Advances in Clinical Medicine
Vol. 13  No. 07 ( 2023 ), Article ID: 69780 , 8 pages
10.12677/ACM.2023.1371701

LncRNA在肿瘤转移和侵袭中的研究现状

王金鹏1,朱海宏2*

1青海大学研究生院,青海 西宁

2青海省人民医院普外科,青海 西宁

收稿日期:2023年6月25日;录用日期:2023年7月19日;发布日期:2023年7月31日

摘要

长非编码RNA (Long non-coding RNA)是一类基因长度超过200个核苷酸的非编码RNA。近年来,随着二代测序技术的发展以及对人们对LncRNA的深入研究,发现了LncRNA通过作为肿瘤的癌基因或抑制因子发挥着双重作用,即促进肿瘤或者抑制肿瘤。LncRNA现已被证明参与各种生物过程,如细胞生长、抗凋亡、转移和侵袭。最近许多研究发现LncRNA在各种恶性肿瘤中显著异常表达,包括肝癌、胰腺癌、胃癌和肺癌等。本文综述将从在国内外研究中LncRNA与肿瘤的转移和侵袭等生物学行为以及预后作一概述,以期为这些肿瘤提供新治疗的思路。

关键词

LncRNA,肿瘤,转移,侵袭

Research Status of LncRNA in Tumor Metastasis and Invasion

Jinpeng Wang1, Haihong Zhu2*

1Graduate School of Qinghai University, Xining Qinghai

2Department of General Surgery, Qinghai Provincial People’s Hospital, Xining Qinghai

Received: Jun. 25th, 2023; accepted: Jul. 19th, 2023; published: Jul. 31st, 2023

ABSTRACT

Long non-coding RNA (LncRNA) is a class of non-coding RNAs with a gene length of more than 200 nucleotides. In recent years, with the development of second-generation sequencing technology and in-depth studies on LncRNA, it has been found that LncRNA plays a dual role as an oncogene or suppressor of tumor, that is, promoting tumor or inhibiting tumor. LncRNAs have now been shown to be involved in various biological processes, such as cell growth, anti-apoptosis, metastasis, and invasion. Recently, many studies have found that LncRNA is significantly and abnormally expressed in various malignant tumors, including liver cancer, pancreatic cancer, gastric cancer and lung cancer. This review will summarize the relationship between LncRNA and tumor metastasis, invasion and other biological behaviors as well as prognosis in domestic and foreign studies, in order to provide new treatment ideas for these tumors.

Keywords:LncRNA, Tumor, Metastasis, Invasion

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. LncRNA概述

癌症是全球死亡的主要原因,随着人口的增长,癌症病例和死亡人数迅速增加 [1] 。在癌症遗传原因背景下的广泛研究表明,异常基因表达不仅是蛋白质编码基因的结果,而且在很大程度上也是由人类基因组中非编码基因组元件的调节作用介导的。ENCODE转录组项目得出结论,只有2%的基因组包含蛋白质编码基因,而其中98%被主动转录成各种非编码RNA (non-coding RNA, ncRNA) [2] 。目前,随着测序技术的进步人类发现了许多ncRNA。许多研究表明,ncRNA在各种类型的癌症中失调,其中受影响的分子称为癌基因或肿瘤抑制基因 [3] 。研究发现,ncRNA参与许多癌症的发病机制,如结肠癌 [4] 、肺癌 [5] 、乳腺癌 [6] [7] 等。而ncRNA中以基因长度一般大于200 bp的长链非编码RNA (Long non-coding RNA)多见 [8] 。LncRNA使用三个主要功能来保持细胞稳态:1) 控制表观遗传蛋白的功能,染色质调节和X染色体失活调节;2) 调节转录因子的活性;3) 作为miRNA前体 [9] 。

LncRNA最初被外界广泛认为是基因组转录过程中的“转录垃圾” [10] 。随着测序技术的迅猛发展,许多研究者发现LncRNA在癌症的发病机制、肿瘤发生和血管生成中起着至关重要的作用 [11] 。LncRNA可以通过调节RNA加工、调节蛋白活性、影响转录模式等机制,影响相关癌基因的表达 [12] ,现已被证明在肿瘤生长和转移中起重要作用,许多LncRNA已被证明是诊断和治疗癌症的潜在生物标志物 [11] 。

2. LncRNA与肝细胞癌

肝癌是最常见的恶性肿瘤之一,是癌症相关死亡的第四大原因,严重危及人类生命与健康 [13] ,其中肝细胞癌(Hepatocellular carcinoma, HCC)是主要组织学类型,全球发病率很高 [14] 。在2020年,全球估计新发肝癌905,677例(占全球癌症发病的4.69%),发病率为9.5/10万。东亚地区肝癌发病率最高(17.8/10万),中南亚地区肝癌发病率最低(3.0/10万)。2020年,全球估计肝癌死亡人数830,180例,占全球癌症死亡的8.30%,死亡率为8.7/10万 [15] 。尽管已经采用了多种治疗方法治愈肝细胞癌,但其预后不良和恶性程度高仍然限制了肝细胞癌患者寿命的延长 [16] 。此外,由于缺乏早期症状和特异性生物标志物,大多数肝癌患者在被确诊时,已经处于肝癌晚期或出现转移 [17] 。一般来说,迁移到外周或远处组织被认为是HCC复发的关键因素。由于其侵袭性和易复发性,传统的治疗方法,如肝移植、手术切除、放疗、化疗等,缺乏有效的治疗效果。因此,识别用于早期诊断和治疗策略的生物标志物已成为HCC领域的研究重点 [18] 。

2.1. LncRNA BACE1-AS

BACE1-AS的长度为2 kb,从11号染色体(11q 23.3)位点上的相反链转录而来 [19] 。据Liu等 [20] 研究发现,敲低LncRNA BACE1-AS可抑制肝细胞癌体外进展,抑制体内肺转移,而MiR-377-3p在肝癌肿瘤组织和细胞中受到LncRNA BACE1-AS的负调节,且MiR-377-3p上调后通过灭活上皮-间充质转变(EMT)过程,进而抑制肝细胞癌细胞的迁移和侵袭。研究发现,CELF1被鉴定为miR-377-3p的下游调节剂,并在HCC细胞中用作癌基因。因此,LncRNA BACE1-AS在肝癌中上调后,通过调节miR-377-3p/ CELF1轴促进EMT途径进而促进肝细胞癌细胞的侵袭和转移。此外,Tian等 [21] 发现,BACE1-AS海绵化miR-214-3p并抑制其表达,从而促进APLN的表达。miR-214-3p的过表达可以部分逆转由BACE1-AS过表达引起的异常增殖、细胞周期进展、迁移、侵袭和凋亡,而miR-214-3p的敲低则相反。这些发现均表明,BACE1-AS/miR-214-3p/APLN轴是一种促进肝细胞癌的新型信号通路。

2.2. LncRNA TUG1

TUG1是一种7.1 kb LncRNA,在人类基因组中位于染色体22q12.2 [22] 。越来越多的证据表明,LncRNA TUG1是癌症中的致癌因素。Li等 [23] 研究表明,LncRNA TUG1在肝癌中高度表达。TUG1与miR-137靶向,且两者呈负相关,沉默TUG1表达则会导致miR-137低表达,促进肝癌细胞增殖、迁移和侵袭,而AKT2被预测为miR-137的靶基因,两者呈负相关。此外,抑制miR-137表达则促进了MMP2、MMP9和N-钙粘蛋白的表达,而抑制E-钙粘蛋白的表达,则沉默TUG1表达且逆转了低表达miR-137对EMT相关蛋白水平的影响。因此,LncRNA TUG1通过靶向miR-137/AKT2轴促进肝细胞癌的迁移和侵袭。除此以外,研究发现,miR-142-3p是HCC的预后因子,LncRNA TUG1通过与miR-142-3p直接结合上调ZEB1。TUG1/miR-142-3p/ZEB1轴也有助于肝细胞癌的转移和侵袭 [24] 。

2.3. LncRNA HULC

LncRNA HULC,位于6号(6p24.3)染色体上,在肝癌中高度表达 [25] 。在肝癌组织中HULC显著高表达,明显促进HCC细胞的增殖、迁移和侵袭能力 [26] 。最新研究 [27] 发现,HULC作为竞争的内源性RNA (competing endogenous RNA, ceRNA)通过上调ZEB1介导EMT。通过这种方式,它隔离了miR-200a-3p信号通路以促进肝细胞癌转移。HULC作为肝细胞癌中的癌基因发挥作用,通过诱导HCC细胞激活上皮–间充质转变(EMT)起作用。这些结果显示,HULC通过miR-200a-3p/ZEB1信号通路促进肝癌的转移和侵袭。

3. LncRNA与胰腺癌

胰腺癌(Pancreatic cancer, PC)是人类癌症中5年相对生存率最低的癌症之一,位于大多数致命癌症的前10名 [28] 。胰腺癌患者的5年生存期估计为9%,中位生存期为6个月 [29] [30] 。由于广泛的局部受累或早期远处转移,只有少数可切除肿瘤患者有治愈的希望,且仅占病例的5%~10% [31] 。即使采取“有效”治疗,不超过4%的患者可以活10年或更长时间 [32] 。根据现有情况,应不遗余力地探索治疗该病的有效方法。最近,LncRNA已被揭示为致癌过程的关键调节因子 [33] 。研究表明,LncRNA在胰腺癌组织中异常表达,并参与转移和侵袭 [34] 。

3.1. LncRNA XIST

X-非活性特异性转录本(X inactive specific transcription factor, XIST)是最早发现的LncRNA之一,主要负责X染色体失活:男性和女性性染色体之间剂量补偿的进化过程 [35] 。最新研究 [36] 表明,XIST经常在PC组织中上调,而miR-429通常在PC组织中下调。在两个PC细胞系中敲低XIST,则会抑制PC的迁移、入侵和上皮-间充质转变(EMT)能力;而miR-429的高表达,则发挥着类似的肿瘤抑制作用。重要的是,ZEB1介导了XIST敲低PC细胞中肿瘤的抑制作用,而XIST通过抑制了miR-429表达,从而达到上调ZEB1的目的。最终,确定了XIST/miR-429/ZEB1在PC细胞迁移,EMT中的临界轴,这可能有助于开发PC的新治疗策略。

3.2. LncRNA UCA1

LncRNA UCA1是一种位于染色体19p13.12上的LncRNA,最初是在膀胱癌 [37] 。最近ZHOU等 [38] 研究发现,UCA1和FOXO3在胰腺癌中高表达,而miR-96在胰腺癌中低表达。抑制UCA1则胰腺肿瘤细胞增殖、集落形成和转移会得到抑制,而抑制miR-96则会促进胰腺癌进展,FOXO3是miR-96的下游靶基因,显示出与其相反的效果。重要的是,LncRNA UCA1通过上调FOXO3和下调miR-96促进胰腺癌细胞增殖、侵袭、迁移并抑制胰腺癌细胞凋亡。此外,由ZHANG等 [39] 发现,UCA1通过与Lats1,MOB1和YAP相互作用形成屏蔽复合材料,抑制其磷酸化,并将YAP转移到细胞核中来发挥其致癌功能,从而促进PC细胞的恶性表型。

3.3. LncRNA ADPGK-AS1

ADPGK-AS1是扩展的LncRNA家族中的一个新成员,已被揭示为胰腺癌中的致癌RNA。研究 [40] 表明,ADPGK-AS1和ZEB1在PC组织和细胞中的表达量较高,而MiR-205-5p在PC组织和细胞中的表达量较低。实验证明,ADPGK-AS1可直接靶向miR-205-5p,miR-205-5p可直接靶向ZEB1 3’UTR。MiR-205-5p的高表达则会抑制PC细胞的增殖、迁移和侵袭,促进PC细胞凋亡率,而ZEB1和ADPGK-AS1则呈现与其相反作用。进一步的体外和体内研究表明,上皮-间充质转变(EMT)可以通过miR-205-5p靶向ZEB1受到抑制。因此,ADPGK-AS1通过下调miR-205-5p表达强烈促进肿瘤发生,并在体内诱导EMT过程。

4. LncRNA与胃癌

胃癌(Gastric cancer, GC)发病率是全球恶性肿瘤发病率首位 [41] 。在中国,胃癌发病率特别高,有报道胃癌的发病率和死亡率大约是全球平均水平的两倍 [42] 。现有证据表明,由于早期缺乏症状,大多数胃癌患者在确诊时已经处于晚期。此外,基于手术或化疗的治疗方法尚未产生令人满意的结果 [43] 。主要原因包括对肿瘤发病机制了解不足,以及缺少用于癌症患者早期诊断和预后预测的特异性生物标志物 [44] 因此,寻找诊断和预后的具体指标是一个紧迫的问题。

4.1. LncRNA MNX1-AS1

MNX1-AS1位于人类染色体7q36.3上,该染色体从MNX5基因1’末端附近的反义链产生转录本 [45] 。最新研究 [46] 表明,在GC组织样本和细胞系中MNX1-AS1表现出明显的上调,而MNX1-AS1的异位表达预示着GC患者的临床结局较差。MNX1-AS1的高表达促进了GC细胞的迁移和侵袭,而MNX1-AS1的低表达则出现相反的结果。体外结果显示,MNX1-AS1降低有效地抑制了异位移植肿瘤的生长。在机制上,刺激MNX1-AS1的转录是通过TEAD4与MNX1-AS1的启动子区域结合实现的。此外,MNX1-AS1可以海绵化miR-6785-5p来上调GC细胞中BCL2的表达。同时,MNX1-AS1可以将EZH2募集到BTG2启动子区域,以此来抑制BTG2的转录。以上表明,TEAD4可以通过EZH2/BTG2和miR-6785-5p/BCL2轴激活的MNX1-AS1进而促进GC进展。此外,MA等 [47] 研究发现,在体外MNX1-AS1过表达后,CDKN1A的mRNA和蛋白表达显著下调,CDKN1A的表达水平与MNX1-AS1在GC组织中的表达呈负相关。结果表明,MNX1-AS1可以通过抑制CDKN1A增强GC细胞的转移和侵袭,MNX1-AS1可能是GC的潜在治疗靶点。

4.2. LncRNA LINC00665

LINC00665是一种新发现的LncRNA,位于人染色体19q13.12上。LINC00665在十八种癌症中上调,在两种癌症中下调 [48] 。ZHANG等 [49] 研究发现,在GC中LINC00665过表达,LINC00665上调与总生存期差和无病生存率显著相关,LINC00665的表达与淋巴结转移、TNM分期和肿瘤深度相关。当LINC00665敲低后,抑制GC细胞系中的细胞增殖、侵袭和转移,促进细胞凋亡;并在G0/G1期捕获GC细胞系。蛋白质印迹分析表明,LINC00665的沉默抑制了上皮-间充质转变(EMT),降低TGF-β1、Smad2和α-SMA的表达水平。单变量和多变量分析证明,LINC00665可能是GC中独立的预后生物标志物。重要的是,LINC00665通过激活TGF-β信号通路促进GC细胞增殖、侵袭和转移。

4.3. LncRNA ANCR

LncRNA ANCR位于人类染色体4q12上 [50] ,现已经证明,ANCR在各种肿瘤中细胞增殖、迁移、侵袭、上皮间充质转化(EMT)和肿瘤转移的调节中起重要作用 [51] 。据报道 [52] ,GC细胞中LncRNA ANCR过表达促进了细胞的侵袭和迁移。LncRNA ANCR靶向FoxO1,并通过促进FoxO1泛素化降解来抑制THP-1细胞中FoxO1的表达。此外,LncRNA ANCR的过表达促进了GC的BALB/c裸鼠模型中的肿瘤生长,而LncRNA ANCR的敲除则产生了相反的效果。这些结果说明,LncRNA ANCR的过表达通过下调FoxO1来促进GC细胞的侵袭和转移。

5. 展望

随着测序技术的发展,曾经被认为“转录噪音”的LncRNA逐渐成为研究热点,大量LncRNA逐渐被发现,其生物学功能得到广泛研究。上述研究是为进一步寻找肝癌、胰腺癌、胃癌的治疗靶点及提供新的治疗思路,并且LncRNA还需更深入的研究。然而,目前LncRNA在寄生虫的发病、病灶的转移、病灶的侵袭等方面研究较少,尤其在包虫病中仍研究更少,通过LncRNA在部分肿瘤疾病中的研究以期能为后期包虫病的研究提供一定帮助。

基金项目

青海省科技厅应用基础研究重点项目(项目编号:2022-ZJ-747);青海省“昆仑英才·高端创新创业人才”计划(青人才字[2021] 13号)。

文章引用

王金鹏,朱海宏. LncRNA在肿瘤转移和侵袭中的研究现状
Research Status of LncRNA in Tumor Metastasis and Invasion[J]. 临床医学进展, 2023, 13(07): 12136-12143. https://doi.org/10.12677/ACM.2023.1371701

参考文献

  1. 1. Wang, X., et al. (2022) LncRNA LINC00460: Function and Mechanism in Human Cancer. Thoracic Cancer, 13, 3-14. https://doi.org/10.1111/1759-7714.14238

  2. 2. Toden, S., Zumwalt, T.J. and Goel, A. (2021) Non-Coding RNAs and Potential Therapeutic Targeting in Cancer. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1875, Article ID: 188491. https://doi.org/10.1016/j.bbcan.2020.188491

  3. 3. Iyer, M.K., Niknafs, Y.S., Malik, R., et al. (2015) The Land-scape of Long Noncoding RNAs in the Human Transcriptome. Nature Genetics, 47, 199-208. https://doi.org/10.1038/ng.3192

  4. 4. Chen, L., He, M., Zhang, M., et al. (2021) The Role of Non-Coding RNAs in Colorectal Cancer, with a Focus on Its Autophagy. Pharmacology & Therapeutics, 226, Article ID: 107868. https://doi.org/10.1016/j.pharmthera.2021.107868

  5. 5. Liao, Y., Wu, X., Wu, M., et al. (2022) Non-Coding RNAs in Lung Cancer: Emerging Regulators of Angiogenesis. Journal of Translational Medicine, 20, 349. https://doi.org/10.1186/s12967-022-03553-x

  6. 6. Liu, Y., Leng, P., Liu, Y., Guo, J., et al. (2022) Crosstalk be-tween Methylation and ncRNAs in Breast Cancer: Therapeutic and Diagnostic Implications. International Journal of Molecular Sciences, 23, Article No. 15759. https://doi.org/10.3390/ijms232415759

  7. 7. Cao, J., Zhang, M., Zhang, L., et al. (2021) Non-Coding RNA in Thyroid Cancer—Functions and Mechanisms. Cancer Letters, 496, 117-126. https://doi.org/10.1016/j.canlet.2020.08.021

  8. 8. Shi, X., Sun, M., Liu, H., et al. (2013) Long Non-Coding RNAs: A New Frontier in the Study of Human Diseases. Cancer Letters, 339, 159-166. https://doi.org/10.1016/j.canlet.2013.06.013

  9. 9. Ashrafizadeh, M., Rabiee, N., Kumar, A.P., et al. (2022) Long Noncoding RNAs (lncRNAs) in Pancreatic Cancer Progression. Drug Discovery Today, 27, 2181-2198. https://doi.org/10.1016/j.drudis.2022.05.012

  10. 10. 曾慧娟, 王璐璐, 等. 长链非编码RAN与乳腺癌治疗耐药相关的研究进展[J]. 医学研究生学报, 2017, 30(12): 1340-1344.

  11. 11. Chi, Y., Wang, D., Wang, J., et al. (2019) Long Non-Coding RNA in the Pathogenesis of Cancers. Cells, 8, 1015. https://doi.org/10.3390/cells8091015

  12. 12. Kapranov, P., St Laurent, G., Raz, T., et al. (2010) The Majority of Total Nuclear-Encoded Non-Ribosomal RNA in a Human Cell Is “Dark Matter” Un-Annotated RNA. BMC Biology, 8, Article No. 149. https://doi.org/10.1186/1741-7007-8-149

  13. 13. Zhao, K.L., Zhou, X.Q., Xiao, Y.C., et al. (2022) Research Progress in Alpha-Fetoprotein-Induced Immunosuppression of Liver Cancer. Mini-Reviews in Medicinal Chemistry, 22, 2237-2243. https://doi.org/10.2174/1389557522666220218124816

  14. 14. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. https://doi.org/10.3322/caac.21492

  15. 15. 曹毛毛, 李贺, 孙殿钦, 何思怡, 等. 全球肝癌2020年流行病学现状[J]. 中华肿瘤防治杂志, 2022(5): 322-328.

  16. 16. Attwa, M.H. and El-Etreby, S.A. (2015) Guide for Diagnosis and Treatment of Hepatocellular Carcinoma. World Journal of Hepatology, 7, 1632-1651. https://doi.org/10.4254/wjh.v7.i12.1632

  17. 17. Chen, J.G. and Zhang, S.W. (2011) Liver Cancer Epidemic in China: Past, Present and Future. Seminars in Cancer Biology, 21, 59-69. https://doi.org/10.1016/j.semcancer.2010.11.002

  18. 18. Zhou, Y., Li, K., Dai, T., Wang, H., et al. (2021) Long Non-Coding RNA HCP5 Functions as a Sponge of miR-29b-3p and Promotes Cell Growth and Metastasis in Hepato-cellular Carcinoma through Upregulating DNMT3A. Aging (Albany NY), 13, 16267-16286. https://doi.org/10.18632/aging.203155

  19. 19. Sayad, A., Najafi, S., Hussen, B.M., et al. (2022) The Emerging Roles of the β-Secretase BACE1 and the Long Non- Coding RNA BACE1-AS in Human Diseases: A Focus on Neurodegen-erative Diseases and Cancer. Frontiers in Aging Neuroscience, 14, Article ID: 853180. https://doi.org/10.3389/fnagi.2022.853180

  20. 20. Liu, C., Wang, H., Tang, L., et al. (2021) LncRNA BACE1-AS Enhances the Invasive and Metastatic Capacity of Hepatocellular Carcinoma Cells through Mediating miR-377-3p/CELF1 Axis. Life Sciences, 275, Article ID: 119288. https://doi.org/10.1016/j.lfs.2021.119288

  21. 21. Tian, Q., Yan, X., Yang, L., Liu, Z., et al. (2021) Long Non-Coding RNA BACE1-AS Plays an Oncogenic Role in Hepatocellular Carcinoma Cells through miR-214-3p/APLN Axis. Acta Biochimica et Biophysica Sinica (Shanghai), 53, 1538-1546. https://doi.org/10.1093/abbs/gmab134

  22. 22. Azizidoost, S., Nasrolahi, A., Ghaedrahmati, F., et al. (2022) The Pathogenic Roles of lncRNA-Taurine Upregulated 1 (TUG1) in Colorectal Cancer. Cancer Cell International, 22, 335. https://doi.org/10.1186/s12935-022-02745-1

  23. 23. Li, K., Niu, H., Wang, Y., Li, R., et al. (2021) LncRNA TUG1 Contributes to the Tumorigenesis of Lung Adenocarcinoma by Regulating miR-138-5p-HIF1A Axis. International Journal of Immunopathology and Pharmacology, 35. https://doi.org/10.1177/20587384211048265

  24. 24. Li, W., Ge, J.Z., Xie, J.J., et al. (2021) LncRNA TUG1 Pro-motes Hepatocellular Carcinoma Migration and Invasion via Targeting the miR-137/AKT2 Axis. Cancer Biotherapy and Radiopharmaceuticals, 36, 850-862. https://doi.org/10.1089/cbr.2019.3297

  25. 25. He, C., Liu, Z., Jin, L., Zhang, F., et al. (2018) LncRNA TUG1-Mediated Mir-142-3p Downregulation Contributes to Metastasis and the Epithelial-to-Mesenchymal Transition of Hepatocellular Carcinoma by Targeting ZEB1. Cellular Physiology & Biochemistry, 48, 1928-1941. https://doi.org/10.1159/000492517

  26. 26. Panzitt, K., Tschernatsch, M.M., Guelly, C., et al. (2007) Characterization of HULC a Novel Gene with Striking Up- Regulation in Hepatocellular Carcinoma as Noncoding RNA. Gastroenterol-ogy, 132, 330-342. https://doi.org/10.1053/j.gastro.2006.08.026

  27. 27. Li, D., Liu, X., Zhou, J., et al. (2017) Long Noncoding RNA HULC Modulates the Phosphorylation of YB-1 through Serving as a Scaffold of Extracellular Signal-Regulated Kinase and YB-1 to Enhance Hepatocarcinogenesis. Hepatology, 65, 1612-1627. https://doi.org/10.1002/hep.29010

  28. 28. Li, S.P., Xu, H.X., Yu, Y., et al. (2016) LncRNA HULC Enhances Epithe-lial-Mesenchymal Transition to Promote Tumorigenesis and Metastasis of Hepatocellular Carcinoma via the miR-200a-3p/ZEB1 Signaling Pathway. Oncotarget, 7, 42431-42446. https://doi.org/10.18632/oncotarget.9883

  29. 29. Li, X.M., et al. (2020) Long Non-Coding RNA MIAT Promotes Gastric Cancer Proliferation and Metastasis via Modulating the miR-331-3p/RAB5B Pathway. Oncology Letters, 20, 355. https://doi.org/10.3892/ol.2020.12219

  30. 30. Ren, Z., et al. (2020) Long Non-Coding RNA DDX11-AS1 Facilitates Gastric Cancer Progression by Regulating miR- 873-5p/SPC18 Axis. Artificial Cells, Nanomedicine, and Biotechnology, 48, 572-583. https://doi.org/10.1080/21691401.2020.1726937

  31. 31. Sieges, R.L., Miller, K.D. and Jemal, A. (2019) Cancer Sta-tistics, 2019. CA: A Cancer Journal for Clinicians, 69, 7-34. https://doi.org/10.3322/caac.21551

  32. 32. Deplanque, G. and Demartines, N. (2017) Pancreatic Cancer: Are More Chemotherapy and Surgery Needed? The Lancet, 389, 985-986. https://doi.org/10.1016/S0140-6736(17)30126-5

  33. 33. Kindler, H.L. (2018) A Glimmer of Hope for Pancreatic Cancer. The New England Journal of Medicine, 379, 2463- 2464. https://doi.org/10.1056/NEJMe1813684

  34. 34. Schmitt, A.M. and Chang, H.Y. (2016) Long Noncoding RNAs in Cancer Pathways. Cancer Cell, 29, 452-463. https://doi.org/10.1016/j.ccell.2016.03.010

  35. 35. Eldesouki, S., Samara, K.A., Qadri, R., Obaideen, A.A., Otour, A.H., Habbal, O. and Bm Ahmed, S. (2022) XIST in Brain Cancer. Clinica Chimica Acta, 531, 283-290. https://doi.org/10.1016/j.cca.2022.04.993

  36. 36. Shen, J., Hong, L., Yu, D., et al. (2019) LncRNA XIST Promotes Pancreatic Cancer Migration, Invasion and EMT by Sponging miR-429 to Modulate ZEB1 Expression. The International Journal of Biochemistry & Cell Biology, 113, 17-26. https://doi.org/10.1016/j.biocel.2019.05.021

  37. 37. Hao, Z., Dang, W., Zhu, Q., et al. (2023) Long Non-Coding RNA UCA1 Regulates MPP-Induced Neuronal Damage through the miR-671-5p/KPNA4 Pathway in SK-N-SH Cells. Metabolic Brain Disease, 38, 961-972. https://doi.org/10.1007/s11011-022-01118-x

  38. 38. Zhou, Y., Chen, Y., Ding, W., et al. (2018) LncRNA UCA1 Impacts Cell Proliferation, Invasion, and Migration of Pancreatic Cancer through Regulating miR-96/FOXO3. IUBMB Life, 70, 276-290. https://doi.org/10.1002/iub.1699

  39. 39. Zhang, M., Zhao, Y., Zhang, Y., et al. (2018) LncRNA UCA1 Promotes Migration and Invasion in Pancreatic Cancer Cells via the Hippo Pathway. Biochimica et Biophysica Acta: Molecular Basis of Disease, 1864, 1770-1782. https://doi.org/10.1016/j.bbadis.2018.03.005

  40. 40. Song, S., Yu, W., Lin, S., Zhang, M., et al. (2018) LncRNA ADPGK-AS1 Promotes Pancreatic Cancer Progression through Activating ZEB1-Mediated Epithelial-Mesenchymal Transition. Cancer Biology & Therapy, 19, 573-583. https://doi.org/10.1080/15384047.2018.1423912

  41. 41. Thrift, A.P. and El-Serag, H.B. (2020) Burden of Gastric Cancer. Clinical Gastroenterology and Hepatology, 18, 534- 542. https://doi.org/10.1016/j.cgh.2019.07.045

  42. 42. Sano, T. (2017) Gastric Cancer: Asia and the World. Gastric Can-cer, 20, 1-2. https://doi.org/10.1007/s10120-017-0694-9

  43. 43. Biagioni, A., Skalamera, I., Peri, S., et al. (2019) Update on Gas-tric Cancer Treatments and Gene Therapies. Cancer and Metastasis Reviews, 38, 537-548. https://doi.org/10.1007/s10555-019-09803-7

  44. 44. Yu, J.M., et al. (2015) BCL6 Induces EMT by Promoting the ZEB1-Mediated Transcription Repression of E-Cadherin in Breast Cancer Cells. Cancer Letters, 365, 190-200. https://doi.org/10.1016/j.canlet.2015.05.029

  45. 45. Lv, D., Wang, Y., Li, S., Shao, X. and Jin, Q. (2023) Activation of MYO1G by lncRNA MNX1-AS1 Drives the Progression in Lung Cancer. Molecular Biotechnology, 65, 72-83. https://doi.org/10.1007/s12033-022-00531-y

  46. 46. Shuai, Y., Ma, Z., Liu, W., et al. (2020) TEAD4 Modulated LncRNA MNX1-AS1 Contributes to Gastric Cancer Progression Partly through Suppressing BTG2 and Activating BCL2. Molecular Cancer, 19, Article No. 6. https://doi.org/10.1186/s12943-019-1104-1

  47. 47. Ma, J.X., Yang, Y.L., He, X.Y., et al. (2019) Long Noncoding RNA MNX1-AS1 Overexpression Promotes the Invasion and Metastasis of Gastric Cancer through Repressing CDKN1A. European Review for Medical and Pharmacological Sciences, 23, 4756-4762.

  48. 48. Zhong, C., Xie, Z., Shen, J., Jia, Y. and Duan, S. (2022) LINC00665: An Emerging Biomarker for Cancer Diagnostics and Therapeutics. Cells, 11, Article No. 1540. https://doi.org/10.3390/cells11091540

  49. 49. Zhang, X. and Wu, J. (2021) LINC00665 Promotes Cell Proliferation, Invasion, and Metastasis by Activating the TGF-β Pathway in Gastric Cancer. Pathology—Research and Practice, 224, Article ID: 153492. https://doi.org/10.1016/j.prp.2021.153492

  50. 50. Ni, C., Teng, P. and Hu, P. (2020) Effects of ANCR lncRNA on the Biological Behaviors of Lung Cancer Cells A549 and the Mechanism. Translational Cancer Research, 9, 4693-4702. https://doi.org/10.21037/tcr-20-483

  51. 51. Li, Z., Dong, M., Fan, D., et al. (2017) LncRNA ANCR Down-Regulation Promotes TGF-β-Induced EMT and Metastasis in Breast Cancer. Oncotarget, 8, 67329-67343. https://doi.org/10.18632/oncotarget.18622

  52. 52. Yang, Z.Y., Yang, F., Zhang, Y.L., et al. (2017) LncRNA-ANCR Down-Regulation Suppresses Invasion and Migration of Colorectal Cancer Cells by Regulating EZH2 Expression. Can-cer Biomark, 18, 95-104. https://doi.org/10.3233/CBM-161715

  53. NOTES

    *通讯作者。

期刊菜单