Advances in Clinical Medicine
Vol. 13  No. 03 ( 2023 ), Article ID: 62967 , 9 pages
10.12677/ACM.2023.133629

与脑小血管病认知障碍相关的海马结构功能 耦合的研究进展

辛昊天1,2,王娜3,郭凌飞3,梁长虎1,2*

1山东大学齐鲁医学院,山东 济南

2山东省立医院医学影像科,山东 济南

3山东第一医科大学附属省立医院医学影像科,山东 济南

收稿日期:2023年2月21日;录用日期:2023年3月16日;发布日期:2023年3月23日

摘要

脑小血管病(cerebral small vessel disease, CSVD)可导致精神和认知功能障碍,海马是与精神、认知相关的大脑核心区域。海马结构和功能的损伤在CSVD患者的神经精神障碍中起到重要作用。研究表明,脑功能改变伴随着相应区域的结构变化,正常的结构–功能耦合对于大脑正常运转至关重要,而结构–功能耦合的破坏也在许多神经精神疾病中被发现。越来越多的证据表明,认知障碍与海马结构、功能破坏之间存在明显的相关性,而目前对CSVD患者海马的研究多集中在单一的结构或功能方面,海马结构–功能耦合的研究较少。因此,基于多模态磁共振成像(magnetic resonance imaging, MRI)的海马结构与功能耦合分析对于探索和阐明CSVD患者认知与精神障碍的神经生物学机制具有重要意义。本文旨在对CSVD患者海马结构和功能改变的MRI研究进行论述,特别是基于多模态MRI的海马结构和功能改变的耦合,为CSVD的发病机制研究和早期诊断提供新的视角。

关键词

脑小血管病,海马,结构磁共振成像,功能磁共振成像,结构–功能耦合

Research Progress of Coupling of Hippocampal Structure and Function Associated with Cognitive Impairment in Patients with Cerebral Small Vessel Disease

Haotian Xin1,2, Na Wang3, Lingfei Guo3, Changhu Liang1,2*

1Cheeloo College of Medicine, Shandong University, Jinan Shandong

2Department of Medical Imaging, Shandong Provincial Hospital, Jinan Shandong

3Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan Shandong

Received: Feb. 21st, 2023; accepted: Mar. 16th, 2023; published: Mar. 23rd, 2023

ABSTRACT

Cerebral small vessel disease (CSVD) can lead to mental and cognitive dysfunction, and the hippocampus is a core brain region related to psychological function and cognition. Damage to hippocampal structure and function plays an important role in neuropsychiatric disorders in patients with CSVD. Studies have shown that functional changes are accompanied by structural changes in the corresponding regions. Normal structure-function coupling is essential for the optimal brain performance, and disrupted structure-function coupling has also been found in many neuropsychiatric diseases. Emerging evidence has shown that there is a clear correlation between cognitive impairment and hippocampal structural and functional impairment. However, at present, most studies on the hippocampus of CSVD patients focus on a single structure or function aspect, and few studies on the structure-function coupling of hippocampus. Therefore, the coupling analysis of hippocampal structure and function based on multimodal magnetic resonance imaging (MRI) has potential significance in exploration and elucidation of neurobiological mechanism of cognitive and mental impairment in patients with CSVD. This article aims to discuss MRI studies on hippocampal structure and function alterations in patients with CSVD, especially the coupling of hippocampal structure and function changes based on multi-modal MRI, to provide a new perspective for the pathogenesis research and early diagnosis of CSVD.

Keywords:Cerebral Small Vessel Disease, Hippocampus, Structural Magnetic Resonance Imaging, Functional Magnetic Resonance Imaging, Structure-Function Coupling

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

脑小血管病(cerebral small vessel disease, CSVD)是多种病因造成的包括小动脉、微动脉、毛细血管和静脉等在内的颅内血管疾病的总称,是血管和脑实质结构改变引起的具有不同临床表现和神经影像学特征的综合征 [1] [2]。CSVD是影响认知和运动功能的主要疾病之一,其主要临床表现包括认知能力下降、精神障碍、痴呆、卒中、步态异常、尿失禁等,CSVD引起的中风占中风患者的20%,其中包括25%的缺血性中风和45%的痴呆 [2] [3] [4]。CSVD脑影像标志物包括近期皮质下小梗死、脑白质高信号、腔隙、脑微出血、血管周围间隙扩大和脑萎缩 [1] [2] [5]。使用先进的磁共振成像(magnetic resonance imaging, MRI)技术可以在疾病出现前检测到脑血管异常 [6]。

海马作为一种重要的解剖结构,在神经精神疾病的发病机制中具有重要意义。CSVD引起的神经精神障碍可在多方面引起海马结构和功能的损伤。已有研究在CSVD患者中观察到海马神经元的萎缩和丧失、局部脑血容量减少和海马微梗死灶 [7]。相应地,当海马结构和功能受损,特别是两者同时存在时,患者的认知、情绪和运动能力都会受到很大影响 [8] [9]。

MRI可以检测海马的结构和功能。近年来,随着MRI新技术的快速发展,学者们对CSVD引起的海马结构和功能损伤进行了大量的神经影像学研究 [10] [11]。越来越多的证据表明,功能的改变伴随着相应脑区结构的改变,并且静息状态下大脑活动的持久性和强度受到大脑结构的限制 [12]。因此,正常的结构–功能耦合对维持大脑正常活动至关重要,耦合的中断可以导致多种神经和精神疾病 [13]。因此,MRI结构与功能数据的耦合分析对于探索CSVD患者认知与精神障碍的神经生物学机制尤为重要。本文旨在对CSVD患者海马结构和功能损害的MRI研究进行论述。

2. 海马结构及功能简介

海马体位于丘脑和大脑内侧颞叶之间,是边缘系统的一部分。海马是一个复杂的异质性区域,由海马本体、齿状回、内嗅皮质和下托复合体组成,可分为13个功能和解剖学上相互连接但又截然不同的亚区 [14] [15] [16]。海马被分为CA1、CA2、CA3、CA4四个锥体细胞区。齿状回和海马均为三层皮质区,海马CA区主要是锥体细胞,而齿状回包含颗粒细胞 [17]。CA4区域与齿状回相连接,然后依次是CA3、CA2和CA1区域。

海马是学习和记忆的关键区域,有助于情景记忆的产生、长期记忆的巩固和许多其他认知能力的维持 [9]。此外,海马还具有空间导航功能 [18]。当信息进入海马时,通过齿状回流入CA3,然后通过CA1到达下托。在功能分化方面,CA1是记忆编码和形成的关键区域,CA2、3和齿状回在学习和创造中发挥重要作用 [19]。海马也是神经回路的重要组成部分。1973年,Papez提出了一个神经通路,它起源于海马,中间通过乳头体、丘脑前核和扣带回,又返回海马,形成一个封闭的回路,这个边缘回路也被称为Papez回路。Papez回路的功能在空间短期记忆和认知过程等方面都有广泛涉及 [17]。

3. CSVD与海马结构及功能损害的关系

3.1. 结构损伤及结构性MRI

CSVD对海马结构的影响主要表现为海马亚区萎缩和海马体积减小。既往研究表明,随着CSVD严重程度的增加,海马萎缩程度也随之加重。在伴有海马萎缩的CSVD患者中,下托、CA1、CA4、齿状回及分子层明显萎缩 [20]。此外,CSVD的有无及其负荷对海马萎缩的类型和严重程度有一定影响。中重度CSVD患者比轻度CSVD患者在这些亚区表现出更加明显的萎缩。CSVD导致的海马亚区萎缩与较差的情景记忆和额叶执行功能相关 [21] [22]。因此,海马萎缩也可用于预测认知障碍的进展 [23] [24]。

目前已有许多关于认知障碍患者海马结构的MRI研究。一项扩散张量成像(diffusion tension imaging, DTI)研究显示,与正常对照组相比,认知障碍患者海马的平均弥散率(mean diffusivity, MD)更高,部分各向异性指数(fractional anisotropy, FA)更低 [25]。此外,DTI评估的海马微结构完整性与老年CSVD患者的非语言记忆表现相关,因此海马微结构的改变可能是神经退行性疾病潜在的早期标志物,且发生在宏观结构改变之前 [8] [26]。一项关于CSVD患者的扩散峭度成像(diffusion kurtosis imaging, DKI)研究显示,与无认知障碍患者相比,轻度认知障碍(mild cognitive impairment, MCI)患者左海马区径向弥散率(radial diffusivity, RD)和MD显著升高,平均峭度显著降低;而且,一些DKI参数与MCI患者的临床评估评分存在相关性,这也为伴随CSVD的MCI患者的影像学评估提供了新的思路 [10]。此外,大量基于体素的形态测量学(voxel-based morphometry, VBM)研究发现,海马灰质(grey matter, GM)萎缩与CSVD患者的精神和认知障碍相关 [27] [28]。一项基于VBM的Meta分析也表明,重度抑郁症(major depressive disorder, MDD)和MCI患者存在无差别的体积减少 [29]。CSVD患者的海马GM萎缩与脑白质高信号呈负相关 [30]。除了一些众所周知的英文缩写,如IP、CPU、FDA,所有的英文缩写在文中第一次出现时都应该给出其全称。文章标题中尽量避免使用生僻的英文缩写。

3.2. 功能性损伤及功能性MRI

CSVD也会影响海马的血液供应。丰富的血供是维持脑区正常功能的决定性因素,既往研究表明海马血流量与认知功能呈正相关。海马内的血管较小,使之更容易受到CSVD病理改变的影响 [7] [31]。血液灌注的差异会导致结构完整性的差异。因此,海马长期低灌注也会影响海马的结构完整性。由于海马对缺氧和缺血非常敏感,研究表明,低灌注引起的纤毛神经营养因子(ciliary neurotrophic factor, CNTF)相关的CNTF/CNTFRα信号通路下调,与海马神经元和认知损伤密切相关,尤其是CA1区,因此海马结构–功能耦合的损伤可能对CSVD患者精神和认知能力的影响更加严重 [32]。

在海马研究中常用的功能MRI技术主要有动脉自旋标记(arterial spin labeling, ASL)、磁共振波谱(magnetic resonance spectroscopy, MRS)、定量磁化率成像(quantitative susceptibility mapping, QSM)、血氧水平依赖的功能磁共振成像(blood oxygen level-dependent contrast imaging functional MRI, BOLD-fMRI)等。有学者利用ASL技术,发现认知障碍患者海马内的脑血流量(cerebral blood flow, CBF)减少,这可能与血管内β淀粉样蛋白的沉积有关 [33]。然而,也有研究表明认知障碍患者海马CBF升高可能是由神经血管疾病引起的 [34]。MRS相关研究也表明,CSVD患者的认知能力与神经代谢物水平相关 [11],认知障碍患者海马中的γ-氨基丁酸减少 [35]。MRS技术检测生物代谢产物,可以在组织发生形态改变之前,从生化代谢的角度评估脑损伤,从而为CSVD的早期诊断和治疗提供影像学依据。此外,先前的QSM研究表明,MCI患者双侧海马区磁化率升高,铁主要沉积在双侧海马区和右侧壳核区 [36] [37] ;此外,我们的研究也表明,伴脑微出血的CSVD患者海马区的磁化率明显增加,提示海马铁沉积增加 [38]。一项基于静息态fMRI的动物实验发现,伴认知障碍的1型糖尿病大鼠双侧海马的低频振幅(low-frequency fluctuations, ALFF)和T2弛豫时间(在一定程度上可反映脑铁含量)降低,证实了1型糖尿病大鼠认知能力下降伴有海马的铁沉积 [39]。Catchlove等人也利用BOLD-fMRI技术发现,在老年人中,双侧海马的脑血管反应性与记忆能力相关,但在年轻人中没有观察到这种关系,老年人海马和扣带回的血管反应性最低 [40]。由于脑血管反应性受损可提示潜在的微血管功能障碍,这个新发现进一步表明了血管完整性对认知表现的重要性。

4. 基于结构–功能耦合的多模态MRI

众所周知,大脑的结构和功能是密切相关的。结构与功能成像的耦合已成为现代神经成像中一个日益重要的研究课题。大脑结构可以为功能机制的执行提供骨架,功能和结构信息的整合可以帮助我们更好地理解大脑信息传递的机制。脑功能的改变可能导致GM或白质(white matter, WM)的改变,反之亦然。然而,大多数研究只是孤立地探究了功能或结构改变,而神经成像技术中结构和功能信息的耦合为二者的同步探索提供了可能,这对于理解脑疾病的异常变化至关重要。明确同时存在的结构和功能缺陷的意义,可以为CSVD患者海马改变提供新的研究角度。

此外,机器学习也为MRI诊断疾病、在临床前阶段发现疾病提供了辅助。Uysal等人利用机器学习技术,通过海马体积信息成功地区分了认知障碍患者、阿尔茨海默病患者和正常受试者 [41]。Sarwar等人也通过机器学习证实了人脑中的结构–功能耦合是非常紧密的 [42]。因此,如果利用机器学习技术建立基于MRI数据的计算机辅助诊断系统,基于脑MRI数据获取结构–功能耦合信息,分析认知障碍患者的海马病变情况,可以进一步帮助临床医生诊断并预测疾病的严重程度。

4.1. 基于体素的结构–功能耦合

目前常用的基于体素的结构–功能耦合方法有两种:一种是静息态fMRI参数与GM形态参数的耦合,另一种是静息态fMRI参数与基于DTI的WM微结构参数的耦合。

关于第一种方法,Kang等人通过计算局部一致性(regional homogeneity, ReHo)与GM体积(GM volume, GMV)的比值,进行了基于体素的ReHo/VBM分析,以探索结构–功能耦合的改变及其在预测鼻咽癌患者放射性脑病中的重要性 [43]。他们发现,与放疗前组相比,放疗后组患者双侧海马及海马旁回的ReHo/VBM偶联值增加,提示ReHo/VBM可作为一种新的反映鼻咽癌患者放射性脑病改变的有效神经影像学指标。Gray等人进行了一项Meta分析,纳入了VBM和基于静息态体素的病理生理学研究(包括葡萄糖代谢、CBF、ReHo、ALFF和fALFF),以研究重度抑郁症患者的空间收敛性结构和功能异常,并发现显著收敛的区域包括左侧海马,这可能导致重度抑郁症患者常见的认知和记忆缺陷的发生 [44]。这些研究表明海马结构缺陷和功能缺陷是相互关联的,这种关联的差异表明海马的结构和功能关系发生了变化。

关于第二种方法,Tan等人结合DTI和静息态fMRI发现经典三叉神经痛患者右侧海马区的FA高,ReHo低,且ReHo和FA值与蒙特利尔认知评估量表评分呈正相关,这提示经典三叉神经痛患者的认知功能障碍与海马功能和结构障碍有明显的相关性 [45]。此外,一些研究人员利用fMRI和DTI技术提出了一种基于骨架的WM功能分析方法,该方法将fMRI信号投射到WM骨架上,实现基于体素的结构–功能耦合。精神分裂症患者包括海马在内的局部WM区域表现出基于WM骨架的ALFF (skeleton-based WM ALFF, SWALFF)增加和FA下降。精神分裂症患者FA变化和SWALFF变化之间的相关性为负相关,而健康对照组为正相关 [46]。同时,这也为结构–功能耦合可能是精神分裂症患者连通性受损的潜在机制之一这一假设提供了有力的证据。

最近,随着基于体素的耦合分析方法的发展,Hu等人提出了一种新的耦合方法,称为基于主成分的多模态耦合(principal-component-based intermodal coupling, pIMCo) [47]。该方法使用局部协方差分解来定义一个对称的、基于体素的耦合系数,该耦合系数适用于两个或多个模态参数。Hu等人利用该方法研究了CBF、ALFF和ReHo之间的耦合,表明耦合是空间异质性的,在神经发育中随年龄和性别不同而变化。这种新方法为展现两种以上模式之间的总体协方差结构提供了一个新的途径。

4.2. 脑网络结构–功能连接耦合

脑网络和图论法将大脑概念化为一个通过结构连接(structural connectivity, SC)或功能连接(functional connectivity, SC)实现大脑各区域间相互作用的网络 [48]。脑网络可以通过结构和功能的神经成像数据进行评估。CSVD可通过破坏网络中节点的完整性和节点之间的连接来影响SC和FC,从而破坏全脑网络的有效通信,导致不同程度的认知障碍。已有研究表明,基于多模态MRI的SC和FC的耦合可以检测脑网络的破坏,这比任何单一模态都更加敏感 [49]。然而,CSVD患者SC-FC脑网络在系统水平上的耦合变化尚不清楚,需要进一步研究。

研究表明,认知障碍患者海马相关的认知和情绪亚区与皮质区域之间的SC和FC发生了显著改变,在疾病早期表现为增加,这可能与代偿机制有关 [50] [51]。Filippi等发现,阿尔茨海默病和遗忘型MCI患者海马SC变化大于FC变化,提示SC降低可能先于FC变化 [52]。另有研究发现皮层下血管性MCI患者的海马亚区SC和FC明显降低,这可能与该病的认知障碍有关;而海马亚区和后扣带皮层FC增强,由于海马和后扣带回的功能交互作用与情景记忆有关,这可以解释为记忆损伤的一种补偿机制;在遗忘性MCI中,海马体下丘与颞上回颞极之间的SC增加可能与抑郁症状有关,如患者处理面部情绪的困难 [50]。这些发现表明,不同的海马亚区可能与抑郁症状、认知障碍有特定的关系。此外,另一项研究发现,包括同侧海马体在内的Papez回路有明显的GM萎缩,而且在卒中患者中,Papez回路内双侧海马体和扣带回之间的方向性FC也发生了改变 [53]。这些有效连接的改变与脑血管事件后的认知功能变化有关。这些发现使我们更好地理解血管认知障碍的潜在机制,并探索减轻认知负担的新的治疗靶点。

4.3. 结构和功能神经血管耦合

神经元活动与CBF之间的紧密耦合称为神经血管耦合(neurovascular coupling, NVC) [54]。NVC是调节脑血流的重要机制,能根据脑活动的需要及时向脑区输送氧气和营养物质,维持脑环境稳态。脑小血管在脑的自我调节中起着至关重要的作用,这主要依赖于NVC的正常运行。NVC机制的损害可导致位于脑微循环末端的小血管缺血缺氧,导致局部大脑无法对神经元信号转导作出反应,从而引起或加重小血管疾病,甚至出现认知功能障碍和痴呆。NVC因其在脑CBF自动调节中的关键作用而被广泛研究。因此,了解NVC在CSVD中的调控机制,对于预防CSVD进展,改善脑缺血和认知功能障碍具有重要意义。

越来越多的证据表明,在许多CSVD患者中都存在NVC受损。微血管损伤的增加和海马微血管数量的减少可导致血管舒张因子储备的减少,导致NVC功能受损,这与认知功能下降有关 [55]。之前的动物实验表明,脑血管功能障碍小鼠海马的血流量、氧合和NVC减少 [54] [56]。同时,在NVC受损的病理条件下,海马更容易受到缺氧损伤 [57]。研究表明,神经血管方面的结构和功能变化可能是许多病理条件下认知能力下降的基础 [58]。一些研究者采用数学动态多元模型和自回归模型,将临界闭合压力和阻力面积乘积的变化分别作为代谢和肌源性脑血管调控的选择性指标,以期从结构角度揭示NVC的机制 [59]。以往对海马NVC的研究主要集中在功能指标ALFF与CBF的耦合上,未涉及结构性NVC的内容。因此,结构–功能NVC在CSVD患者海马改变中的具体作用有待进一步研究。

4.4. 海马结构–功能耦合

目前,针对海马的结构–功能耦合的分析方法和研究也在不断进展。最近,Bayrak等人分离了海马,并利用多模态神经成像的人类连接体项目孪生装置研究了海马的结构–功能耦合 [60]。为了测量结构–功能耦合,他们评估了海马微结构强度协方差与每个亚区顶点的FC之间的空间重叠程度。此外,他们研究了海马功能和结构的共享组织,以表征结构–功能关联沿共同起源的海马组织轴的空间协变。他们使用的是连通性梯度法而不是网络分解法,因为连通性梯度法根据大脑的功能连接体模式连续地定位大脑区域,而网络分解法则为大脑区域划定了清晰的边界 [61]。海马亚区结构与功能的耦合在海马亚区后、内侧部分最高,而在海马亚区前部则不显著。此外,海马结构–功能耦合与固有功能轴和结构轴共变,后区与单模态皮层区域有主要的结构和功能连接,而前区与跨模态皮层连接。Bayrak及其团队的工作为更好地理解海马解剖结构如何支持其独特和多样功能提供了重要的参考。

5. 结论与展望

综上所述,尽管多模态MRI已广泛应用于海马的研究,但仍存在一些问题。首先,海马的功能和结构破坏被广泛认为与CSVD的认知能力下降有关,但其神经机制尚不清楚 [50]。其次,海马具有形状不规则、体积小、边缘模糊等特点,一般的分割方法很难对海马进行满意的细分。海马结构和功能变化的检测是CSVD诊断和治疗的关键。不同的MRI检查方法各有优缺点,如果将海马的结构和功能成像结合起来,将海马的解剖信息和功能信息结合起来,将有助于CSVD早期诊断和进展预测。因此,随着融合多模态MRI的不断发展,结构与功能神经成像的耦合将成为未来海马研究的热点。

致谢

我们感谢山东省自然科学基金面上项目(编号ZR2020MH288)、山东省济南市科技计划项目(编号201907052)对本文的资助。

基金项目

山东省自然科学基金面上项目(编号ZR2020MH288);山东省济南市科技计划项目(编号201907052)。

文章引用

辛昊天,王 娜,郭凌飞,梁长虎. 与脑小血管病认知障碍相关的海马结构功能耦合的研究进展
Research Progress of Coupling of Hippocampal Structure and Function Associated with Cognitive Impairment in Pa-tients with Cerebral Small Vessel Disease[J]. 临床医学进展, 2023, 13(03): 4389-4397. https://doi.org/10.12677/ACM.2023.133629

参考文献

  1. 1. Cuadrado-Godia, E., et al. (2018) Cerebral Small Vessel Disease: A Review Focusing on Pathophysiology, Biomarkers, and Machine Learning Strategies. Journal of Stroke, 20, 302-320. https://doi.org/10.5853/jos.2017.02922

  2. 2. Li, Q., et al. (2018) Cerebral Small Vessel Disease. Cell Transplantation, 27, 1711-1722. https://doi.org/10.1177/0963689718795148

  3. 3. Chojdak-Łukasiewicz, J., et al. (2021) Cerebral Small Vessel Disease: A Review. Advances in Clinical and Experimental Medicine, 30, 349-356. https://doi.org/10.17219/acem/131216

  4. 4. Rost, N.S. and Etherton, M. (2020) Cerebral Small Vessel Disease. Continuum (Minneap Minn), 26, 332-352. https://doi.org/10.1212/CON.0000000000000841

  5. 5. Jokinen, H., et al. (2020) Global Burden of Small Vessel Disease-Related Brain Changes on MRI Predicts Cognitive and Functional Decline. Stroke, 51, 170-178. https://doi.org/10.1161/STROKEAHA.119.026170

  6. 6. Zabetian-Targhi, F., et al. (2019) Dietary Patterns Are Not Associated with Brain Atrophy or Cerebral Small Vessel Disease in Older Adults with and without Type 2 Diabetes. The Journal of Nutrition, 149, 1805-1811. https://doi.org/10.1093/jn/nxz139

  7. 7. Perosa, V., et al. (2020) Hippocampal Vascular Reserve Associated with Cognitive Performance and Hippocampal Volume. Brain, 143, 622-634. https://doi.org/10.1093/brain/awz383

  8. 8. van Norden, A.G., et al. (2012) Diffusion Tensor Imaging of the Hip-pocampus and Verbal Memory Performance: The RUN DMC Study. Human Brain Mapping, 33, 542-551. https://doi.org/10.1002/hbm.21231

  9. 9. Wu, M., et al. (2023) In Pre-Clinical AD Small Vessel Disease Is Associ-ated with Altered Hippocampal Connectivity and Atrophy. The American Journal of Geriatric Psychiatry, 31, 112-123. https://doi.org/10.1016/j.jagp.2022.09.011

  10. 10. Liu, D., et al. (2019) Correlations between the Microstructural Changes of the Medial Temporal Cortex and Mild Cognitive Impairment in Patients with Cerebral Small Vascular Dis-ease (cSVD): A Diffusion Kurtosis Imaging Study. Frontiers in Neurology, 10, 1378. https://doi.org/10.3389/fneur.2019.01378

  11. 11. Meng, F., Yang, Y. and Jin, G. (2022) Research Progress on MRI for White Matter Hyperintensity of Presumed Vascular Origin and Cognitive Impairment. Frontiers in Neurology, 13, Article ID: 865920. https://doi.org/10.3389/fneur.2022.865920

  12. 12. Honey, C.J., et al. (2009) Predicting Human Resting-State Func-tional Connectivity from Structural Connectivity. Proceedings of the National Academy of Sciences of the United States of America, 106, 2035-2040. https://doi.org/10.1073/pnas.0811168106

  13. 13. Zhang, X., et al. (2022) Structural and Functional Deficits and Cou-plings in the Cortico-Striato-Thalamo-Cerebellar Circuitry in Social Anxiety Disorder. Translational Psychiatry, 12, 26. https://doi.org/10.1038/s41398-022-01791-7

  14. 14. Schultz, C. and Engelhardt, M. (2014) Anatomy of the Hippo-campal Formation. Frontiers of Neurology and Neuroscience, 34, 6-17. https://doi.org/10.1159/000360925

  15. 15. Etherton, M.R., et al. (2020) White Matter Hyperintensity Burden Is As-sociated with Hippocampal Subfield Volume in Stroke. Frontiers in Neurology, 11, Article ID: 588883. https://doi.org/10.3389/fneur.2020.588883

  16. 16. Shahid, S.S., et al. (2022) Hippocampal-Subfield Microstructures and Their Relation to Plasma Biomarkers in Alzheimer’s Disease. Brain, 145, 2149-2160. https://doi.org/10.1093/brain/awac138

  17. 17. von Bohlen Und Halbach, O. and von Bohlen Und Halbach, V. (2018) BDNF Effects on Dendritic Spine Morphology and Hippocampal Function. Cell and Tissue Research, 373, 729-741. https://doi.org/10.1007/s00441-017-2782-x

  18. 18. Rao, Y.L., et al. (2022) Hippocampus and Its Involvement in Alzheimer’s Disease: A Review. 3 Biotech, 12, 55. https://doi.org/10.1007/s13205-022-03123-4

  19. 19. Zhang, W., et al. (2021) Hippocampal Subfields Atrophy Con-tribute More to Cognitive Impairment in Middle-Aged Patients with Type 2 Diabetes Rather than Microvascular Lesions. Acta Diabetologica, 58, 1023-1033. https://doi.org/10.1007/s00592-020-01670-x

  20. 20. Madusanka, N., et al. (2019) One-Year Follow-Up Study of Hippocampal Subfield Atrophy in Alzheimer’s Disease and Normal Aging. Current Medical Imaging Reviews, 15, 699-709. https://doi.org/10.2174/1573405615666190327102052

  21. 21. Wong, F.C.C., et al. (2021) Cerebral Small Vessel Disease Influences Hippocampal Subfield Atrophy in Mild Cognitive Impairment. Translational Stroke Research, 12, 284-292. https://doi.org/10.1007/s12975-020-00847-4

  22. 22. Huang, Y., et al. (2022) Differential Associations of Visual Memory with Hippocampal Subfields in Subjective Cognitive Decline and Amnestic Mild Cognitive Impairment. BMC Geriatrics, 22, 153. https://doi.org/10.1186/s12877-022-02853-7

  23. 23. Zeng, Q., et al. (2021) Distinct Atrophy Pattern of Hippocampal Subfields in Patients with Progressive and Stable Mild Cognitive Impairment: A Longitudinal MRI Study. Journal of Alzheimer’s Disease, 79, 237-247. https://doi.org/10.3233/JAD-200775

  24. 24. Legdeur, N., et al. (2019) White Matter Hyperintensities and Hippocam-pal Atrophy in Relation to Cognition: The 90+ Study. Journal of the American Geriatrics Society, 67, 1827-1834. https://doi.org/10.1111/jgs.15990

  25. 25. den Heijer, T., et al. (2012) Structural and Diffusion MRI Measures of the Hippocampus and Memory Performance. NeuroImage, 63, 1782-1789. https://doi.org/10.1016/j.neuroimage.2012.08.067

  26. 26. Shaikh, I., et al. (2022) Diffusion Tensor Tractography of the Fornix in Cerebral Amyloid Angiopathy, Mild Cognitive Impairment and Alzheimer’s Disease. NeuroImage: Clinical, 34, Article ID: 103002. https://doi.org/10.1016/j.nicl.2022.103002

  27. 27. Wang, Y., et al. (2020) Correlation between White Matter Hyper-intensities Related Gray Matter Volume and Cognition in Cerebral Small Vessel Disease. Journal of Stroke and Cere-brovascular Diseases, 29, Article ID: 105275. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105275

  28. 28. Lambert, C., et al. (2018) Identifying Preclinical Vascular Dementia in Symptomatic Small Vessel Disease Using MRI. NeuroImage: Clinical, 19, 925-938. https://doi.org/10.1016/j.nicl.2018.06.023

  29. 29. Zacková, L., et al. (2021) Cognitive Impairment and Depression: Meta-Analysis of Structural Magnetic Resonance Imaging Studies. NeuroImage: Clinical, 32, Article ID: 102830. https://doi.org/10.1016/j.nicl.2021.102830

  30. 30. Crane, D.E., et al. (2015) Gray Matter Blood Flow and Volume Are Reduced in Association with White Matter Hyperintensity Lesion Burden: A Cross-Sectional MRI Study. Frontiers in Aging Neuroscience, 7, 131. https://doi.org/10.3389/fnagi.2015.00131

  31. 31. Vockert, N., et al. (2021) Hippocampal Vascularization Patterns Ex-ert Local and Distant Effects on Brain Structure but Not Vascular Pathology in Old Age. Brain Communications, 3, fcab127. https://doi.org/10.1093/braincomms/fcab127

  32. 32. Yan, N., et al. (2021) Dimethyl Fumarate Improves Cognitive Deficits in Chronic Cerebral Hypoperfusion Rats by Alleviating Inflammation, Oxidative Stress, and Ferropto-sis via NRF2/ARE/NF-κB Signal Pathway. International Immunopharmacology, 98, Article ID: 107844. https://doi.org/10.1016/j.intimp.2021.107844

  33. 33. Sun, Y., et al. (2016) Cerebral Blood Flow Alterations as As-sessed by 3D ASL in Cognitive Impairment in Patients with Subcortical Vascular Cognitive Impairment: A Marker for Disease Severity. Frontiers in Aging Neuroscience, 8, 211. https://doi.org/10.3389/fnagi.2016.00211

  34. 34. Thomas, K.R., et al. (2021) Regional Hyperperfusion in Older Adults with Objectively-Defined Subtle Cognitive Decline. Journal of Cerebral Blood Flow & Metabolism, 41, 1001-1012. https://doi.org/10.1177/0271678X20935171

  35. 35. Jimenez-Balado, J. and T.S. Eich. (2021) GABAergic Dysfunc-tion, Neural Network Hyperactivity and Memory Impairments in Human Aging and Alzheimer’s Disease. Seminars in Cell & Developmental Biology, 116, 146-159. https://doi.org/10.1016/j.semcdb.2021.01.005

  36. 36. Sun, Y., et al. (2017) Characterizing Brain Iron Deposition in Patients with Subcortical Vascular Mild Cognitive Impairment Using Quantitative Susceptibility Mapping: A Potential Biomarker. Frontiers in Aging Neuroscience, 9, 81. https://doi.org/10.3389/fnagi.2017.00081

  37. 37. Kuchcinski, G., et al. (2023) Quantitative Susceptibility Mapping Demonstrates Different Patterns of Iron Overload in Subtypes of Early-Onset Alzheimer’s Disease. European Radiology, 33, 184-195. https://doi.org/10.1007/s00330-022-09014-9

  38. 38. Li, J., et al. (2022) Cerebral Microbleeds Are Associated with Increased Brain Iron and Cognitive Impairment in Patients with Cerebral Small Vessel Disease: A Quantitative Suscepti-bility Mapping Study. Journal of Magnetic Resonance Imaging, 56, 904-914. https://doi.org/10.1002/jmri.28092

  39. 39. Hao, L., et al. (2021) SLC40A1 Mediates Ferroptosis and Cognitive Dys-function in Type 1 Diabetes. Neuroscience, 463, 216-226. https://doi.org/10.1016/j.neuroscience.2021.03.009

  40. 40. Catchlove, S.J., et al. (2018) Regional Cerebrovascular Reactivity and Cognitive Performance in Healthy Aging. Journal of Experimental Neuroscience, 12. https://doi.org/10.1177/1179069518785151

  41. 41. Uysal, G. and Ozturk, M. (2020) Hippocampal Atrophy Based Alzheimer’s Disease Diagnosis via Machine Learning Methods. The Journal of Neuroscience Methods, 337, Article ID: 108669. https://doi.org/10.1016/j.jneumeth.2020.108669

  42. 42. Sarwar, T., et al. (2021) Structure-Function Coupling in the Human Connectome: A Machine Learning Approach. Neuroimage, 226, Article ID: 117609. https://doi.org/10.1016/j.neuroimage.2020.117609

  43. 43. Kang, Y.-F., et al. (2022) Structure-Function Decoupling: A Novel Perspective for Understanding the Radiation-Induced Brain Injury in Patients with Nasopharyngeal Carcinoma. Frontiers in Neuroscience, 16, Article ID: 915164. https://doi.org/10.3389/fnins.2022.915164

  44. 44. Gray, J.P., et al. (2020) Multimodal Abnormalities of Brain Struc-ture and Function in Major Depressive Disorder: A Meta-Analysis of Neuroimaging Studies. American Journal of Psy-chiatry, 177, 422-434. https://doi.org/10.1176/appi.ajp.2019.19050560

  45. 45. Tan, Y., Zhou, C. and He, L. (2022) Altered Structural and Functional Abnormalities of Hippocampus in Classical Trigeminal Neuralgia: A Combination of DTI and fMRI Study. Journal of Healthcare Engineering, 2022, Article ID: 8538700. https://doi.org/10.1155/2022/8538700

  46. 46. Jiang, Y., et al. (2021) Function-Structure Coupling: White Matter Functional Magnetic Resonance Imaging Hyper- Activation Associates with Structural Integrity Reductions in Schizophrenia. Human Brain Mapping, 42, 4022-4034. https://doi.org/10.1002/hbm.25536

  47. 47. Hu, F., et al. (2022) Voxel-Wise Intermodal Coupling Analysis of Two or More Modalities Using Local Covariance Decomposition. Human Brain Mapping, 43, 4650-4663. https://doi.org/10.1002/hbm.25980

  48. 48. Shah, P., et al. (2018) Mapping the Structural and Functional Network Architecture of the Medial Temporal Lobe Using 7T MRI. Human Brain Mapping, 39, 851-865. https://doi.org/10.1002/hbm.23887

  49. 49. Kong, L.Y., et al. (2021) Divergent Alterations of Structural-Functional Connectivity Couplings in First-Episode and Chronic Schizophrenia Patients. Neuroscience, 460, 1-12. https://doi.org/10.1016/j.neuroscience.2021.02.008

  50. 50. Xu, J., et al. (2021) Different Patterns of Functional and Structural Alterations of Hippocampal Sub-Regions in Subcortical Vascular Mild Cognitive Impairment with and without Depression Symptoms. Brain Imaging and Behavior, 15, 1211-1221. https://doi.org/10.1007/s11682-020-00321-7

  51. 51. Liang, L., et al. (2020) Structural and Functional Hippocampal Changes in Subjective Cognitive Decline from the Community. Frontiers in Aging Neuroscience, 12, 64. https://doi.org/10.3389/fnagi.2020.00064

  52. 52. Filippi, M., et al. (2020) Changes in Functional and Structural Brain Connectome along the Alzheimer’s Disease Continuum. Molecular Psychiatry, 25, 230-239. https://doi.org/10.1038/s41380-018-0067-8

  53. 53. Yan, S., et al. (2022) Structural and Functional Alterations within the Papez Circuit in Subacute Stroke Patients. Brain Imaging and Behavior, 16, 2681-2689. https://doi.org/10.1007/s11682-022-00727-5

  54. 54. Li, L., et al. (2021) Impaired Hippocampal Neurovascular Cou-pling in a Mouse Model of Alzheimer’s Disease. Frontiers in Physiology, 12, Article ID: 715446. https://doi.org/10.3389/fphys.2021.715446

  55. 55. Kirschen, G.W., Kery, R. and Ge, S. (2018) The Hippocampal Neuro-Glio-Vascular Network: Metabolic Vulnerability and Potential Neurogenic Regeneration in Disease. Brain Plas-ticity, 3, 129-144. https://doi.org/10.3233/BPL-170055

  56. 56. Shaw, K., et al. (2021) Neurovascular Coupling and Oxygenation Are Decreased in Hippocampus Compared to Neocortex Because of Microvascular Differences. Nature Communications, 12, 3190. https://doi.org/10.1038/s41467-021-23508-y

  57. 57. Zhang, H., Roman, R.J. and Fan, F. (2022) Hippocampus Is More Susceptible to Hypoxic Injury: Has the Rosetta Stone of Regional Variation in Neurovascular Coupling Been De-ciphered? Geroscience, 44, 127-130. https://doi.org/10.1007/s11357-021-00449-4

  58. 58. Segarra, M., et al. (2019) Neurovascular Interactions in the Nervous System. Annual Review of Cell and Developmental Biology, 35, 615-635. https://doi.org/10.1146/annurev-cellbio-100818-125142

  59. 59. Phillips, A.A., et al. (2015) Neurovascular Coupling in Humans: Physiology, Methodological Advances and Clinical Implications. Journal of Cerebral Blood Flow & Metab-olism, 36, 647-664. https://doi.org/10.1177/0271678X15617954

  60. 60. Bayrak, S., et al. (2022) Heritability of Hippocampal Functional and Microstructural Organisation. Neuroimage, 264, Article ID: 119656. https://doi.org/10.1016/j.neuroimage.2022.119656

  61. 61. Krienen, F.M. and Sherwood, C.C. (2017) Gradients of Connectivity in the Cerebral Cortex. Trends in Cognitive Sciences, 21, 61-63. https://doi.org/10.1016/j.tics.2016.12.002

  62. NOTES

    *通讯作者。

期刊菜单