[J]. 中华口腔医学杂志, 1989, 24(6): 334-337.

  8. 8. Singh, J.R., Kambalyal, P., Jain, M., et al. (2016) Revolution in Orthodontics: Finite Element Analysis. Journal of International Society of Preventive and Commu-nity Dentistry, 6, 110-114. https://doi.org/10.4103/2231-0762.178743

  9. 9. Pancherz, H., Zieber, K. and Hoyer, B. (1997) Cephalometric Characteristics of Class II Division 1 and Class II Division 2 Malocclusions: A Comparative Study in Children. The Angle Orthodontist, 67, 111-120.

  10. 10. Trivedi, S. (2014) Finite Element Analysis: A Boon to Dentistry. Journal of Oral Biology and Craniofacial Research, 4, 200-203. https://doi.org/10.1016/j.jobcr.2014.11.008

  11. 11. Zadi, Z.H., Bidhendi, A.J., Shariati, A., et al. (2021) A Clinically Friendly Viscoelastic Finite Element Analysis Model of the Mandible with Herbst Appliance. American Journal of Or-thodontics and Dentofacial Orthopedics, 160, 215-220. https://doi.org/10.1016/j.ajodo.2020.04.017

  12. 12. Zhu, C., Li, R., Yuan, L.Z., et al. (2022) Effects of the Advanced Mandibular Spring on Mandibular Retrognathia Treatment: A Three-Dimensional Finite Element Study. BMC Oral Health, 22, Article No. 271. https://doi.org/10.1186/s12903-022-02308-w

  13. 13. Al Hamdany, A.K., Hasan, L.A., Alrawi, M.N.A., et al. (2023) PowerScope 2 Functional Appliance: A 3D Finite Element Simulation of Its Action on the Mandible. Journal of Oral Bi-ology and Craniofacial Research, 13, 299-305. https://doi.org/10.1016/j.jobcr.2023.02.014

  14. 14. Cozzani, M., Sadri, D., Nucci, L., et al. (2020) The Effect of Al-exander, Gianelly, Roth, and MBT Bracket Systems on Anterior Retraction: A 3-Dimen-Sional Finite Element Study. Clinical Oral Investigations, 24, 1351-1357. https://doi.org/10.1007/s00784-019-03016-6

  15. 15. Cozzani, M., Nucci, L., Lupini, D., et al. (2020) The Ideal Inser-tion Angle after Immediate Loading in Jeil, Storm, and Thunder Miniscrews: A 3D-FEM Study. International Orthodon-tics, 18, 503-508. https://doi.org/10.1016/j.ortho.2020.03.003

  16. 16. Jorge, M., Vaz, M., Lopes, J., et al. (2021) Biomechanical Effects of Teuscher Activator in Hyperdivergent Class II Malocclusion Treatment: A Finite Element Analysis. Journal of Clinical and Experimental Dentistry, 13, E1124- E1130. https://doi.org/10.4317/jced.58722

  17. 17. Sevillano, M.G.C., Kemmoku, D.T., Noritomi, P.Y., et al. (2021) New Highlights on Effects of Rapid Palatal Expansion on the Skull Base: A Finite Element Analysis Study. Dental Press Journal of Orthodontics, 26, e2120162. https://doi.org/10.1590/2177-6709.26.6.e2120162.oar

  18. 18. Balakrishnan, R., Sengottuvel, N., Altaf, S.K., et al. (2023) Three-Dimensional Finite Element Analysis of Maxillary Protraction Using Diverse Modes of Rapid Palatal Ex-pansion. Cureus, 15, e36328. https://doi.org/10.7759/cureus.36328

  19. 19. Nowak, R., Olejnik, A., Gerber, H., et al. (2021) Comparison of Tooth- and Bone-Borne Appliances on the Stress Distributions and Displacement Patterns in the Facial Skeleton in Surgically Assisted Rapid Maxillary Expansion—A Finite Element Analysis (FEA) Study. Materials, 14, Article No. 1152. https://doi.org/10.3390/ma14051152

  20. 20. Cozzani, M., Nucci, L., Lupini, D., et al. (2022) Two Different Designs of Mini-Screw Assisted Maxillary Expanders, Using FEM to Analyse Stress Distribution in Craniofacial Structures and Anchor Teeth. International Orthodontics, 20, Article ID: 100607. https://doi.org/10.1016/j.ortho.2022.100607

  21. 21. Kravitz, N.D. and Kusnoto, B. (2007) Risks and Complications of Orthodontic Miniscrews. American Journal of Orthodontics and Dentofacial Orthopedics, 131, S43-S51. https://doi.org/10.1016/j.ajodo.2006.04.027

  22. 22. Ghorbanyjavadpour, F., Kazemi, P., Moradinezhad, M., et al. (2019) Distribution and Amount of Stresses Caused by Insertion or Removal of Orthodontic Miniscrews into the Maxil-lary Bone: A Finite Element Analysis. International Orthodontics, 17, 758-768. https://doi.org/10.1016/j.ortho.2019.08.013

  23. 23. Auwer, O.N., Shamaa, M.S. and Hammad, S.M. (2021) A 3-Dimensional Finite Element Analysis to Evaluate the Impact of Force Direction, Insertion Angle, and Cortical Bone Thickness on Mini-Screw and Its Surrounding Bone. Journal of Dental Research, Dental Clinics, Dental Prospects, 15, 262-268. https://doi.org/10.34172/joddd.2021.043

  24. 24. Ye, Y., Jiao, J., Fan, S., He, J., et al. (2022) Optimization Analysis of Two-Factor Continuous Variable between Thread Depth and Pitch of Microimplant under Toque Force. Computational and Mathematical Methods in Medicine, 20, Article ID: 2119534. https://doi.org/10.1155/2022/2119534

  25. 25. Mazhari, M., Moradinejad, M., Mazhary, M., et al. (2022) Effects of Rigid and Nonrigid Connections between the Miniscrew and Anchorage Tooth on Dynamics, Efficacy, and Adverse Ef-fects of Maxillary Second Molar Protraction: A Finite Element Analysis. BioMed Research International, 14, Article ID: 4714347. https://doi.org/10.1155/2022/4714347

  26. 26. Vilanova, L., Bellini-Pereira, S.A., Patel, M.P., et al. (2023) Finite El-ement Analysis of Two Skeletally Anchored Maxillary Molar Distalisation Methods. Journal of Orthodontics, 12. https://doi.org/10.1177/14653125231166437

  27. 27. Ugarte, O.M., Cattaneo, P.M., Roscoe, M.G., et al. (2023) In-trusion of Overerupted Periodontally Compromised Posterior Teeth Using Orthodontic Mini Implants: A Mechanobi-ological Finite Element Study. Orthodontics & Craniofacial Research, 26, 239-247. https://doi.org/10.1111/ocr.12606

  28. 28. Cai, Y., He, B., Yang, X., et al. (2015) Optimization of Configuration of Attachment in Tooth Translation with Transparent Tooth Correction by Appropriate Moment-to-Force Ratios: Biome-chanical Analysis. Bio-Medical Materials and Engineering, 26, S507-517. https://doi.org/10.3233/BME-151340

  29. 29. Ghannam, M. and Kamiloğlu, B. (2021) Effects of Skeletally Supported Anterior En Masse Retraction with Varied Lever Arm Lengths and Locations in Lingual Orthodontic Treatment: A 3D Finite Element Study. BioMed Research International, 17, Article ID: 9975428. https://doi.org/10.1155/2021/9975428

  30. 30. Kim, W.H., Hong, K., Lim, D., et al. (2020) Optimal Position of At-tachment for Removable Thermoplastic Aligner on the Lower Canine Using Finite Element Analysis. Materials (Basel), 13, Article No. 3369. https://doi.org/10.3390/ma13153369

  31. 31. Lyu, X., Cao, X., Yan, J., et al. (2023) Biomechanical Effects of Clear Aligners with Different Thicknesses and Gingival-Margin Morphology for Appliance Design Optimization. American Journal of Orthodontics and Dentofacial Orthopedics, 164, 239-252. https://doi.org/10.1016/j.ajodo.2022.12.014

  32. 32. Wang, Q., Dai, D., Wang, J., et al. (2022) Biomechanical Analy-sis of Effective Mandibular En-Masse Retraction Using Class II Elastics with a Clear Aligner: A Finite Element Study. Progress in Orthodontics, 23, Article No. 23. https://doi.org/10.1186/s40510-022-00417-4

  33. 33. Paetyangkul, A., Türk, T., Elekdağ-Türk, S., et al. (2009) Phys-ical Properties of Root Cementum: Part 14. The Amount of Root Resorption after Force Application for 12 Weeks on Maxillary and Mandibular Premolars: A Microcomputed- Tomography Study. American Journal of Orthodontics and Dentofacial Orthopedics, 136, 491-499. https://doi.org/10.1016/j.ajodo.2009.03.008

  34. 34. Zhong, J., Chen, J., Weinkamer, R., et al. (2019) In Vivo Effects of Different Orthodontic Loading on Root Resorption and Correlation with Mechanobiological Stimulus in Periodontal Ligament. Journal of the Royal Society Interface, 16, Article ID: 20190108. https://doi.org/10.1098/rsif.2019.0108

  35. 35. Harikrishnan, P., Magesh, V., Ajayan, A.M., et al. (2020) Finite Ele-ment Analysis of Torque Induced Orthodontic Bracket Slot Deformation in Various Bracket-Archwire Contact Assembly. Computer Methods and Programs in Biomedicine, 197, Article ID: 105748. https://doi.org/10.1016/j.cmpb.2020.105748

  36. 36. Harikrishnan, P. and Magesh, V. (2021) Stress Distribution and Deformation in Six Tie Wings Orthodontic Bracket during Simulated Tipping—A Finite Element Analysis. Computer Methods and Programs in Biomedicine, 200, Article ID: 105835. https://doi.org/10.1016/j.cmpb.2020.105835

  37. 37. Zhang, X., Li, M.Q., Guo, J., et al. (2022) An Analysis of the Optimal Intrusion Force of the Maxillary Central Incisor with Root Horizontal Resorption Using the Finite Element Method and Curve Fitting. Computer Methods in Biomechanics and Biomedical Engineering, 25, 1471-1486. https://doi.org/10.1080/10255842.2021.2017904

  38. 38. Dot, G., Licha, R., Goussard, F., et al. (2021) A New Pro-tocol to Accurately Track Long-Term Orthodontic Tooth Movement and Support Patient-Specific Numerical Modeling. Journal of Biomechanics, 129, Article ID: 110760. https://doi.org/10.1016/j.jbiomech.2021.110760

  39. 39. Wu, J., Liu, Y., Li, B., et al. (2022) Development and Verifi-cation of a Constitutive Model for Human Periodontal Ligament Based on Finite Element Analysis. Computer Methods in Biomechanics and Biomedical Engineering, 25, 1051- 1062. https://doi.org/10.1080/10255842.2021.1999426

  40. 40. Limjeerajarus, N., Sratong-On, P., Dhammayannarangsi, P., et al. (2023) Determination of the Compressive Modulus of Elasticity of Periodontal Ligament Derived from Human First Premolars. Heliyon, 9, e14276. https://doi.org/10.1016/j.heliyon.2023.e14276

  41. 41. Zhang, Y., Gao, J., Wang, X., et al. (2023) Biomechanical Fac-tors in the Open Gingival Embrasure Region during the Intrusion of Mandibular Incisors: A New Model through Finite Element Analysis. Frontiers in Bioengineering and Biotechnology, 11, Article ID: 1149472. https://doi.org/10.3389/fbioe.2023.1149472

  42. 42. Revilla-León, M., Gómez-Polo, M., Vyas, S., et al. (2023) Artifi-cial Intelligence Applications in Implant Dentistry: A Systematic Review. Journal of Prosthetic Dentistry, 129, 293-300. https://doi.org/10.1016/j.prosdent.2021.05.008

  43. 43. Cortona, A., Rossini, G., Parrini, S., et al. (2020) Clear Align-er Orthodontic Therapy of Rotated Mandibular Round- Shaped Teeth: A Finite Element Study. The Angle Orthodontist, 90, 247-254. https://doi.org/10.2319/020719-86.1

  44. 44. Cervino, G., Fiorillo, L., Arzukanyan, A.V., et al. (2020) Application of Bioengineering Devices for Stress Evaluation in Dentistry: The Last 10 Years FEM Parametric Analysis of Outcomes and Current Trends. Minerva Stomatologica, 69, 55-62. https://doi.org/10.23736/S0026-4970.19.04263-8

  45. 45. Zhou, J., Song, Y., Shi, X., et al. (2021) Tensile Creep Mechanical Behavior of Periodontal Ligament: A Hyper-Vis- coelastic Constitutive Model. Computer Methods and Pro-grams in Biomedicine, 207, Article ID: 106224. https://doi.org/10.1016/j.cmpb.2021.106224

  46. 46. Maceri, F., Marino, M. and Vairo, G. (2010) A Unified Mul-tiscale Mechanical Model for Soft Collagenous Tissues with Regular Fiber Arrangement. Biomech, 43, 355-363. https://doi.org/10.1016/j.jbiomech.2009.07.040

  47. 47. Jongsma, L.A., Nde, J., Kleverlaan, C.J., et al. (2011) Re-duced Contraction Stress Formation Obtained by a Two-Step Cementation Procedure for Fiber Posts. Dental Materials, 27, 670-676. https://doi.org/10.1016/j.dental.2011.03.008

  48. NOTES

    *通讯作者。

期刊菜单