Advances in Clinical Medicine
Vol. 14  No. 03 ( 2024 ), Article ID: 83533 , 7 pages
10.12677/acm.2024.143875

早期诊断NEC无创性生物标志物的研究进展

王静文,李禄全*

重庆医科大学附属儿童医院新生儿诊疗中心,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿童神经发育与认知障碍重庆市重点实验室,重庆

收稿日期:2024年2月27日;录用日期:2024年3月21日;发布日期:2024年3月28日

摘要

坏死性小肠结肠炎(necrotizing enterocolitis, NEC)是新生儿常见的消化系统疾病,尤其多见于早产儿和低出生体重儿。NEC起病隐匿,进展快,可迅速发展为爆发性NEC,其死亡率高达50%,且存活患儿容易出现各种与之相关的严重后遗症,严重影响患儿的生存质量。因此,早期诊断NEC显得尤为必要。本文就目前关于无创性生物标志物在NEC早期诊断中的研究进展作一综述。

关键词

新生儿坏死性小肠结肠炎,早期诊断,无创性生物标志物

Advances in Non-Invasive Biomarkers for Early Diagnosis of NEC

Jingwen Wang, Luquan Li*

Neonatal Diagnosis and Treatment Centre of Children’s Hospital of Chongqing Medical University, National Clinical Medical Research Center of Child Health and Diseases, Key Laboratory of Child Developmental Diseases Research of Ministry of Education, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing

Received: Feb. 27th, 2024; accepted: Mar. 21st, 2024; published: Mar. 28th, 2024

ABSTRACT

Necrotizing enterocolitis (NEC) is a common digestive disease in newborns, especially in premature and low birth weight infants. NEC has a hidden onset, rapid progression, and can rapidly develop into explosive NEC, with a mortality rate of up to 50%. Surviving children are prone to a variety of related serious sequelae, seriously affecting their quality of life. Therefore, early diagnosis of NEC is particularly necessary. This article reviews the progress of non-invasive biomarkers in the early diagnosis of NEC.

Keywords:Neonatal Necrotizing Enterocolitis, Early Diagnosis, Non-Invasive Biomarker

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

坏死性小肠结肠炎(necrotizing enterocolitis, NEC)是新生儿常见的严重胃肠道疾病,影响2%~13%的早产儿,死亡率高达50%,且存活患儿容易出现肠狭窄、短肠综合征及神经系统发育迟缓等并发症 [1] [2] 。NEC病初症状隐匿,但可迅速发展为爆发性NEC,甚至出现肠穿孔等急腹症,因此早诊断、早治疗对降低患儿病死率及预后不良发生率有极其重要的意义 [3] [4] 。目前NEC的诊断主要基于改良的Bell分期标准,根据临床表现、实验室检查、放射学或超声检查进行诊断 [5] 。但血清生化检查通常在NEC发作后才出现异常,且为侵入性操作,腹部X片提示门静脉积气或肠壁积气时疾病往往已处于严重阶段,不利于早期诊断和治疗。因此需要寻找可以早期识别NEC并监测疾病进展的生物标志物。本文对无创性生物标志物在NEC早期诊断中的研究进展进行讨论。

2. 早期诊断NEC无创性生物标志物

2.1. 粪便钙卫蛋白

钙卫蛋白(fecal calprotectin, FC)是一种胞质蛋白,与钙锌具有良好的亲和性,由中性粒细胞、巨噬细胞等炎细胞表达,当肠道炎症激活时释放,且容易在粪便中检测 [6] 。一项纳入10项研究的Meta分析发现FC在诊断NEC时的敏感性、特异性、诊断优势比及AUC分别为0.86 (95% CI: 0.80~0.91)、0.79 (95% CI: 0.75~0.83)、34.78 (95% CI: 15.30~79.07)和0.92,证实了FC是一种很有前途的NEC早期预测标志物,在新生儿中具有很高的诊断价值 [7] 。Mac等以疑似NEC但腹部平片未见异常的患儿为研究对象,按是否发展为NEC进行分组后发现,NEC组患儿粪便FC水平明显高于非NEC组 [8] 。Pergialiotis等同样发现NEC患儿粪便FC水平明显升高,但其认为FC作为NEC诊断标志物的临界值尚需进一步研究 [9] 。同时,有研究认为早产儿在出生后1周内粪便FC在个体间和个体内差异很大,这限制了通过连续监测粪便FC水平来早期识别诊断NEC [10] 。有研究认为226 ug/g及247 ug/g两个临界值阳性预测值均较低(<0.6) [11] 。Hong等研究认为,新生儿FC水平差异很大,NEC患儿在发病前及发病时均出现FC水平升高,且显著高于脓毒症患儿,FC辅助NEC诊断时临界值为1086 ug/g,特异性75%,敏感性93.3%;区分NEC患儿与脓毒症患儿时临界值为238 ug/g,特异性83% [12] 。这些研究提示FC在早期诊断NEC方面有一定价值,但由于FC个体间水平差异很大,仍需进一步研究其与NEC的关系。

2.2. 脂肪酸结合蛋白

肠脂肪酸结合蛋白(Intestinal fatty acid-binding protein, I-FABP)是参与脂肪酸代谢的特异性胞质蛋白,在肠壁缺血时肠细胞膜完整性破坏,I-FABP被释放入血,并从尿液中排放 [13] 。Coufal等发现,与健康婴儿相比,I-LABP在NEC早期就出现显著升高,提示即使在NEC出现明显症状之前就可以检测到肠道粘膜损伤和强烈的炎症反应 [14] 。Ahmed等进一步发现尿I-FABP可以鉴别Bell’s分期 [15] 。其他研究表明NEC发病7天内的尿I-FABP浓度均高于非NEC患儿(I-FABP > 13.3 ng/mL,预测NEC的敏感性60%,特异性78%),且在NEC诊断3天内具有更强的预测性(I-FABP > 13.9 ng/mL,预测NEC的敏感性为65%,特异性84%) [16] 。同时研究发现血浆I-FABP辅助诊断NEC具有很高的特异性,但灵敏度中等;而尿I-FABP在NEC早期诊断中价值有限,联合其他分子标志物或检测(粪便FC或腹部X片等)可能具有更大的应用价值 [17] 。Saran等发现尿I-FABP与肌酸的比值在3.6 pg/mmol时诊断2期及3期NEC时敏感性及特意性分别为96%和99.5%,优于单独尿I-FABP (临界值1800 pg/ml,诊断2期及3期NEC敏感性88%、特异性82%) [18] 。以上研究提示多种生物标志物联合应用于NEC诊断可能更有价值。

2.3. 三叶因子-3

三叶因子-3 (Trefoil factors-3, TFF-3)在肠道中表达,与维持粘膜屏障完整性、促进粘膜屏障修复及肠道炎症有关 [19] 。由于NEC存在肠道粘膜屏障的明显破坏,其病理特征包括炎症细胞浸润肠粘膜以及全身脓毒症等,TFF-3是NEC早期诊断的一种较有前景的生物标志物 [20] 。Coufal等发现NEC患儿尿TFF-3升高,其水平与肠道损伤程度相关,且TFF-3联合肠脂肪酸结合蛋白和血清淀粉样蛋白可以预测肠壁积气 [14] 。目前关于TFF-3早期诊断NEC的相关实验较少,仍需进一步研究证实其相关性。

2.4. 紧密连接蛋白

紧密连接蛋白(Claudins)在小肠中大量表达,由于NEC肠壁完整性的丧失,故其具有潜在的生物标志物效用 [21] 。Goldstein等发现NEC早产儿Claudin-2在肠道组织中表达降低,而尿液中含量增加 [22] 。Thuijls等对35名疑似NEC的婴儿进行研究,发现诊断为NEC的患儿尿claudin-3水平显著升高,当其临界值为801 INT时,诊断NEC的敏感性为71%,特异性为81% [23] 。目前相关研究样本量较小,需要更多研究来确定Claudins在NEC中的诊断价值。

2.5. 血清淀粉样蛋白

血清淀粉样蛋白(Serum amyloid-A protein, SAA)是一种急性期蛋白,在刺激性细胞因子诱导下由干细胞、内皮细胞等分泌,与免疫介导的炎症过程息息相关 [24] 。Reisinger等对62名可疑NEC患儿进行尿I-FABP、尿SAA及粪便钙卫蛋白测定,其中29名患儿最终确诊NEC,结果显示,尿SAA联合尿I-FABP不能提高NEC诊断的准确性 [25] 。随后他们再次对29名确诊NEC的患儿进行对比分析,发现重度NEC (手术性NEC、致死性NEC或Bell’s III期NEC)患儿尿SAA水平较轻度NEC (内科NEC、Bell’ I期或II期NEC)患儿显著升高,其临界值为34.4 ng/mL,敏感性为83%,特异性为83%,同时发现尿SAA与血清血小板计数联合使用时可以提高分辨轻重度NEC的准确性 [26] 。Stepan等认为NEC患儿尿液中SAA水平明显高于对照组,且能区分NEC严重程度,SAA与I-FABP、L-FABP联合可以预测门脉积气的发生或住院时长 [14] 。以上结果提示SAA可能不仅在早期无创性诊断中有一定价值,并且在随后的NEC管理中同样有用。

2.6. 粪便中肠道菌群谱

肠道微生物生态失调被认为与NEC发病密切相关 [27] 。研究认为NEC患儿的肠道微生物多样性降低 [28] 。然而,Feng等发现NEC组与对照组粪便中微生物群多样性无显著差异,这可能与样本量较小有关,同时他们发现NEC患儿粪便中丙酸杆菌较对照组更丰富,而乳酸杆菌相对丰度较低 [29] 。因此NEC患儿或许不仅微生物多样性发生变化,且菌群组成也可能有所差异。健康婴儿的肠道菌群主要由双歧杆菌组成 [30] ,而NEC患儿中双歧杆菌和乳酸杆菌的相对丰度降低 [31] ,大肠杆菌和克雷伯菌的相对丰度增加 [32] 。研究发现NEC发作前肠道菌群也有类似变化 [33] [34] 。Pammi等同样发现NEC患儿粪便微生物组在发病前变形菌门丰度增加,厚壁菌门和拟杆菌门丰度降低 [35] 。现有的研究发现NEC患儿在发病前肠道微生物出现变化,但由于肠道不同区域之间菌群组成存在差异,故其能否用于临床诊断尚需进一步研究分析。

2.7. 挥发性有机物

粪便挥发性有机物(volatile organic compounds, VOCs)是一种碳基气态化合物,来源于肠道细菌的营养物质发酵,被认为可以反映肠道微生物的组成、代谢活动以及微生物群与宿主之间的相互作用 [36] 。Hosfied等发现NEC小鼠模型粪便中VOCs与对照组有显著差别 [32] 。Catherine等认为NEC患儿在确诊NEC之前几天内粪便中VOCs较对照组数量减少,且样本中特异性酯种类减少 [37] 。De Meij等发现,在临床症状出现前2~3 d,NEC患儿的粪便VOCs谱就与对照组有显著差别,早期诊断NEC的敏感性为83%,特异性75% [38] 。多中心前瞻性研究表明NEC患儿粪便中VOCs在临床诊断最早4天前会发生改变 [39] 。然而,有研究发现粪便VOCs会因喂养方式及婴儿性别等不同而有所差别 [40] 。因此,可能需要更多研究来进一步评估VOCs与NEC的关系。

2.8. 肠碱性磷酸酶

肠碱性磷酸酶(intestinal Alkaline Phosphatase, IAP)是一种同型二聚体,主要在肠细胞顶膜上表达,具有抗炎和稳态作用 [41] 。作为肠道内表达的内源性蛋白质,IAP是无创性检测的理想选择。Richard等发现IAP过表达可能预示着NEC的发生风险增加,但并不显著(P = 0.12) [42] 。Heath等发现粪便中大量的IAP蛋白和低IAP酶活性与NEC诊断相关,可作为NEC的有效生物标志物,且IAP可以区分NEC和脓毒血症 [43] 。目前相关研究较少,需要更多试验来进一步确定IAP在诊断NEC中的价值。

2.9. S100A12

S100A2时一种胞质钙结合蛋白,在肠道炎症时由吞噬细胞激活释放,可能在先天免疫中有重要作用 [44] 。Dabritz等发现NEC患儿粪便中S100A12的含量较对照组显著升高,检测NEC的敏感性为70%,特异性68%,阳性和阴性预测值分别为37%和89% [45] 。这说明S100A2是一种有前途的诊断NEC生物标志物,需要更多研究来进一步验证其与NEC的关系。

2.10. 心率变异性

心率变异性(heart rate variability, HRV)是一种无创性检测自主神经调节水平的方法,可以根据心电图计算,通过心跳间隔值的快速傅里叶变换进行时域和频域分析 [3] [46] 。心率变异性的高频谱(high frequency spectrum of heart rate variability, HF-HRV)可以反映迷走神经张力,已被证实为胎儿和新生儿是否健康的标志物 [46] [47] [48] 。动物试验表明,迷走神经障碍会加重NEC小鼠肠上皮绒毛坏死,而NEC小鼠发病早期出现HF-HRV降低 [49] 。Tareq等发现,HRV在临床NEC诊断前2天出现下降,在诊断2天后恢复到正常水平,且HRV变化情况与临床严重程度显著相关 [47] 。临床发现Bell’s II期以上的NEC患儿在临床症状出现前4.5~7.5天即发生HF-HRV的降低,HF-HRV被认为是NEC进展的重要预测因子 [48] 。HF-HRV的主要优点包括其在NEC发病前非侵入性预测NEC、相对较低的成本以及使用现有软件易于分析,因此有潜力成为预测NEC的生物标志物。

2.11. 代谢组学

代谢组学是对小分子代谢物的分析,能反映机体对各种刺激的直接结果 [12] 。目前已有研究证实代谢组学在NEC诊断中的价值 [50] [51] 。研究表明NEC Bell’s II~III期患儿较I期患儿粪便中鞘磷脂显著升高,神经酰胺显著降低 [50] 。Thomaidou等研究发现NEC患儿尿液中有多种代谢物与对照组均有显著差异,且ROC曲线分析提示酪氨酸、精氨酸及核黄素在NEC诊断方面具有一定价值(AUC = 0.963, 95% CI [0.812~1.00]) [51] 。以上均提示代谢组学可以作为NEC早期诊断的生物标志物,但目前研究样本量较少,需要更多更大规模试验来验证代谢组学与NEC的关系。

除上述无创性生物标志物外,粪便脂质运载蛋白-2 [52] 、尿前列腺素E2 [53] 等也已被证实为预测NEC发展的很有前景的生物标志物。

3. 小结

近年关于NEC早期诊断的无创性生物标志物已有大量研究,这些研究对促进NEC临床治疗发展和发病机制的理解具有巨大作用,寻找可以早期诊断NEC的敏感和特异的生物标志物将会大幅降低NEC相关死亡率、提高NEC的预后。但目前尚未明确这些生物标志物的临界值,且其敏感性及特异性仍需进一步评估,因此未来需要更多中心、前瞻性研究来分析这些生物标志物的可重复性及有效性。

文章引用

王静文,李禄全. 早期诊断NEC无创性生物标志物的研究进展
Advances in Non-Invasive Biomarkers for Early Diagnosis of NEC[J]. 临床医学进展, 2024, 14(03): 1529-1535. https://doi.org/10.12677/acm.2024.143875

参考文献

  1. 1. Kaplina, A., Kononova, S., Zaikova, E., et al. (2023) Necrotizing Enterocolitis: The Role of Hypoxia, Gut Microbiome, and Microbial Metabolites. International Journal of Molecular Sciences, 24, Article 2471. https://doi.org/10.3390/ijms24032471

  2. 2. Aladangady, N. and Sanderson, I. (2023) Editorial: Biomarkers of Gut Blood Flow, Oxygenation, Inflammation and NEC in Neonates. Frontiers in Pediatrics, 11, Article 1234832. https://doi.org/10.3389/fped.2023.1234832

  3. 3. Meister, A.L., Doheny, K.K. and Travagli, R.A. (2020) Necrotizing Enterocolitis: It’s Not All in the Gut. Experimental Biology and Medicine, 245, 85-95. https://doi.org/10.1177/1535370219891971

  4. 4. Bethell, G.S. and Hall, N.J. (2023) Recent Advances in Our Understanding of NEC Diagnosis, Prognosis and Surgical Approach. Frontiers in Pediatrics, 11, Article 1229850. https://doi.org/10.3389/fped.2023.1229850

  5. 5. Bell, M.J., Ternberg, J.L., Feigin, R.D., et al. (1978) Neonatal Necrotizing Enterocolitis. Therapeutic Decisions Based upon Clinical Staging. Annals of Surgery, 187, 1-7. https://doi.org/10.1097/00000658-197801000-00001

  6. 6. Asiri, A.S., Algarni, S.S., Althubaiti, A.Q., et al. (2023) Fecal Calprotectin and Organic Gastrointestinal Disease: A Systematic Review. Cureus, 15, e45019. https://doi.org/10.7759/cureus.45019

  7. 7. Qu, Y., Xu, W., Han, J., et al. (2020) Diagnostic Value of Fecal Calprotectin in Necrotizing Enterocolitis: A Meta-Analysis. Early Human Development, 151, Article ID: 105170. https://doi.org/10.1016/j.earlhumdev.2020.105170

  8. 8. MacQueen, B.C., Christensen, R.D., Yost, C.C., et al. (2016) Elevated Fecal Calprotectin Levels during Necrotizing Enterocolitis Are Associated with Activated Neutrophils Extruding Neutrophil Extracellular Traps. Journal of Perinatology, 36, 862-869. https://doi.org/10.1038/jp.2016.105

  9. 9. Pergialiotis, V., Konstantopoulos, P., Karampetsou, N., et al. (2016) Calprotectin Levels in Necrotizing Enterocolitis: A Systematic Review of the Literature. Inflammation Research, 65, 847-852. https://doi.org/10.1007/s00011-016-0963-9

  10. 10. Van Zoonen, A.G.J.F., Hulzebos, C.V., Muller Kobold, A.C., et al. (2019) Serial Fecal Calprotectin in the Prediction of Necrotizing Enterocolitis in Preterm Neonates. Journal of Pediatric Surgery, 54, 455-459. https://doi.org/10.1016/j.jpedsurg.2018.04.034

  11. 11. Goold, E., Pearson, L. and Johnson, L.M. (2020) Can Fecal Calprotectin Serve as a Screen for Necrotizing Enterocolitis in Infants? Clinical Biochemistry, 84, 51-54. https://doi.org/10.1016/j.clinbiochem.2020.06.015

  12. 12. Hong, L., Huang, Y., Jiang, S., et al. (2023) Postnatal Dynamics and Clinical Associations of Fecal Calprotectin in Very Preterm Infants: Implications for Necrotizing Enterocolitis and Feeding Intolerance. Clinical and Translational Gastroenterology, 14, e00604. https://doi.org/10.14309/ctg.0000000000000604

  13. 13. Agakidou, E., Agakidis, C., Gika, H. and Sarafidis, K. (2020) Emerging Biomarkers for Prediction and Early Diagnosis of Necrotizing Enterocolitis in the Era of Metabolomics and Proteomics. Frontiers in Pediatrics, 8, Article 602255. https://doi.org/10.3389/fped.2020.602255

  14. 14. Coufal, S., Kokesova, A., Tlaskalova-Hogenova, H., et al. (2020) Urinary I-FABP, L-FABP, TFF-3, and SAA Can Diagnose and Predict the Disease Course in Necrotizing Enterocolitis at the Early Stage of Disease. Journal of Immunology Research, 2020, Article ID: 3074313. https://doi.org/10.1155/2020/3074313

  15. 15. El-Abd Ahmed, A., Hassan, M.H., Abo-Halawa, N., et al. (2020) Lactate and Intestinal Fatty Acid Binding Protein as Essential Biomarkers in Neonates with Necrotizing Enterocolitis: Ultrasonographic and Surgical Considerations. Pediatrics & Neonatology, 61, 481-489. https://doi.org/10.1016/j.pedneo.2020.03.015

  16. 16. Gregory, K.E., Winston, A.B., Yamamoto, H.S., et al. (2014) Urinary Intestinal Fatty Acid Binding Protein Predicts Necrotizing Enterocolitis. The Journal of Pediatrics, 164, 1486-1488. https://doi.org/10.1016/j.jpeds.2014.01.057

  17. 17. Ho, S.S.C., Keenan, J.I. and Day, A.S. (2020) The Role of Gastrointestinal-Related Fatty Acid-Binding Proteins as Biomarkers in Gastrointestinal Diseases. Digestive Diseases and Sciences, 65, 376-390. https://doi.org/10.1007/s10620-019-05841-x

  18. 18. Saran, A., Devegowda, D. and Doreswamy, S.M. (2020) Urinary Intestinal Fatty Acid Binding Protein for Diagnosis of Necrotizing Enterocolitis. Indian Pediatrics, 57, 798-800. https://doi.org/10.1007/s13312-020-1955-y

  19. 19. Liu, J., Yang, Q., Chen, Z., et al. (2021) TFF3 Mediates the NF-κB/COX2 Pathway to Regulate PMN-MDSCs Activation and Protect against Necrotizing Enterocolitis. European Journal of Immunology, 51, 1110-1125. https://doi.org/10.1002/eji.202048768

  20. 20. Liu, J., Li, Y., Feng, Y., et al. (2019) Patterned Progression of Gut Microbiota Associated with Necrotizing Enterocolitis and Late Onset Sepsis in Preterm Infants: A Prospective Study in a Chinese Neonatal Intensive Care Unit. PeerJ, 7, e7310. https://doi.org/10.7717/peerj.7310

  21. 21. Goldstein, G.P. and Sylvester, K.G. (2019) Biomarker Discovery and Utility in Necrotizing Enterocolitis. Clinics in Perinatology, 46, 1-17. https://doi.org/10.1016/j.clp.2018.10.001

  22. 22. Blackwood, B.P., Wood, D.R., Yuan, C.Y., Nicolas, J.D., Griffiths, A., Mestan, K. and Hunter, C.J. (2015) Urinary Claudin-2 Measurements as a Predictor of Necrotizing Enterocolitis: A Pilot Study. Journal of Neonatal Surgery, 4, 43. https://doi.org/10.47338/jns.v4.457

  23. 23. Thuijls, G., Derikx, J.P., Van Wijck, K., et al. (2010) Non-Invasive Markers for Early Diagnosis and Determination of the Severity of Necrotizing Enterocolitis. Annals of Surgery, 251, 1174-1180. https://doi.org/10.1097/SLA.0b013e3181d778c4

  24. 24. Chen, R., Chen, Q., Zheng, J., et al. (2023) Serum Amyloid Protein A in Inflammatory Bowel Disease: From Bench to Bedside. Cell Death Discovery, 9, Article No. 154. https://doi.org/10.1038/s41420-023-01455-5

  25. 25. Reisinger, K.W., Van Der Zee, D.C., Brouwers, H.A., et al. (2012) Noninvasive Measurement of Fecal Calprotectin and Serum Amyloid a Combined with Intestinal Fatty Acid-Binding Protein in Necrotizing Enterocolitis. Journal of Pediatric Surgery, 47, 1640-1645. https://doi.org/10.1016/j.jpedsurg.2012.02.027

  26. 26. Reisinger, K.W., Kramer, B.W., Van Der Zee, D.C., et al. (2014) Non-Invasive Serum Amyloid A (SAA) Measurement and Plasma Platelets for Accurate Prediction of Surgical Intervention in Severe Necrotizing Enterocolitis (NEC). PLOS ONE, 9, e90834. https://doi.org/10.1371/journal.pone.0090834

  27. 27. Duchon, J., Barbian, M.E. and Denning, P.W. (2021) Necrotizing Enterocolitis. Clinics in Perinatology, 48, 229-250. https://doi.org/10.1016/j.clp.2021.03.002

  28. 28. Tarracchini, C., Milani, C., Longhi, G., et al. (2021) Unraveling the Microbiome of Necrotizing Enterocolitis: Insights in Novel Microbial and Metabolomic Biomarkers. Microbiology Spectrum, 9, e0117621. https://doi.org/10.1128/Spectrum.01176-21

  29. 29. Feng, J., He, Y., Liu, D., et al. (2019) The Constitution and Functional Prediction of the Microbiota in Necrotizing Enterocolitis with a Gestational Age of over 28 Weeks. Medicine, 98, e17206. https://doi.org/10.1097/MD.0000000000017206

  30. 30. Saturio, S., Nogacka, A.M., Suárez, M., et al. (2021) Early-Life Development of the Bifidobacterial Community in the Infant Gut. International Journal of Molecular Sciences, 22, Article 3382. https://doi.org/10.3390/ijms22073382

  31. 31. Du, T.T., Liu, X.C., He, Y., et al. (2023) Changes of Gut Microbiota and Tricarboxylic Acid Metabolites May Be Helpful in Early Diagnosis of Necrotizing Enterocolitis: A Pilot Study. Frontiers in Microbiology, 14, Article 1119981. https://doi.org/10.3389/fmicb.2023.1119981

  32. 32. Hosfield, B.D., Drucker, N.A., Pecoraro, A.R., et al. (2021) The Assessment of Microbiome Changes and Fecal Volatile Organic Compounds during Experimental Necrotizing Enterocolitis. Journal of Pediatric Surgery, 56, 1220-1225. https://doi.org/10.1016/j.jpedsurg.2021.02.043

  33. 33. Masi, A.C., Embleton, N.D., Lamb, C.A., et al. (2021) Human Milk Oligosaccharide DSLNT and Gut Microbiome in Preterm Infants Predicts Necrotising Enterocolitis. Gut, 70, 2273-2282. https://doi.org/10.1136/gutjnl-2020-322771

  34. 34. Neu, J. (2020) Necrotizing Enterocolitis: A Multi-Omic Approach and the Role of the Microbiome. Digestive Diseases and Sciences, 65, 789-796. https://doi.org/10.1007/s10620-020-06104-w

  35. 35. Pammi, M., Cope, J., Tarr, P.I., et al. (2017) Intestinal Dysbiosis in Preterm Infants Preceding Necrotizing Enterocolitis: A Systematic Review and Meta-Analysis. Microbiome, 5, Article No. 31. https://doi.org/10.1186/s40168-017-0248-8

  36. 36. Berkhout, D.J.C., Niemarkt, H.J., De Boer, N.K.H., et al. (2018) The Potential of Gut Microbiota and Fecal Volatile Organic Compounds Analysis as Early Diagnostic Biomarker for Necrotizing Enterocolitis and Sepsis in Preterm Infants. Expert Review of Gastroenterology & Hepatology, 12, 457-470. https://doi.org/10.1080/17474124.2018.1446826

  37. 37. Garner, C.E., Ewer, A.K., Elasouad, K., et al. (2009) Analysis of Faecal Volatile Organic Compounds in Preterm Infants Who Develop Necrotising Enterocolitis: A Pilot Study. Journal of Pediatric Gastroenterology and Nutrition, 49, 559-565. https://doi.org/10.1097/MPG.0b013e3181a3bfbc

  38. 38. De Meij, T.G., Van Der Schee, M.P., Berkhout, D.J., et al. (2015) Early Detection of Necrotizing Enterocolitis by Fecal Volatile Organic Compounds Analysis. The Journal of Pediatrics, 167, 562-567.E1. https://doi.org/10.1016/j.jpeds.2015.05.044

  39. 39. Probert, C., Greenwood, R., Mayor, A., et al. (2020) Faecal Volatile Organic Compounds in Preterm Babies at Risk of Necrotising Enterocolitis: The DOVE Study. ADC Fetal & Neonatal Edition, 105, 474-479. https://doi.org/10.1136/archdischild-2019-318221

  40. 40. Hosfield, B.D., Pecoraro, A.R., Baxter, N.T., et al. (2020) The Assessment of Fecal Volatile Organic Compounds in Healthy Infants: Electronic Nose Device Predicts Patient Demographics and Microbial Enterotype. Journal of Surgical Research, 254, 340-347. https://doi.org/10.1016/j.jss.2020.05.010

  41. 41. Martins, R.D.S., Kooi, E.M.W., Poelstra, K., et al. (2023) The Role of Intestinal Alkaline Phosphatase in the Development of Necrotizing Enterocolitis. Early Human Development, 183, Article ID: 105797. https://doi.org/10.1016/j.earlhumdev.2023.105797

  42. 42. Kampanatkosol, R., Thomson, T., Habeeb, O., et al. (2014) The Relationship between Reticulated Platelets, Intestinal Alkaline Phosphatase, and Necrotizing Enterocolitis. Journal of Pediatric Surgery, 49, 273-276. https://doi.org/10.1016/j.jpedsurg.2013.11.037

  43. 43. Heath, M., Buckley, R., Gerber, Z., et al. (2019) Association of Intestinal Alkaline Phosphatase with Necrotizing Enterocolitis Among Premature Infants. JAMA Network Open, 2, e1914996. https://doi.org/10.1001/jamanetworkopen.2019.14996

  44. 44. Sugino, H. and Sawada, Y. (2022) Influence of S100A2 in Human Diseases. Diagnostics, 12, Article 1756. https://doi.org/10.3390/diagnostics12071756

  45. 45. Däbritz, J., Jenke, A., Wirth, S. and Foell, D. (2012) Fecal Phagocyte-Specific S100A12 for Diagnosing Necrotizing Enterocolitis. The Journal of Pediatrics, 161, 1059-1064. https://doi.org/10.1016/j.jpeds.2012.06.003

  46. 46. Pham, T., Lau, Z.J., Chen, S.H.A., et al. (2021) Heart Rate Variability in Psychology: A Review of HRV Indices and an Analysis Tutorial. Sensors, 21, Article 3998. https://doi.org/10.3390/s21123998

  47. 47. Al-Shargabi, T., Reich, D., Govindan, R.B., et al. (2018) Changes in Autonomic Tone in Premature Infants Developing Necrotizing Enterocolitis. American Journal of Perinatology, 35, 1079-1086. https://doi.org/10.1055/s-0038-1639339

  48. 48. Meister, A.L., Gardner, F.C., Browning, K.N., et al. (2021) Vagal Tone and Proinflammatory Cytokines Predict Feeding Intolerance and Necrotizing Enterocolitis Risk. Advances in Neonatal Care, 21, 452-461. https://doi.org/10.1097/ANC.0000000000000959

  49. 49. Meister, A.L., Doheny, K.K. and Travagli, R.A. (2019) Necrotizing Enterocolitis Attenuates Developmental Heart Rate Variability Increases in Newborn Rats. Neurogastroenterology & Motility, 31, e13484. https://doi.org/10.1111/nmo.13484

  50. 50. Rusconi, B., Jiang, X., Sidhu, R., et al. (2018) Gut Sphingolipid Composition as a Prelude to Necrotizing Enterocolitis. Scientific Reports, 8, Article No. 10984. https://doi.org/10.1038/s41598-018-28862-4

  51. 51. Thomaidou, A., Chatziioannou, A.C., Deda, O., et al. (2019) A Pilot Case-Control Study of Urine Metabolomics in Preterm Neonates with Necrotizing Enterocolitis. Journal of Chromatography B, 1117, 10-21. https://doi.org/10.1016/j.jchromb.2019.04.019

  52. 52. Thibault, M.P., Tremblay, É., Horth, C., et al. (2022) Lipocalin-2 and Calprotectin as Stool Biomarkers for Predicting Necrotizing Enterocolitis in Premature Neonates. Pediatric Research, 91, 129-136. https://doi.org/10.1038/s41390-021-01680-7

  53. 53. Konishi, K.I., Yoshida, M., Nakao, A., et al. (2019) Prostaglandin E-Major Urinary Metabolite as a Noninvasive Surrogate Marker for Infantile Necrotizing Enterocolitis. Journal of Pediatric Surgery, 54, 1584-1589. https://doi.org/10.1016/j.jpedsurg.2018.08.044

  54. NOTES

    *通讯作者。

期刊菜单