Advances in Clinical Medicine
Vol. 13  No. 04 ( 2023 ), Article ID: 64742 , 9 pages
10.12677/ACM.2023.134940

腹主动脉瘤腔内治疗的研究进展

方圣1,2,吴学君2,3*

1山东大学齐鲁医学院,山东 济南

2山东大学附属山东省立医院血管外科,山东 济南

3山东第一医科大学附属山东省立医院血管外科,山东 济南

收稿日期:2023年3月26日;录用日期:2023年4月21日;发布日期:2023年4月28日

摘要

腹主动脉瘤(AAA)是血管外科常见的一种动脉退行性疾病,具有发病率较低、破裂后病死率极高的特点,严重威胁了人类的生命健康安全。随着血管腔内技术的发展,腔内修复术(EVAR)逐渐取代开放手术成为AAA的一线治疗手段。近年来,腹主动脉瘤发病率不断增加,EVAR手术数量也逐年增加,随之各类新型手术技术和手术器械快速发展,诸多解剖条件复杂的AAA也可以采用腔内技术进行诊治,大大拓宽了AAA腔内治疗的适应证,使EVAR未来拥有更为广阔的应用前景。本文就腹主动脉瘤腔内治疗的研究进展进行综述。

关键词

腹主动脉瘤,腔内治疗,腔内修复术,进展

Research Progress of Endovascular Treatment for Abdominal Aortic Aneurysm

Sheng Fang1,2, Xuejun Wu2,3*

1Cheeloo College of Medicine, Shandong University, Jinan Shandong

2Department of Vascular Surgery, Shandong Provincial Hospital, Shandong University, Jinan Shandong

3Department of Vascular Surgery, Shandong Provincial Hospital, Shandong First Medical University, Jinan Shandong

Received: Mar. 26th, 2023; accepted: Apr. 21st, 2023; published: Apr. 28th, 2023

ABSTRACT

Abdominal aortic aneurysm (AAA) is a common degenerative arterial disease in vascular surgery, characterized by low morbidity and extremely high morbidity and mortality after rupture, which seriously threatens the life and health safety of human beings. With the development of endovascular technology, endovascular abdominal aortic repair (EVAR) has gradually replaced open surgery as the first-line treatment for AAA. In recent years, the incidence of the abdominal aortic aneurysm has been increasing, and the number of EVAR procedures has been growing yearly. With the rapid development of various new surgical techniques and equipment, many AAAs with complex anatomical conditions can also be treated by endovascular therapy, which greatly broadens the indications for endovascular treatment of AAA and gives EVAR a broader application prospect in the future. In this paper, we review the progress of endovascular treatment of abdominal aortic aneurysms.

Keywords:Abdominal Aortic Aneurysms, Endovascular Therapy, Endovascular Repair, Progress

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 腹主动脉瘤及其治疗概况

腹主动脉瘤(Abdominal aortic aneurysm, AAA)是血管外科常见的一种动脉退行性疾病,可以发生在主动脉任何节段,尤以肾下部位最常见 [1] 。其定义为:腹主动脉局部出现不可逆的病理性扩张,扩张的腹主动脉超过其邻近正常管径的50%或最大直径 ≥ 3 cm [2] 。AAA的发病机制复杂,目前尚不完全清楚,其主要的病理改变包括慢性炎症反应、主动脉中膜平滑肌细胞丢失、细胞外基质和弹力纤维降解等,由此导致主动脉结构退化,管壁变薄和管腔扩张,最终形成腹主动脉瘤 [3] 。AAA的发生与发展是多因素共同作用的结果,其主要的危险因素包括年龄超过65岁、男性和吸烟习惯 [4] 。此外动脉硬化、高血压、高血脂、肥胖、家族史等亦与AAA密切相关 [5] [6] 。在发达国家,65岁以上男性的AAA的患病率约为4-8%,近年来下降至1%~2%,男性的患病率高于女性,约为女性的4~6倍;而在发展中国家,AAA的总患病率逐年增加 [7] [8] 。国内尚无相关流行病学资料,但随着人口老龄化日益加重,吸烟者数量的增加,以及各种影像检查的应用和临床认识水平的提高,近年来我国AAA的检出率亦逐年增长 [9] 。AAA起病隐匿,大部分患者起初并无明显症状,随着主动脉的不断扩张,瘤体不断增大,其破裂的风险也逐渐增加,一旦瘤体破裂,立即引起失血性休克,及时的抢救性手术虽然在一定程度上可以提高患者的存活率,但大多数患者尚未到达手术室就已死亡,腹主动脉瘤破裂的总死亡率可达到80%以上 [10] 。据统计,在西方国家,65岁以上男性因腹主动脉瘤破裂导致的死亡约占1%~2% [11] ;AAA目前已成为美国国民第14大死亡原因 [12] 。

防止瘤体发生破裂是AAA治疗的主要目的。对于直径较小的AAA,目前临床上尚无能够有效抑制瘤体进展的药物,各指南推荐的药物治疗更多是基于控制AAA危险因素,目前主要采取定期随访以及超声检查监测瘤体直径变化的管理方案。当AAA患者出现以下情况:瘤体最大直径男性 ≥ 5.5 cm,女性 ≥ 5.0 cm;患者动脉瘤直径短期内迅速增加(>5 mm/6个月);患者出现持续性的腰腹部症状;或引起远端动脉栓塞时;则需要进行手术干预防止AAA发生破裂 [13] 。目前主要的手术方式包括开放手术(腹主动脉瘤切除及人工血管重建术)和腹主动脉瘤腔内修复术(Endovascular abdominal aortic repair, EVAR)。开放手术创伤大,对患者的耐受性要求较高,对于高龄或有严重合并症的患者,开放手术风险较高。与开放手术相比,腔内治疗具有损伤小,围术期死亡率低,术后恢复较快等优点。近年来随着腔内技术发展和微创器材的更新换代,EVAR在世界范围内得到了越来越广泛的应用,逐渐成为大部分AAA患者的一线治疗措施。据英国国家血管登记处(National vascular registry, NVR) 2020年年度报告显示,在全年动脉瘤修复手术中EVAR占比已达61% [14] 。

2. 腹主动脉瘤腔内治疗

AAA腔内治疗的工作原理是运用覆膜支架等移植物锚定于动脉瘤近、远端的正常血管壁,充分封闭隔绝瘤腔,使得血液无法进入动脉瘤囊内,从而避免瘤体进一步扩张和破裂。1991年Parodi等 [15] 完成首例AAA腔内修复术(Endovascular aneurysm repair, EVAR),开创了腔内修复治疗AAA的新纪元,经过30余年发展,EVAR已经逐渐取代开放手术成为AAA的主要治疗手段。

2.1. 腔内治疗适应证与禁忌证

EVAR手术对于AAA直径的适应证与开放手术的原则一致,AAA直径 ≥ 5.5 cm的男性或直径 ≥ 5.0 cm的女性病人应考虑择期手术。除此之外,EVAR手术对腹主动脉瘤解剖条件还有严格的要求,行标准EVAR治疗时,AAA需在形态上满足以下要求:① 瘤颈长度和直径。近端瘤颈长度 ≥ 15 mm,瘤颈直径18~32 mm;动脉瘤远端瘤颈长度 ≥ 10mm,髂总动脉直径8~22 mm,髂外动脉直径 > 7 mm。② 瘤颈角度。近端瘤颈成角 < 60˚。③ 瘤颈形态。近端瘤颈形态规则,无严重钙化和大面积附壁血栓;髂、股动脉无高度扭曲或弥散狭窄 [16] 。原则上来说,AAA近端瘤颈长度小于15 mm、远端瘤颈长度小于10 mm、瘤颈扭曲成角、瘤颈严重钙化、瘤颈内膜附壁血栓形成等都是腔内治疗的禁忌,但随着手术经验的积累、手术技巧的提高以及支架类型的丰富和改进,EVAR手术对瘤颈条件的要求也有所降低。解剖条件复杂的瘤颈虽已不是EAVR手术的绝对禁忌,但会增加手术难度以及术后并发症的发生率。

2.2. 腔内修复术并发症

2.2.1. 内漏

内漏是指EVAR术后瘤腔与覆膜支架之间存在持续性血流,是EVAR术后最常见的并发症,也是影响患者远期疗效和造成二次干预的重要因素。内漏的整体发病率各研究报道不一,OVER (open versus endovascular repair)试验的数据显示EVAR术后总体内漏发病率为30.5% [17] 。根据持续性血流进入瘤腔的不同途径,一般将内漏分为以下5型 [18] [19] [20] 。I型内漏:指血液持续从移植物的近端或远端与动脉壁之间的缝隙流入瘤腔内。II型内漏:又名“返流性”内漏,指持续性血流经通畅侧支血管,如腰动脉、肠系膜下动脉、髂内动脉等逆流进入瘤腔。III型内漏:由于支架组件间连接不良或错位导致的内漏。IV型内漏:血流通过移植物孔隙渗入瘤腔内。V型内漏:又称为内张力,指EVAR术后瘤腔内压力增高,瘤腔持续扩大,但未见明显造影剂外渗 [21] 。对于来自支架近端的Ia型内漏及支架连接部的III型内漏,一经发现须即刻处理,可以采用支架内球囊扩张或放置Cuff 支架阻断内漏血流。而对于II、IV、V型内漏,若未引起瘤体明显增大,则定期随访即可;若随访过程中发现瘤体增大,则应该给予积极处理。

2.2.2. 髂支闭塞

髂支闭塞也是EVAR术后再干预的一大原因,EVAR术后患者髂支闭塞的发生率约为2.7%~5.5%,其中大约一半的患者伴随有急性下肢缺血症状 [22] [23] ,若未及时诊治甚至会导致肢体缺血坏死、截肢等严重后果。髂支闭塞的危险因素主要可分为两类,其一为解剖相关因素,如髂动脉直径较小、髂动脉扭曲及髂动脉钙化等 [24] [25] 。第二类因素则与支架放置相关,如植入的髂支直径过大或髂支末端位于髂外动脉 [26] [27] 。髂支闭塞可通过腔内或开放手术进行治疗,由于髂支闭塞并不罕见且后果严重,及时处理髂支闭塞对于减少远端肢体缺血并改善患者的预后尤为重要。

2.2.3. 脊髓缺血

脊髓缺血(Spinal cord ischemia, SCI)是EVAR术后灾难性并发症,其发生机制是侧支供血网络未能重建,难以维持脊髓血供;或主动脉斑块进入脊髓血管栓塞节段血管。主动脉支架覆盖长度、脊髓侧支循环系统受损、肾功能不全、围手术期低血压等均是术后发生脊髓缺血的危险因素。现有研究发现EVAR术后SCI的发病率约为0.21%~0.38% [28] [29] [30] 。虽然术后SCI的发生较为罕见,但往往导致不可逆性神经功能受损,这将对患者及社会造成沉重的负担。脊髓缺血症状一旦出现,脑脊液引流是最好的治疗措施,及时缓解脊髓缺血能有效避免出现灾难性后果。

2.2.4. 支架相关并发症

EVAR术后支架相关的并发症包括支架移位、支架打折以及移植物感染等。支架移位可发生于术后任何时间,支架从初始固定位置移位超过10 mm则可定义为支架移位 [31] 。支架打折主要与近端瘤颈角度过大或支架型号选择过大有关,术前仔细解剖学评估可有效避免此类情况出现。EVAR术后支架移植物感染较为少见,其发生率约为0.3%~3.6% [23] ,但其致残、致死率极高(25%~50%) [32] 。其根治性治疗主要包括支架移植物移除、感染组织的清创以及血运重建,同时还需要给予系统性抗感染治疗。

2.3. 腔内修复术的疗效

随着EVAR逐渐取代开放手术成为AAA的首选手术方式,其临床疗效收到广泛关注,国内外大量的随机对照试验证实,与开放手术相比,施行EVAR的AAA患者有着明显的早期疗效优势,如在围手术期死亡率及并发症发生率、术中失血、ICU住院时间及总住院时间方面EVAR均要优于开放手术 [33] [34] [35] 。而随着随访时间的延长,研究发现,接受EVAR治疗的患者,在随访晚期其动脉瘤相关死亡率和总死亡率高于开放修补术的患者,但在整个随访过程中,两组之间的平均总死亡率和动脉瘤相关死亡率没有显著差异 [35] [36] [37] [38] 。且接受EVAR治疗的患者,其晚期并发症的发生率和再干预率都要高于开放手术的患者,EVAR术后再干预通常与内漏的发生有关 [39] 。因此对于EVAR术后患者,定期随访和瘤体监测显得尤为重要。

3. 腹主动脉瘤腔内治疗的进展

EVAR具有创伤性小、手术时间短、术后并发症少,但仍存在一定的局限性。对于瘤颈解剖条件差或累及重要内脏动脉分支的复杂腹主动脉瘤(Complex abdominal aortic aneurysm, cAAA),常规的EVAR并不适用,标准支架移植物不能有效隔绝瘤腔。一般而言,cAAA包括近肾腹主动脉瘤(Juxtarenal abdominal aortic aneurysm, JRAAA)、肾旁腹主动脉瘤(Pararenal abdominal aortic aneurysm,PRAAA)和肾上腹主动脉瘤(Suprarenal abdominal aortic aneurysm, SRAAA) [40] 。既往对于这部分病人多选择开放手术治疗,但其创伤大,麻醉风险高,围术期严重并发症发生率高。近年来,随着血管腔内技术的迅速发展和器材创新,许多新技术如平行支架技术、开窗支架技术和分支支架技术应用于cAAA的腔内治疗,在隔绝动脉瘤的同时亦能重建重要的分支动脉,将EVAR的适用范围覆盖到更为广泛的患者群体。

3.1. 平行支架技术

平行支架技术是指在EVAR治疗中,由于近端锚定不足,主体覆膜支架必须在覆盖重要内脏动脉以上水平释放时,为保障分支动脉的血供,在支架主体与主动脉管壁之间,植入1枚或数枚与主体支架平行走行的裸支架或覆膜支架,且平行支架远端延伸至相应内脏动脉内以维持血供。根据支架的开口位置、平行支架和主体支架的位置关系以及其内血流方向的不同,平行支架技术大致可分为烟囱技术、三明治技术和潜望镜技术。烟囱技术常被用于治疗累及1~2条分支动脉的AAA,其中以重建肾动脉最为常见。三明治技术则是由烟囱技术改良而来,在EVAR中常被用于远端髂内、外动脉重建。潜望镜技术一般用于延长远端锚定区,其原理上与烟囱技术相似,但是通过远端平行支架的反向血流给目标分支动脉供血 [41] 。平行支架技术不需要特殊定制支架,可选择已有的支架系统。该术式支架选择性较大、操作相对简单、入路血管要求低,但由于技术本身原因,平行支架、主体支架与主动脉壁之间难免存在空隙,增加了Ⅰ型内漏的发生风险,因此大多用于解剖学关系复杂的急症病例。

3.2. 开窗支架技术

开窗支架技术是指通过在主体支架的覆膜上制造开口以保留目标分支动脉的血供。该技术相较于平行支架技术,内漏发生率较低,而靶血管通畅率较高。自Browne等 [42] 于1999年首次报道应用开窗支架治疗AAA以来,该技术逐渐成为cAAA腔内治疗的主流方法。开窗技术的适应证包括短瘤颈AAA (4~14 mm)、JRAAA及PRAAA。但开窗支架技术对主动脉病变的解剖条件要求较高,并非所有CAAA都适合开窗技术,如果主动脉严重迂曲,则内脏动脉开口与主体支架开窗对位十分困难。且开窗技术对入路的要求更高,需要直径更大、更健康的血管入路。目前,国内应用的定制开窗支架只有美国Cook公司的Zenith支架系统,但支架系统定制时间长,且最多只能开两个窗和单一直径的开槽设计特点限制了其应用范围,2/3的cAAA患者并不适合该支架。除定制支架以外,对现有主动脉覆膜支架进行人为改造,如术中对主体支架覆膜行原位开窗或预开窗也是目前临床上被广泛采用的方法,此方法能弥补了定制支架的不足,使开窗技术的适用范围得到极大扩展。但原位开窗、预开窗等支架改造在一定程度上破坏了主动脉覆膜支架的完整性,属于器材的超适应证应用,不仅在技术上极具挑战性,同时也难以形成固定模式及被广泛认可的术式,目前国内只有数量有限的大型血管外科中心有能力开展,该技术的远期疗效和安全性还需要更多数据的支持。

3.3. 分支支架技术

分支支架技术是指通过在主体覆膜支架上编织额外的小覆膜支架,术中通过超选分支血管,达到使用分支支架重建目标分支动脉血供的目的。与开窗技术不同,分支支架要求 瘤腔内有较足够的空间以容纳支架主体及其分支,并能够使分支支架完全展开,一般适用于胸腹主动脉瘤的治疗。按照其设计特点,分支支架可分为外分支支架、内嵌式分支支架以及内嵌与外分支支架结合的混合分支支架。外分支支架需要较大的瘤腔提供一定的空间,而内嵌式分支支架则可在空间较小的情况下实施,但内嵌分支过多时也可能会影响主体支架内的血流情况。目前腔内治疗cAAA的分支支架系统主要有以t-Branch [43] (美国Cook公司)、TAMBE [44] (美国Gore公司)为代表的外分支系统;E-nside [45] (德国Jotec公司)为代表的内嵌分支系统;以及G-branch [46] (深圳先健公司)为代表的混合分支系统。T-branch支架目前已在国外开展应用,其他的分支支架系统多处于临床试验性应用阶段。分支支架适用于支架贴壁欠佳的主动脉区域,对于累及腹腔干、肠系膜上动脉和肾动脉的cAAA,能有效地解决受累分支动脉的血供问题,故而一般用于病变累及范围更大的胸腹主动脉瘤。同时,使用该技术也意味着支架将覆盖较大范围的主动脉节段,理论上有更高的脊髓缺血风险。目前上述多分支支架,国内大多还无法应用,有经验的医师可以通过自制分支支架治疗cAAA,但由此带来的伦理及法理问题应引起临床医生的高度重视。

4. 其他新技术辅助EVAR治疗

4.1. 影像融合技术辅助EVAR治疗

对于累及重要内脏动脉的复杂腹主动脉瘤,EVAR术中内脏动脉的重建是手术成功与否的关键。常规EVAR术中仅是以二维图像为参考,需要反复多角度造影,确认准确的分支动脉开口,手术时间长,碘对比剂用量大,大大增加了患者肾代谢负担。术中定位不准确使支架释放位置发生偏差,还会增加术后内漏、支架移位等问题的风险。近年随着医学影像技术的飞速发展,三维立体影像在血管介入领域得到广泛应用 [47] 。影像融合技术是将2个或多个来源的影像信息相融合,从而获取更为准确、全面、可靠的图像描述。目前通常将术前患者主动脉CTA图像导入血管造影系统,再与术中DSA造影二维图像透视合并,从而实现了融合图像在术中的实时显示。融合影像为手术操作者提供了导丝、导管在血管管腔内的实时导航,能够准确指导手术操作,充分减少手术时间和造影剂使用量。通过结合术前MRA影像与术中应用CO2造影,在影像融合技术的辅助下甚至能够完成零造影剂EVAR治疗 [48] [49] ,这给伴有严重肾功能不全、碘造影剂过敏的AAA患者带来了腔内治疗的可能。

4.2. 3D打印技术辅助EVAR治疗

3D打印技术能够以数字模型数据为基础,快速制作具有复杂内部结构的产品。3D打印和医学、影像学的跨学科合作,为血管外科复杂腔内手术带来了更多可能 [50] 。关于EVAR术前动脉瘤相关形态学的测量评估,目前大多血管外科医师选择的是通过患者主动脉CTA三维重建图像获取数据,但由于技术原因,CTA三维重建图像本就一定的误差,这种误差与主动脉在矢状位的扭曲和倾斜有关。而3D打印技术可以个体化三维重建生成立体的、精确的腹主动脉瘤解剖物理模型,有助于我们更全面地了解病变血管的形态,观察入路血管、分支血管和瘤体本身情况,精确测量瘤颈长度、直径和成角等重要数据。极大地方便了术前手术方案选择、支架设计,并且有助于医患间的沟通。近年来,国内外已有多个血管中心报道,应用3D打印技术术前重建动脉瘤模型,准确指导EVAR手术治疗,并取得了良好效果 [51] [52] [53] 。3D打印技术在血管腔内治疗领域前景广阔。

5. 总结与展望

随着近年来人口老龄化逐渐地加重,我国AAA的发病率也在逐年升高,目前我国AAA患者人数在全球位于前列。近三十年来,随着血管腔内技术的不断发展,凭借其更低的围手术期病死率和并发症发生率,EVAR逐渐取代开放手术成为AAA的一线治疗手段,使AAA的外科治疗进入了腔内时代。对于cAAA的腔内治疗,要根据每位患者的具体情况,术前对瘤体精确测量,充分规划手术路径,了解不同类型支架移植物的特点并选择最合适的支架装置,做到手术指征规范化和术中操作规范化才能取得良好的效果。然而,EVAR远期并发症的发生和处理仍是一大挑战,且EVAR在部分特殊解剖结构的cAAA治疗中仍存在一定的制约,目前EVAR尚不能完全取代开放手术,二者还将并存且互相补充。所以现阶段,临床血管外科医师既要努力提高腔内技术,同时更不能丢弃传统开放手术治疗,只有同时掌握两种方法才能为患者带来最大的收益。

总而言之,科技进步始终是推动临床医学发展的原动力,AAA 的治疗必将随着科学技术的快速发展而飞速进步。我相信,随着技术的迭代发展,在未来的腔内治疗中,将有可能进一步改进开窗、外分支和嵌入式分支架等技术,简化操作流程,缩短学习曲线。通过对合金金属和覆膜材料的改进,提高材料的耐磨性的同时增强支架整体的柔韧性和支撑性,使其能够更好地适应过度弯曲的瘤颈,同时也能够有效减少和避免内漏的发生。在不久的将来,希望能够通过创伤更小、操作更简便、远期预后更良好的腔内技术更为完美地解决各类复杂腹主动脉瘤。

文章引用

方 圣,吴学君. 腹主动脉瘤腔内治疗的研究进展
Research Progress of Endovascular Treatment for Abdominal Aortic Aneurysm[J]. 临床医学进展, 2023, 13(04): 6722-6730. https://doi.org/10.12677/ACM.2023.134940

参考文献

  1. 1. Kuivaniemi, H. and Elmore, J.R. (2012) Opportunities in Abdominal Aortic Aneurysm Research: Epidemiology, Genet-ics, and Pathophysiology. Annals of Vascular Surgery, 26, 862-870. https://doi.org/10.1016/j.avsg.2012.02.005

  2. 2. Kumar, Y., Hooda, K., Li, S., et al. (2017) Abdominal Aortic An-eurysm: Pictorial Review of Common Appearances and Complications. Annals of Translational Medicine, 5, 256. https://doi.org/10.21037/atm.2017.04.32

  3. 3. Golledge, J. (2019) Abdominal Aortic Aneurysm: Update on Patho-genesis and Medical Treatments. Nature Reviews Cardiology, 16, 225-242. https://doi.org/10.1038/s41569-018-0114-9

  4. 4. Altobelli, E., Rapacchietta, L., Profeta, V.F., et al. (2018) Risk Factors for Abdominal Aortic Aneurysm in Population-Based Studies: A Systematic Review and Meta-Analysis. Inter-national Journal of Environmental Research and Public Health, 15, 2805. https://doi.org/10.20944/preprints201810.0636.v1

  5. 5. Jahangir, E., Lipworth, L., Edwards, T.L., et al. (2015) Smoking, Sex, Risk Factors and Abdominal Aortic Aneurysms: A Prospective Study of 18,782 Persons Aged above 65 Years in the Southern Community Cohort Study. Journal of Epidemiology and Community Health, 69, 481-488. https://doi.org/10.1136/jech-2014-204920

  6. 6. Yao, F., Yao, Z., Zhong, T., et al. (2019) Imatinib Prevents Elas-tase-Induced Abdominal Aortic Aneurysm Progression by Regulating Macrophage-Derived MMP9. European Journal of Pharmacology, 860, Article ID: 172559. https://doi.org/10.1016/j.ejphar.2019.172559

  7. 7. Fashandi, A.Z., Spinosa, M., Salmon, M., et al. (2020) Female Mice Exhibit Abdominal Aortic Aneurysm Protection in an Established Rupture Model. Journal of Surgical Research, 247, 387-396. https://doi.org/10.1016/j.jss.2019.10.004

  8. 8. Hohneck, A., Keese, M., Ruemenapf, G., et al. (2019) Prevalence of Abdominal Aortic Aneurysm and Associated Lower Extremity Artery Aneurysm in Men Hospitalized for Suspected or Known Cardiopulmonary Disease. BMC Cardiovascular Disorders, 19, 284. https://doi.org/10.1186/s12872-019-1265-2

  9. 9. 曾庆龙, 黄连军. 腹主动脉瘤腔内治疗进展[J]. 心肺血管病杂志, 2016, 35(10): 814-816.

  10. 10. Ashton, H.A., Buxton, M.J., Day, N.E., et al. (2002) The Multicentre Aneurysm Screening Study (MASS) into the Effect of Abdominal Aortic Aneurysm Screening on Mortality in Men: A Randomised Controlled Trial. The Lancet, 360, 1531-1539. https://doi.org/10.1016/S0140-6736(02)11522-4

  11. 11. Ehlers, L., Sorensen, J., Jensen, L.G., et al. (2008) Is Population Screening for Abdominal Aortic Aneurysm Cost-Effective? BMC Cardiovascular Disorders, 8, 32. https://doi.org/10.1186/1471-2261-8-32

  12. 12. Haque, K. and Bhargava, P. (2022) Abdominal Aortic Aneurysm. American Family Physician, 106, 165-172.

  13. 13. Ullery, B.W., Hallett, R.L. and Fleisch-mann, D. (2018) Epidemiology and Contemporary Management of Abdominal Aortic Aneurysms. Abdominal Radiology (NY), 43, 1032-1043. https://doi.org/10.1007/s00261-017-1450-7

  14. 14. Mahase, E. (2020) National Registry Will Record Patient Outcomes from Devices Implanted during Vascular Surgery. BMJ, 370, m2981. https://doi.org/10.1136/bmj.m2981

  15. 15. Parodi, J.C., Palmaz, J.C. and Barone, H.D. (1991) Transfemoral Intralu-minal Graft Implantation for Abdominal Aortic Aneurysms. Annals of Vascular Surgery, 5, 491-499. https://doi.org/10.1007/BF02015271

  16. 16. Schanzer, A., Greenberg, R.K., Hevelone, N., et al. (2011) Predictors of Abdominal Aortic Aneurysm Sac Enlargement after Endovascular Repair. Circulation, 123, 2848-2855. https://doi.org/10.1161/CIRCULATIONAHA.110.014902

  17. 17. Lederle, F.A., Freischlag, J.A., Kyriakides, T.C., et al. (2009) Outcomes Following Endovascular vs Open Repair of Abdominal Aortic Aneurysm: A Randomized Trial. JAMA, 302, 1535-1542. https://doi.org/10.1001/jama.2009.1426

  18. 18. Gilling-Smith, G., Brennan, J., Harris, P., et al. (1999) Endotension after Endovascular Aneurysm Repair: Definition, Classification, and Strategies for Surveillance and Intervention. Journal of Endovascular Therapy, 6, 305-307. https://doi.org/10.1177/152660289900600401

  19. 19. Veith, F.J., Baum, R.A., Ohki, T., et al. (2002) Nature and Significance of Endoleaks and Endotension: Summary of Opinions Expressed at an International Conference. Journal of Vascular Surgery, 35, 1029-1035. https://doi.org/10.1201/b14094

  20. 20. van Marrewijk, C., Buth, J., Harris, P.L., et al. (2002) Significance of Endo-leaks after Endovascular Repair of Abdominal Aortic Aneurysms: The EUROSTAR Experience. Journal of Vascular Surgery, 35, 461-473. https://doi.org/10.1067/mva.2002.118823

  21. 21. Lin, P.H., Bush, R.L., Katzman, J.B., et al. (2003) Delayed Aortic Aneurysm Enlargement Due to Endotension after Endovascular Abdominal Aortic Aneurysm Repair. Journal of Vascu-lar Surgery, 38, 840-842. https://doi.org/10.1016/S0741-5214(03)00468-3

  22. 22. Fransen, G.A., Desgranges, P., Laheij, R.J., et al. (2003) Frequency, Predictive Factors, and Consequences of Stent-Graft Kink Following Endovascular AAA Repair. Journal of Endovascular Therapy, 10, 913-918. https://doi.org/10.1177/152660280301000511

  23. 23. de la Motte, L., Falkenberg, M., Koelemay, M.J., et al. (2018) Is EVAR a Durable Solution? Indications for Reinterventions. The Journal of Cardiovascular Surgery (Torino), 59, 201-212. https://doi.org/10.23736/S0021-9509.18.10388-0

  24. 24. O’Neill, S., Collins, A. and Harkin, D. (2012) Limb Occlu-sion after Endovascular Repair of an Abdominal Aortic Aneurysm: Beware the Narrow Distal Aorta. Irish Journal of Medical Science, 181, 373-376. https://doi.org/10.1007/s11845-010-0464-8

  25. 25. Kehagias, E., Kontopodis, N., Tsetis, D., et al. (2015) Bifurcated Aortoiliac Endograft Limb Occlusion during Deployment and Its Bailout Conversion Using the External Iliac Artery to Internal Iliac Artery Endograft Technique. Annals of Vascular Surgery, 29, 1029-1034. https://doi.org/10.1016/j.avsg.2015.01.026

  26. 26. Wu, M.S. and Boyle, J.R. (2012) Strategies That Minimize the Risk of Iliac Limb Occlusion after EVAR. Journal of Endovascular Therapy, 19, 86-87. https://doi.org/10.1583/11-3550C.1

  27. 27. Moulakakis, K.G., Antonopoulos, C.N., Klonaris, C., et al. (2018) Bilat-eral Endograft Limb Occlusion after Endovascular Aortic Repair: Predictive Factors of Occurrence. Annals of Vascular Surgery, 46, 299-306. https://doi.org/10.1016/j.avsg.2017.07.019

  28. 28. Berg, P., Kaufmann, D., van Marrewijk, C.J., et al. (2001) Spinal Cord Ischaemia after Stent-Graft Treatment for Infra-Renal Abdominal Aortic Aneurysms. Analysis of the Eurostar Da-tabase. European Journal of Vascular and Endovascular Surgery, 22, 342-347. https://doi.org/10.1053/ejvs.2001.1470

  29. 29. Feezor, R.J., Huber, T.S., Martin, T.D., et al. (2007) Perioperative Differences between Endovascular Repair of Thoracic and Abdominal Aortic Diseases. Journal of Vascular Surgery, 45, 86-89. https://doi.org/10.1016/j.jvs.2006.09.012

  30. 30. Freyrie, A., Testi, G., Gargiulo, M., et al. (2011) Spinal Cord Is-chemia after Endovascular Treatment of Infrarenal Aortic Aneurysm. Case Report and Literature Review. The Journal of Cardiovascular Surgery (Torino), 52, 731-734.

  31. 31. Wisselink, W., Cuesta, M.A., Berends, F.J., et al. (2000) Retro-peritoneal Endoscopic Ligation of Lumbar and Inferior Mesenteric Arteries as a Treatment of Persistent Endoleak after Endoluminal Aortic Aneurysm Repair. Journal of Vascular Surgery, 31, 1240-1244. https://doi.org/10.1067/mva.2000.105007

  32. 32. Daye, D. and Walker, T.G. (2018) Complications of Endovascular Aneurysm Repair of the Thoracic and Abdominal Aorta: Evaluation and Management. Cardiovascular Diagnosis and Therapy, 8, S138-S156. https://doi.org/10.21037/cdt.2017.09.17

  33. 33. Lovegrove, R.E., Javid, M., Magee, T.R., et al. (2008) A Me-ta-Analysis of 21,178 Patients Undergoing Open or Endovascular Repair of Abdominal Aortic Aneurysm. British Jour-nal of Surgery, 95, 677-684. https://doi.org/10.1002/bjs.6240

  34. 34. Prinssen, M., Verhoeven, E.L., Buth, J., et al. (2004) A Randomized Trial Comparing Conventional and Endovascular Repair of Abdominal Aortic Aneurysms. The New England Journal of Med-icine, 351, 1607-1618. https://doi.org/10.1056/NEJMoa042002

  35. 35. Lederle, F.A., Freischlag, J.A., Kyriakides, T.C., et al. (2012) Long-Term Comparison of Endovascular and Open Repair of Abdominal Aortic Aneurysm. The New England Journal of Medicine, 367, 1988-1997. https://doi.org/10.1056/NEJMoa1207481

  36. 36. Paravastu, S.C., Jayarajasingam, R., Cottam, R., et al. (2014) Endo-vascular Repair of Abdominal Aortic Aneurysm. Cochrane Database of Systematic Reviews, No. 1, CD004178. https://doi.org/10.1002/14651858.CD004178.pub2

  37. 37. Bae, M., Chung, S.W., Lee, C.W., et al. (2017) A Com-parative Study of Abdominal Aortic Aneurysm: Endovascular Aneurysm Repair versus Open Repair. Korean Journal of Thoracic and Cardiovascular Surgery, 50, 263-269. https://doi.org/10.5090/kjtcs.2017.50.4.263

  38. 38. Chiu, P., Goldstone, A.B., Schaffer, J.M., et al. (2019) Endovas-cular versus Open Repair of Intact Descending Thoracic Aortic Aneurysms. JACC: Journal of the American College of Cardiology, 73, 643-651. https://doi.org/10.1016/j.jacc.2018.10.086

  39. 39. United Kingdom E.T.I., Greenhalgh, R.M., Brown, L.C., et al. (2010) Endovascular versus Open Repair of Abdominal Aortic Aneurysm. The New England Journal of Medicine, 362, 1863-1871. https://doi.org/10.1056/NEJMoa0909305

  40. 40. Wanhainen, A., Verzini, F., Van Herzeele, I., et al. (2019) Editor’s Choice—European Society for Vascular Surgery (ESVS) 2019 Clinical Practice Guidelines on the Man-agement of Abdominal Aorto-Iliac Artery Aneurysms. European Journal of Vascular and Endovascular Surgery, 57, 8-93. https://doi.org/10.1016/j.ejvs.2020.09.004

  41. 41. Zoethout, A.C., Sheriff, A., Zeebregts, C.J., et al. (2021) Mi-gration after Endovasclar Aneurysm Sealing in Conjunction with Chimney Grafts. Journal of Endovascular Therapy, 28, 165-172. https://doi.org/10.1177/1526602820957279

  42. 42. Browne, T.F., Hartley, D., Purchas, S., et al. (1999) A Fenestrated Covered Suprarenal Aortic Stent. European Journal of Vascular and Endovascular Surgery, 18, 445-449. https://doi.org/10.1053/ejvs.1999.0924

  43. 43. Eleshra, A., Hatm, M., Spanos, K., et al. (2022) Early Outcomes of t-Branch Off-the-Shelf Multibranched Stent Graft in Urgent and Emergent Repair of Thoracoabdominal Aortic Aneu-rysms. Journal of Vascular Surgery, 75, 416-424.e412. https://doi.org/10.1016/j.jvs.2021.07.237

  44. 44. Oderich, G.S., Farber, M.A., Silveira, P.G., et al. (2019) Technical Aspects and 30-Day Outcomes of the Prospective Early Feasibility Study of the GORE EXCLUDER Thoracoabdominal Branched Endoprosthesis (TAMBE) to Treat Pararenal and Extent IV Thoracoabdominal Aortic Aneurysms. Journal of Vascular Surgery, 70, 358-368.e356. https://doi.org/10.1016/j.jvs.2018.10.103

  45. 45. Zimmermann, A., Menges, A.L., Rancic, Z., et al. (2022) E-nside Off-the-Shelf Inner Branch Stent Graft: Technical Aspects of Planning and Implantation. Journal of Endovascular Ther-apy, 29, 167-174. https://doi.org/10.1177/15266028211047967

  46. 46. Ge, Y., Zhang, H., Rong, D., et al. (2022) Protocol for GUo’s Renovisceral Artery Reconstruction-1: A Prospective, Multicentre, Single-Arm Clinical Trial to Evaluate the Safety and Efficacy of a Multibranched Stent Graft System for Thoracoabdominal Aortic Aneurysm (Guarantee Study). BMJ Open, 12, e059401. https://doi.org/10.1136/bmjopen-2021-059401

  47. 47. Schwein, A., Chinnadurai, P., Behler, G., et al. (2018) Com-puted Tomography Angiography-Fluoroscopy Image Fusion Allows Visceral Vessel Cannulation without Angiography during Fenestrated Endovascular Aneurysm Repair. Journal of Vascular Surgery, 68, 2-11. https://doi.org/10.1016/j.jvs.2017.11.062

  48. 48. Koutouzi, G., Henrikson, O., Roos, H., et al. (2015) EVAR Guided by 3D Image Fusion and CO2 DSA: A New Imaging Combination for Patients with Renal Insufficiency. Journal of Endovascular Therapy, 22, 912-917. https://doi.org/10.1177/1526602815605468

  49. 49. Bisdas, T. and Koutsias, S. (2019) Carbon Dioxide as a Standard of Care for Zero Contrast Interventions: When, Why and How? Current Pharmaceutical Design, 25, 4662-4666. https://doi.org/10.2174/1381612825666191129093823

  50. 50. Sheth, R., Balesh, E.R., Zhang, Y.S., et al. (2016) Three-Dimensional Printing: An Enabling Technology for IR. Journal of Vascular and Interventional Radiology, 27, 859-865. https://doi.org/10.1016/j.jvir.2016.02.029

  51. 51. Mafeld, S., Nesbitt, C., McCaslin, J., et al. (2017) Three-Dimensional (3D) Printed Endovascular Simulation Models: A Feasibility Study. Annals of Translational Medi-cine, 5, 42. https://doi.org/10.21037/atm.2017.01.16

  52. 52. 孔祥骞, 王默, 董典宁, 等. 3D打印辅助开窗技术腔内修复治疗近肾动脉腹主动脉瘤[J]. 山东大学学报(医学版), 2016, 54(3): 91-94.

  53. 53. 杨晗, 胡明, 黄群, 等. 3D打印辅助覆膜支架修复术在复杂主动脉疾病腔内治疗中的应用[J]. 中国血管外科杂志(电子版), 2018, 10(1): 4-9.

  54. NOTES

    *通讯作者。

期刊菜单