Advances in Clinical Medicine
Vol. 14  No. 05 ( 2024 ), Article ID: 87533 , 8 pages
10.12677/acm.2024.1451607

急性缺血性卒中并发应激性高血糖的 研究进展

赵智艳1,徐云瑀1,尚正福2,张颖1,缪薇1*

1昆明医科大学第二附属医院神经内科,云南 昆明

2保山市第二人民医院神经内科,云南 保山

收稿日期:2024年4月27日;录用日期:2024年5月21日;发布日期:2024年5月28日

摘要

应激性高血糖在急性缺血性卒中病人中较为常见,应激性高血糖会增加急性缺血性卒中患者出现出血转化、神经功能恶化、功能恢复不良,甚至死亡的风险,但应激性高血糖影响急性缺血性脑卒中患者预后的机制尚未明确。本文将围绕急性缺血性卒中后应激性高血糖的成因、应激性高血糖对急性缺血性卒中的损伤及保护作用、应激性高血糖的水平与急性缺血性卒中患者预后的相关性做一综述,旨在为临床治疗提供理论依据。

关键词

应激性高血糖,急性缺血性卒中,机制,预后

Research Progress in Acute Ischemic Stroke Complicated with Stress Hyperglycemia

Zhiyan Zhao1, Yunyu Xu1, Zhengfu Shang2, Ying Zhang1, Wei Miao1*

1Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, Kunming Yunnan

2Department of Neurology, The Second People’s Hospital of Baoshan, Baoshan Yunnan

Received: Apr. 27th, 2024; accepted: May 21st, 2024; published: May 28th, 2024

ABSTRACT

Stress hyperglycemia is relatively common in patients with acute ischemic stroke. Stress hyperglycemia may increase the risk of hemorrhage transformation, neurological deterioration, poor functional recovery and even death in patients with acute ischemic stroke. However, the pathophysiological mechanism of stress hyperglycemia’s effect on acute ischemic stroke remains unclear. In this paper, we will review the causes of stress hyperglycemia after acute ischemic stroke, the damage and protective effect of stress hyperglycemia on acute ischemic stroke, and the correlation between the level of stress hyperglycemia and the prognosis of patients with acute ischemic stroke, aiming to provide theoretical basis for clinical treatment.

Keywords:Stress Hyperglycemia, Acute Ischemic Stroke, Mechanism, Prognosis

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

脑卒中是全球第二大死亡原因和致残的重要原因,预计至少在2030年之前仍将如此 [1] 。同时,脑卒中也是2019年我国伤残调整寿命年的首要原因 [2] 。急性缺血性脑卒中(acute ischemic stroke, AIS)是最常见的脑卒中类型,由脑血管突然破裂或闭塞导致的脑灌注异常引起,占所有脑卒中病例的60%~80% [3] 。在我国,AIS患者发病后1个月的病死率约为3%,3月致死/残疾率为34.5%~37.1%,1年致死/残疾率33.4%~33.8% [4] ,具有高发病率、高复发率、高死亡率及高致残率等特点,给家庭和社会带来了巨大的经济负担。在AIS发生后,30%~40%的患者血糖水平会一过性急剧升高,即应激性高血糖(stress hyperglycemia, SH) [5] [6] ,新近研究报道,SH可作为AIS患者院内死亡和不良预后风险增加的预测指标 [7] 。本文将围绕AIS后SH的成因、SH对AIS的损伤及保护作用、SH水平与AIS患者预后的相关性做一综述。

2. 急性缺血性卒中后应激性高血糖的成因

应激性高血糖的发生是由SH的中枢神经系统、下丘脑–垂体–肾上腺(hypothalamic-pituitary-adrenal, HPA)轴与蓝斑–交感–肾上腺髓质系统(Locus coeruleus-sympathetic adrenal medullary system, LC-SAMS)系统、高水平的细胞因子相互作用引起的。

2.1. 应激性高血糖的中枢性因素

AIS发生后,与应激反应相关的多个大脑区域会产生兴奋性信号。延髓腹外侧区域中的儿茶酚胺神经元是SH的控制中心,接收这些兴奋性信号,并对其整合输出,例如接受到下丘脑室旁核的高血糖兴奋性投射后,该区的儿茶酚胺神经元被激活,通过交感–肾上腺神经通路向下投射到脊髓中间外侧核,使肾上腺髓质释放儿茶酚胺增加,诱导SH的发生 [8] 。除此之外,研究发现岛叶皮层可以影响自主神经功能,岛叶梗死患者的交感神经活性显著高于非岛叶梗死 [9] ,与卒中后高血糖的产生有关 [10] 。因此当影响自主神经功能的大脑区域发生缺血性卒中时,也可能导致SH。

2.2. 下丘脑–垂体–肾上腺(HPA)轴和交感肾上腺髓质系统(LC-SAMS)

AIS作为应激源,可激活HPA轴和LC-SAMS,从而导致循环血液中的皮质醇和儿茶酚胺增多,此外,还会引起生长激素和胰高血糖素的升高 [11] [12] 。在AIS患者中,皮质醇和儿茶酚胺水平可能与卒中严重程度、格拉斯哥昏迷量表评分相关 [13] 。这些激素可能是通过以下方式引起血糖升高:① 皮质醇、儿茶酚胺和胰高血糖素是反调节性激素,它们通过增强胰腺α细胞的活性来减少胰岛素的释放 [14] 。② 皮质醇可促进肝脏糖异生,并减少骨骼肌和白色脂肪组织中葡萄糖的摄取和利用 [15] 。③ 儿茶酚胺、生长激素通过糖原分解和糖异生来增加葡萄糖的产生 [16] [17] 。④ 生长激素还可以通过刺激胰岛素样生长因子-1的产生,抑制胰岛素分泌 [18] ,从而升高血糖。

2.3. 细胞因子

内环境中高水平的细胞因子在SH的发生中起着重要作用,AIS的炎症反应会导致细胞因子生成增加。细胞因子如白细胞介素-1 (interleukin-1, IL-1)、白细胞介素-6 (interleukin-6, IL-6)和肿瘤坏死因子-α (tumor necrosis factor-alpha, TNF-α)通过抑制受体后胰岛素信号转导,减少胰岛素的释放,这种作用是浓度依赖性的 [19] ,还可诱导外周胰岛素抵抗。TNF-α还可直接下调葡萄糖转运蛋白-4的信使RNA的表达以减少外周组织对葡萄糖摄取,还可以刺激胰高血糖素的产生来促进糖异生 [19] 。干扰素-γ和白细胞介素-1β (interleukin-1β, IL-1β)可通过激活核因子-κb介导自身免疫反应,诱导胰腺β细胞凋亡和胰岛素分泌能力减弱从而导致血糖升高 [20] 。

3. 应激性高血糖对急性缺血性卒中的影响机制

3.1. 应激性高血糖对急性缺血性卒中的保护作用

急性疾病背景下的SH和胰岛素抵抗是一种进化上保留的适应性反应,它为中枢神经系统、免疫系统和各种器官提供能量,增加了宿主的生存机会,轻至中度SH在应激和危重疾病期间发挥保护作用 [21] 。在失血性休克动物模型中,输注高渗葡萄糖溶液可增加心输出量、血压并改善生存率 [22] 。Malfitano等人 [23] 通过对大鼠心肌梗死模型研究,发现高血糖可降低模型中的促炎细胞因子,增加细胞存活因子(血管内皮生长因子,缺氧诱导因子-1α),增加血管生成,从而减小了心肌梗死的面积。在AIS方面,Uyttenboogaart等人 [24] 报道了腔隙性卒中的浓度效应现象,血糖水平在8~12 mmol/L之间与良好预后相关,但血糖 > 12 mmol/L时这种有益作用减弱,表明中度高血糖可能对腔隙性卒中有益,可能的原因是腔隙性卒中位于白质中,会损害轴突和神经胶质细胞,星形胶质细胞产生的乳酸是轴突和少突胶质细胞的重要能量支持,高血糖导致乳酸产生增加可能会挽救轴突和少突胶质细胞。而在非腔隙性卒中发现高血糖会导致预后不良。但是在一项基于中国医院的研究中,Yuan Fang等人 [25] 发现,在腔隙性卒中患者,无论糖尿病状态如何,高血糖与功能结局无关。SH在非腔隙性梗死中的预后不良相关,但其与腔隙性梗死的相关性仍存在争议,未来需要更大的样本量及相关的机制研究来验证。

3.2. 应激性高血糖对急性缺血性卒中的损伤作用

应激性高血糖可通过影响血管再通、减少脑灌注、促进再灌注损伤、氧化应激、炎症反应、乳酸积累、线粒体功能障碍等机制导致AIS患者神经损伤加重,合并应激性高血糖的患者更容易出现出血转化、早期神经功能恶化、功能结局差,甚至出现死亡。

3.2.1. 脑血管再通受损

再通受损与凝血增加、纤溶活性降低及血小板聚集性增加相关。高血糖会增加凝血酶–抗凝血酶复合物的产生和刺激组织因子通路以增加凝血 [26] ,还通过增加纤溶酶原激活物抑制-1的产生和降低纤溶酶原激活物的纤溶活性 [27] ,导致高凝状态。此外,高血糖还会增加血小板聚集性,通过增加卒中后血小板活化和促凝血小板形成,并增强血小板–中性粒细胞相互作用,加剧缺血性脑损伤 [28] 。

3.2.2. 灌注减少和再灌注损伤

脑组织缺血后,内皮细胞释放一氧化氮(nitric oxide, NO)以恢复血液灌注。急性高血糖会促进梗死周围区域的大脑微血管系统中内皮一氧化氮合酶(endothelial nitric oxide synthase, eNOS)解偶联,导致活性氧(reactive oxygen species, ROS)生成增加和NO生成减少。此外,ROS和NO生成过氧亚硝酸盐(ONOO)导致NO消耗过多,加上eNOS解偶联导致NO产生不足,造成血管舒张功能受损 [29] ,从而导致灌注减少。缺血再灌注过程中,含氧血液的迅速恢复,通过氧化应激和炎症反应的作用,加剧了缺血性损伤,并增加了出血转化的风险 [30] 。

3.2.3. 氧化应激

氧化应激是缺血性脑损伤合并高血糖的重要病理机制,ROS和活性氮是AIS的内皮功能障碍、血脑屏障破坏和出血转化的关键参与者和治疗靶点 [31] 。高血糖增加了烟酰胺腺嘌呤二核苷酸磷酸氧化酶和诱导型一氧化氮合酶的活性和表达水平,导致ROS和NO产生增多,二者可以迅速发生反应形成ONOO,ONOO介导蛋白质硝基酪氨酸化和神经元死亡 [32] ,还可激活基质金属蛋白酶(matrix metalloproteinases, MMPs),降解血管周围的紧密连接蛋白和细胞外基质 [33] 。新近研究发现,ONOO可介导NOD样受体热蛋白结构域3 (NOD-like receptor family pyrin domain containing 3, NLRP3)炎症小体的激活 [34] ,NLRP3炎症小体在缺血性脑损伤的氧化应激和炎症反应中发挥作用。

3.2.4. 炎症反应

SH通过加剧神经炎症,导致缺血性损伤增加、血脑屏障受损、神经功能恶化。高血糖引发AIS后中性粒细胞浸润到大脑中,增加了炎性细胞因子TNF-α、IL-1β和IL-6和基质金属蛋白酶(MMP-9、MMP-2)的水平,导致神经元受损和血脑屏障通透性增加 [35] 。高血糖通过激活星形胶质细胞中的核因子-κb,诱导脑血管中的细胞粘附分子(如:细胞间粘附分子-1、血管细胞粘附分子-1、E-选择素)的高表达来增强白细胞粘附、炎性细胞因子产生 [36] 。高血糖促进可诱导细胞毒性作用和组织损伤的M1型小胶质细胞的极化,抑制具有神经保护作用、修复和再生作用的M2型小胶质细胞的极化 [37] 。高血糖还可通过ONOO促进NLRP3炎症小体的激活,从而激活半胱氨酸天冬氨酸蛋白酶-1,并介导成熟细胞因子IL-1β的释放 [34] 。

SH还可通过引发血栓炎性级联反应,加重脑损伤。Jean-Philippe等人 [38] 通过一项针对高血糖大鼠卒中模型的研究表明,高血糖引起的中性粒细胞募集足以诱导中性粒细胞–内皮细胞粘附,引发了血栓炎性级联反应,放大并加剧大脑中动脉闭塞诱导的下游微血管血栓形成,损害了再灌注,并诱发了神经血管损伤、血脑屏障破坏和出血转化。

3.2.5. 乳酸积累

脑缺血期间葡萄糖和氧气输送减少会导致能量衰竭,高血糖可通过糖酵解减轻能量衰竭,但也会增加脑内无氧代谢和乳酸的积累,促进缺血半暗带细胞内和细胞外酸中毒,抑制生物酶的活性,破坏线粒体的功能并影响ATP的产生,改变细胞内外的渗透压和离子梯度,最终导致细胞死亡 [5] 。酸中毒还可通过广泛存在于神经系统的酸敏离子通道-1a诱导神经元坏死性凋亡 [39] ,促进梗死中心向缺血半暗带扩展。因此,SH导致的乳酸酸中毒会促进脑梗死面积扩大,神经元死亡。

3.2.6. 线粒体功能障碍

在AIS期间,持续缺血会导致线粒体产生ATP显著减少,大脑中广泛的神经元去极化导致兴奋性神经递质谷氨酸释放增加,从而导致N-甲基-D-天冬氨酸离子型谷氨酸受体激活,使大量钙离子内流 [40] 。已有研究表明高血糖会增强脑缺血引起的谷氨酸释放 [41] ,促进了钙离子内流进入细胞和线粒体,一旦超过线粒体的钙离子缓冲能力,就会导致线粒体损伤,从而促使线粒体膜通透性过渡孔的打开,释放线粒体的成分进入胞浆,如细胞色素c和细胞凋亡诱导因子,进而调节内在程序性细胞死亡途径 [42] 。因此,SH促进的线粒体功能障碍可导致细胞死亡,脑损伤加重。

4. 应激性高血糖的评估方法及与急性缺血性卒中的相关性

4.1. 应激性高血糖比值

由于SH水平会受糖尿病的控制情况、饮食等基础血糖水平的影响,仅使用血糖或糖化血红蛋白作为SH的评估指标是不够的,因此Roberts [39] 等人为了有效判断真正的SH,提出了应激性高血糖比值(Stress Hyperglycemia Ratio,SHR)的概念,计算公式为:SHR = 血糖/平均血糖,平均血糖 = (1.59 × 糖化血红蛋白) − 2.59。此外,也有部分研究人员采用另一个指标衡量SH,即空腹血糖(mmol/L)/糖化血红蛋白(%)。无论计算公式如何变化,都提供了SH对AIS临床预后的更好衡量标准。

4.2. 应激性高血糖比值与急性缺血性卒中的相关性

AIS作为应激源,导致SH的发生,SHR与AIS的严重程度相关。近年来,许多研究从临床结局方面表明了SHR与AIS关系密切。(1) 在缺血性脑卒中发生出血转化方面,Yuan等人 [7] 发现SHR与AIS患者出血转化风险增加相关,无论有无糖尿病病史。(2) 在脑卒中复发方面,一项针对999例不伴糖尿病的AIS患者的研究,发现以“葡萄糖与糖化血红蛋白比值”测量的SH与AIS的卒中复发有关 [43] 。此外,Wang等人 [6] 发现SHR可以预测伴有颅内动脉粥样硬化性狭窄的AIS患者的卒中复发风险。(3) 在死亡方面,Yang等人 [44] 发现“葡萄糖与糖化血红蛋白比值”与接受MT的AIS患者的短期全因死亡率和不良功能结局相关,对其发生具有预测价值。一项关于糖尿病合并AIS患者的研究也表明SHR与院内死亡风险增加相关 [45] 。(4) 在早期神经功能恶化方面,研究表明较高的SHR与接受阿替普酶静脉溶栓治疗、接受血管内血栓切除术的AIS的早期神经功能恶化和出院结局差相关 [46] [47] 。(5) 在院内并发症方面,Tao等人发现较高的SHR与卒中相关性肺炎的风险相关 [48] 。(6) 在功能结局方面,Ngiam等人 [49] 发现SHR与静脉溶栓后AIS患者在3个月时的不良功能结局有关。一项关于AIS患者的SHR与预后关联的meta分析指出高SHR与AIS后预后不良有关,SHR可能是AIS患者不良结局的新预测指标。综上所述,较高的SHR与AIS患者发生出血转化、卒中复发、死亡、早期神经功能恶化、院内并发症、功能结局不良的风险相关。

5. 治疗

SH导致AIS患者预后不良,但由于控制血糖会出现低血糖的风险,因此AIS患者是否需严格血糖控制仍存在争议 [50] 。先前的研究,包括英国葡萄糖胰岛素卒中实验证明胰岛素输注可降低血浆葡萄糖水平,但没有观察到临床结果有明显改善 [51] 。一项美国的卒中高血糖胰岛素网络组织随机临床实验发现在AIS合并高血糖的患者中,标准血糖控制(4.4~9.9 mmol/L)和强化血糖控制(4.4~7.2 mmol/L)治疗长达72小时,并未改善90天的功能结局 [52] 。然而,Gentile等人 [53] 的研究表明强化胰岛素治疗可减少高血糖诱导的促凝状态的生物标志物,这种效果与AIS后功能结果的改善有关。目前尚无明确的指南建议SH如何控制。

6. 总结与展望

脑血管再通受损、脑灌注减少和再灌注损伤、氧化应激、炎症反应、乳酸积累、线粒体功能障碍等可能是SH导致AIS患者预后不良的重要机制,目前控制血糖治疗存在争议,针对上述机制进行干预可能会成为AIS并发SH治疗的关键靶点,此外,通过AIS患者的SHR来指导个体化的降糖治疗是否能获益也是未来研究的重要方向。

基金项目

云南省教育厅科学研究基金项目(编号:2024J0238);

昆医联合专项–面上项目(编号:202401AY070001-340)。

文章引用

赵智艳,徐云瑀,尚正福,张 颖,缪 薇. 急性缺血性卒中并发应激性高血糖的研究进展
Research Progress in Acute Ischemic Stroke Complicated with Stress Hyperglycemia[J]. 临床医学进展, 2024, 14(05): 1700-1707. https://doi.org/10.12677/acm.2024.1451607

参考文献

  1. 1. Zhang, L., Li, X., Wolfe, C.D.A., et al. (2021) Diabetes as an Independent Risk Factor for Stroke Recurrence in Ischemic Stroke Patients: An Updated Meta-Analysis. Neuroepidemiology, 55, 427-435. https://doi.org/10.1159/000519327

  2. 2. Ma, Q., Li, R., Wang, L., et al. (2021) Temporal Trend and Attributable Risk Factors of Stroke Burden in China, 1990-2019: An Analysis for the Global Burden of Disease Study 2019. The Lancet Public Health, 6, E897-E906. https://doi.org/10.1016/S2468-2667(21)00228-0

  3. 3. Wang, W., Jiang, B., Sun, H., et al. (2017) Prevalence, Incidence, and Mortality of Stroke in China: Results from a Nationwide Population-Based Survey of 480687 Adults. Circulation, 135, 759-771. https://doi.org/10.1161/CIRCULATIONAHA.116.025250

  4. 4. 张瑛, 陆征宇, 赵虹. 神经保护疗法在卒中后应用的研究进展[J]. 神经损伤与功能重建, 2021, 16(5): 266-269.

  5. 5. Yao, M., Hao, Y., Wang, T., et al. (2023) A Review of Stress-Induced Hyperglycaemia in the Context of Acute Ischaemic Stroke: Definition, Underlying Mechanisms, and the Status of Insulin Therapy. Frontiers in Neurology, 14, Article ID: 1149671. https://doi.org/10.3389/fneur.2023.1149671

  6. 6. Wang, Y., Fan, H., Duan, W., et al. (2022) Elevated Stress Hyperglycemia and the Presence of Intracranial Artery Stenosis Increase the Risk of Recurrent Stroke. Frontiers in Endocrinology (Lausanne), 13, Article ID: 954916. https://doi.org/10.3389/fendo.2022.954916

  7. 7. Yuan, C., Chen, S., Ruan, Y., et al. (2021) The Stress Hyperglycemia Ratio Is Associated with Hemorrhagic Transformation in Patients with Acute Ischemic Stroke. Clinical Interventions in Aging, 16, 431-442. https://doi.org/10.2147/CIA.S280808

  8. 8. Zhao, Z., Wang, L., Gao, W., et al. (2017) A Central Catecholaminergic Circuit Controls Blood Glucose Levels during Stress. Neuron, 95, 138-152.E135. https://doi.org/10.1016/j.neuron.2017.05.031

  9. 9. Meyer, S., Strittmatter, M., Fischer, C., et al. (2004) Lateralization in Autonomic Dysfunction in Ischemic Stroke Involving the Insular Cortex. Neuroreport, 15, 357-361. https://doi.org/10.1097/00001756-200402090-00029

  10. 10. Allport, L.E., Butcher, K.S., Baird, T.A., et al. (2004) Insular Cortical Ischemia Is Independently Associated with Acute Stress Hyperglycemia. Stroke, 35, 1886-1891. https://doi.org/10.1161/01.STR.0000133687.33868.71

  11. 11. 徐艳, 唐兴江. 急性脑梗死后应激性高血糖的研究进展[J]. 现代临床医学, 2015, 41(6): 403-405.

  12. 12. 李雪佳, 韩立坤. 应激性高血糖研究进展[J]. 内蒙古民族大学学报(自然科学版), 2015, 30(2): 159-161.

  13. 13. Marik, P.E. (2009) Critical Illness-Related Corticosteroid Insufficiency. Chest, 135, 181-193. https://doi.org/10.1378/chest.08-1149

  14. 14. Vedantam, D., Poman, D.S., Motwani, L., et al. (2022) Stress-Induced Hyperglycemia: Consequences and Management. Cureus, 14, E26714. https://doi.org/10.7759/cureus.26714

  15. 15. Kuo, T., McQueen, A., Chen, T.C., et al. (2015) Regulation of Glucose Homeostasis by Glucocorticoids. Advances in Experimental Medicine and Biology, 872, 99-126. https://doi.org/10.1007/978-1-4939-2895-8_5

  16. 16. Barth, E., Albuszies, G., Baumgart, K., et al. (2007) Glucose Metabolism and Catecholamines. Critical Care Medicine, 35, S508-S518. https://doi.org/10.1097/01.CCM.0000278047.06965.20

  17. 17. Kim, S.H. and Park, M.J. (2017) Effects of Growth Hormone on Glucose Metabolism and Insulin Resistance in Human. Annals of Pediatric Endocrinology & Metabolism, 22, 145-152. https://doi.org/10.6065/apem.2017.22.3.145

  18. 18. Fu, Z., Gilbert, E.R. and Liu, D. (2013) Regulation of Insulin Synthesis and Secretion and Pancreatic Beta-Cell Dysfunction in Diabetes. Current Diabetes Reviews, 9, 25-53. https://doi.org/10.2174/157339913804143225

  19. 19. Dungan, K.M., Braithwaite, S.S. and Preiser, J.C. (2009) Stress Hyperglycaemia. The Lancet, 373, 1798-1807. https://doi.org/10.1016/S0140-6736(09)60553-5

  20. 20. Naqvi, F., Dastagir, N. and Jabeen, A. (2023) Honey Proteins Regulate Oxidative Stress, Inflammation and Ameliorates Hyperglycemia in Streptozotocin Induced Diabetic Rats. BMC Complementary Medicine and Therapies, 23, Article No. 14. https://doi.org/10.1186/s12906-023-03837-9

  21. 21. Marik, P.E. and Bellomo, R. (2013) Stress Hyperglycemia: An Essential Survival Response! Critical Care, 17, Article No. 305. https://doi.org/10.1186/cc12514

  22. 22. McNamara, J.J., Mills, D. and Aaby, G.V. (1970) Effect of Hypertonic Glucose on Hemorrhagic Shock in Rabbits. The Annals of Thoracic Surgery, 9, 116-121. https://doi.org/10.1016/S0003-4975(10)65784-0

  23. 23. Malfitano, C., Alba Loureiro, T.C., Rodrigues, B., et al. (2010) Hyperglycaemia Protects the Heart after Myocardial Infarction: Aspects of Programmed Cell Survival and Cell Death. European Journal of Heart Failure, 12, 659-667. https://doi.org/10.1093/eurjhf/hfq053

  24. 24. Uyttenboogaart, M., Koch, M.W., Stewart, R.E., et al. (2007) Moderate Hyperglycaemia Is Associated with Favourable Outcome in Acute Lacunar Stroke. Brain, 130, 1626-1630. https://doi.org/10.1093/brain/awm087

  25. 25. Fang, Y., Zhang, S., Wu, B., et al. (2013) Hyperglycaemia in Acute Lacunar Stroke: A Chinese Hospital-Based Study. Diabetes and Vascular Disease Research, 10, 216-221. https://doi.org/10.1177/1479164112459663

  26. 26. Stegenga, M.E., Van Der Crabben, S.N., Levi, M., et al. (2006) Hyperglycemia Stimulates Coagulation, Whereas Hyperinsulinemia Impairs Fibrinolysis in Healthy Humans. Diabetes, 55, 1807-1812. https://doi.org/10.2337/db05-1543

  27. 27. Pandolfi, A., Giaccari, A., Cilli, C., et al. (2001) Acute Hyperglycemia and Acute Hyperinsulinemia Decrease Plasma Fibrinolytic Activity and Increase Plasminogen Activator Inhibitor Type 1 in the Rat. Acta Diabetologica, 38, 71-76. https://doi.org/10.1007/s005920170016

  28. 28. Denorme, F., Portier, I., Kosaka, Y., et al. (2021) Hyperglycemia Exacerbates Ischemic Stroke Outcome Independent of Platelet Glucose Uptake. Journal of Thrombosis and Haemostasis, 19, 536-546. https://doi.org/10.1111/jth.15154

  29. 29. Fabian, R. H. and Kent, T.A. (2012) Hyperglycemia Accentuates Persistent “Functional Uncoupling” of Cerebral Microvascular Nitric Oxide and Superoxide Following Focal Ischemia/Reperfusion in Rats. Translational Stroke Research, 3, 482-490. https://doi.org/10.1007/s12975-012-0210-9

  30. 30. Ferrari, F., Moretti, A. and Villa, R.F. (2022) Hyperglycemia in Acute Ischemic Stroke: Physiopathological and Therapeutic Complexity. Neural Regeneration Research, 17, 292-299. https://doi.org/10.4103/1673-5374.317959

  31. 31. Chen, H., He, Y., Chen, S., et al. (2020) Therapeutic Targets of Oxidative/Nitrosative Stress and Neuroinflammation in Ischemic Stroke: Applications for Natural Product Efficacy with Omics and Systemic Biology. Pharmacological Research, 158, Article ID: 104877. https://doi.org/10.1016/j.phrs.2020.104877

  32. 32. Tajes, M., Ill-Raga, G., Palomer, E., et al. (2013) Nitro-Oxidative Stress after Neuronal Ischemia Induces Protein Nitrotyrosination and Cell Death. Oxidative Medicine and Cellular Longevity, 2013, Article ID: 826143. https://doi.org/10.1155/2013/826143

  33. 33. Suofu, Y., Clark, J., Broderick, J., et al. (2010) Peroxynitrite Decomposition Catalyst Prevents Matrix Metalloproteinase Activation and Neurovascular Injury after Prolonged Cerebral Ischemia in Rats. Journal of Neurochemistry, 115, 1266-1276. https://doi.org/10.1111/j.1471-4159.2010.07026.x

  34. 34. Chen, H., Guan, B., Chen, S., et al. (2021) Peroxynitrite Activates NLRP3 Inflammasome and Contributes to Hemorrhagic Transformation and Poor Outcome in Ischemic Stroke with Hyperglycemia. Free Radical Biology and Medicine, 165, 171-183. https://doi.org/10.1016/j.freeradbiomed.2021.01.030

  35. 35. Guo, Y., Dong, L., Gong, A., et al. (2021) Damage to the Blood-Brain Barrier and Activation of Neuroinflammation by Focal Cerebral Ischemia under Hyperglycemic Condition. International Journal of Molecular Medicine, 48, Article No. 142. https://doi.org/10.3892/ijmm.2021.4975

  36. 36. Shukla, V., Shakya, A.K., Perez-Pinzon, M.A., et al. (2017) Cerebral Ischemic Damage in Diabetes: An Inflammatory Perspective. Journal of Neuroinflammation, 14, Article No. 21. https://doi.org/10.1186/s12974-016-0774-5

  37. 37. Dong, L.D., Ma, Y.M., Xu, J., et al. (2021) Effect of Hyperglycemia on Microglial Polarization after Cerebral Ischemia-Reperfusion Injury in Rats. Life Sciences, 279, Article ID: 119660. https://doi.org/10.1016/j.lfs.2021.119660

  38. 38. Desilles, J.P., Syvannarath, V., Ollivier, V., et al. (2017) Exacerbation of Thromboinflammation by Hyperglycemia Precipitates Cerebral Infarct Growth and Hemorrhagic Transformation. Stroke, 48, 1932-1940. https://doi.org/10.1161/STROKEAHA.117.017080

  39. 39. Wang, Y.Z., Wang, J.J., Huang, Y., et al. (2015) Tissue Acidosis Induces Neuronal Necroptosis via ASIC1a Channel Independent of Its Ionic Conduction. Elife, 4, e05682. https://doi.org/10.7554/eLife.05682

  40. 40. Wu, Q.J. and Tymianski, M. (2018) Targeting NMDA Receptors in Stroke: New Hope in Neuroprotection. Molecular Brain, 11, Article No. 15. https://doi.org/10.1186/s13041-018-0357-8

  41. 41. Li, P.A., Shuaib, A., Miyashita, H., et al. (2000) Hyperglycemia Enhances Extracellular Glutamate Accumulation in Rats Subjected to Forebrain Ischemia. Stroke, 31, 183-192. https://doi.org/10.1161/01.STR.31.1.183

  42. 42. Rehni, A.K., Nautiyal, N., Perez-Pinzon, M.A., et al. (2015) Hyperglycemia/Hypoglycemia-Induced Mitochondrial Dysfunction and Cerebral Ischemic Damage in Diabetics. Metabolic Brain Disease, 30, 437-447. https://doi.org/10.1007/s11011-014-9538-z

  43. 43. Zhu, B., Pan, Y., Jing, J., et al. (2019) Stress Hyperglycemia and Outcome of Non-Diabetic Patients after Acute Ischemic Stroke. Frontiers in Neurology, 10, Article No. 1003. https://doi.org/10.3389/fneur.2019.01003

  44. 44. Yang, B., Chen, X., Li, F., et al. (2024) Stress Hyperglycemia Increases Short-Term Mortality in Acute Ischemic Stroke Patients after Mechanical Thrombectomy. Diabetology Metabolic Syndrome, 16, Article No. 32. https://doi.org/10.1186/s13098-024-01272-5

  45. 45. Mi, D., Li, Z., Gu, H., et al. (2022) Stress Hyperglycemia Is Associated with In-Hospital Mortality in Patients with Diabetes and Acute Ischemic Stroke. CNS Neuroscience & Therapeutics, 28, 372-381. https://doi.org/10.1111/cns.13764

  46. 46. Wang, L., Cheng, Q., Hu, T., et al. (2022) Impact of Stress Hyperglycemia on Early Neurological Deterioration in Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. Frontiers in Neurology, 13, Article ID: 870872. https://doi.org/10.3389/fneur.2022.870872

  47. 47. Dai, Z., Cao, H., Wang, F., et al. (2023) Impacts of Stress Hyperglycemia Ratio on Early Neurological Deterioration and Functional Outcome after Endovascular Treatment in Patients with Acute Ischemic Stroke. Frontiers in Endocrinology (Lausanne), 14, Article ID: 1094353. https://doi.org/10.3389/fendo.2023.1094353

  48. 48. Tao, J., Hu, Z., Lou, F., et al. (2022) Higher Stress Hyperglycemia Ratio Is Associated with a Higher Risk of Stroke-Associated Pneumonia. Frontiers in Nutrition, 9, Article ID: 784114. https://doi.org/10.3389/fnut.2022.784114

  49. 49. Ngiam, J.N., Cheong, C.W.S., Leow, A.S.T., et al. (2022) Stress Hyperglycaemia Is Associated with Poor Functional Outcomes in Patients with Acute Ischaemic Stroke after Intravenous Thrombolysis. QJM, 115, 7-11. https://doi.org/10.1093/qjmed/hcaa253

  50. 50. Cerecedo-Lopez, C.D., Cantu-Aldana, A., Patel, N.J., et al. (2020) Insulin in the Management of Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. World Neurosurgery, 136, E514-E534. https://doi.org/10.1016/j.wneu.2020.01.056

  51. 51. Gray, C.S., Hildreth, A.J., Sandercock, P.A., et al. (2007) Glucose-Potassium-Insulin Infusions in the Management of Post-Stroke Hyperglycaemia: The UK Glucose Insulin in Stroke Trial (GIST-UK). The Lancet Neurology, 6, 397-406. https://doi.org/10.1016/S1474-4422(07)70080-7

  52. 52. Johnston, K.C., Bruno, A., Pauls, Q., et al. (2019) Intensive vs Standard Treatment of Hyperglycemia and Functional Outcome in Patients with Acute Ischemic Stroke: The SHINE Randomized Clinical Trial. JAMA, 322, 326-335. https://doi.org/10.1001/jama.2019.9346

  53. 53. Gentile, N.T., Rao, A.K., Reimer, H., et al. (2021) Coagulation Markers and Functional Outcome in Acute Ischemic Stroke: Impact of Intensive versus Standard Hyperglycemia Control. Research and Practice in Thrombosis and Haemostasis, 5, E12563. https://doi.org/10.1002/rth2.12563

  54. NOTES

    *通讯作者。

期刊菜单