Advances in Clinical Medicine
Vol. 13  No. 05 ( 2023 ), Article ID: 66130 , 7 pages
10.12677/ACM.2023.1351210

脓毒症相关性急性肺损伤的发病机制 及研究进展

王稳1,吕荣华2

1青海大学研究生院,青海 西宁

2青海大学附属医院急诊内科,青海 西宁

收稿日期:2023年4月28日;录用日期:2023年5月21日;发布日期:2023年5月30日

摘要

脓毒症是导致患者入住重症监护病房(ICU)的主要病因之一。虽然脓毒症及脓毒性休克的诊疗已取得了一定的进展,但其病死率仍然居高不下。急性肺损伤是多种因素引起的肺毛细血管内皮细胞及肺泡上皮细胞损伤造成的非心源性肺水肿,临床主要表现为难治性的低氧血症和呼吸窘迫等特征。在脓毒症中,肺脏是最易受累的靶器官,因此脓毒症患者极易发生急性肺损伤,其预后较差。脓毒症相关肺损伤的发病机制复杂,目前尚无研究明确其发病机制,本文就近年来脓毒症急性肺损伤的发病机制进行综述,旨在为其临床治疗提供理论支持。

关键词

脓毒症,急性肺损伤,发病机制

Pathogenesis and Research Progress of Acute Lung Injury Associated with Sepsis

Wen Wang1, Ronghua Lyu2

1Graduate School of Qinghai University, Xining Qinghai

2Department of Emergency Medicine, Affiliated Hospital of Qinghai University, Xining Qinghai

Received: Apr. 28th, 2023; accepted: May 21st, 2023; published: May 30th, 2023

ABSTRACT

Sepsis is one of the main causes of admission to intensive care units (ICU). Although progress has been made in the diagnosis and treatment of sepsis and septic shock, the fatality rate is still high. Acute lung injury is non-cardiogenic pulmonary edema caused by injury of pulmonary capillary endothelial cells and alveolar epithelial cells caused by various factors. The clinical manifestations are mainly refractory hypoxemia and respiratory distress. Lung is the most easily affected target organ in sepsis, so patients with sepsis are prone to acute lung injury and have a poor prognosis. The pathogenesis of sepsis related lung injury is complex, and there is no clear research on its pathogenesis. This paper reviews the pathogenesis of sepsis acute lung injury in recent years, aiming to provide theoretical support for its clinical treatment.

Keywords:Sepsis, Acute Lung Injury, Pathogenesis

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

脓毒症(Sepsis)是全世界死亡和危重疾病的主要原因,也是导致住院死亡的首要因素,是全球范围内的主要疾病负担 [1] 。脓毒症定义为由宿主对感染的反应失调所致的威胁生命的器官功能障碍 [2] 。肺脏是脓毒症时最易受损伤的靶器官,急性肺损伤(ALI)出现最早,且发生率最高 [3] [4] 。急性肺损伤是指由各种直接和间接致伤因素导致的肺泡上皮细胞及毛细血管内皮细胞损伤,引起弥漫性肺间质及肺泡水肿引发的急性低氧性呼吸功能不全 [5] 。以肺容积减少、肺顺应性降低、通气/血流比例失调为病理生理特征,临床上表现为进行性低氧血症和呼吸窘迫,肺部影像学表现为非均一性的渗出性病变,其发展至严重阶段(氧合指数 < 200)被称为急性呼吸窘迫综合征。而急性肺损伤作为脓毒症最常见的并发症之一,救治困难,病死率高 [6] ,脓毒症导致的急性肺损伤晚期可发展为急性呼吸窘迫综合征(ARDS),病死率高达30%~40% [7] 。一项流行病学调查纳入了我国44个重症监护病房的2322例脓毒症患者,结果显示68.2%的脓毒症患者合并ALI,90 d病死率达35.5% [8] 。本文主要对脓毒症相关性急性肺损伤的发病机制研究进展进行综述。

2. 脓毒症相关性急性肺损伤发病机制

2.1. 细胞机制

参与炎症的主要细胞有中性粒细胞、肺泡巨噬细胞、肺血管内皮细胞、肺泡上皮细胞、淋巴细胞等。吞噬细胞中的巨噬细胞与中性粒细胞是导致免疫反应与肺部炎症的重要因素 [9] 。肺损伤发病特点主要为中性粒细胞全部集中在肺部,增加了炎症因子的表达,使肺部内皮细胞与上皮细胞的完整性受到破坏,导致肺泡动脉压梯度增加,并使间质性肺水肿得以持续及进一步发展导致内皮屏障功能的丧失 [10] 。有研究认为脓毒症致ALI发病过程中产生的大量中性粒细胞以死亡为主要途径,而当机体逐渐恢复时,中性粒细胞以凋亡为主要途径。Lea F [11] 等在其研究实验中发现,中性粒细胞的凋亡情况与脓毒症严重程度成反比例关系。另外,脓毒症可激活肺泡巨噬细胞,使得巨噬细胞吞噬大量的炎症因子,引起急性肺损伤。肺泡巨噬细胞(AM)是细支气管肺泡腔中含量丰富的细胞类型,约占肺泡白细胞的95% [12] ,是肺泡II型上皮细胞(AT2s)产生的表面活性物质分解代谢的重要细胞。而AM作为肺抵御外来刺激的重要效应细胞,在肺损伤模型中巨噬细胞能产生趋化因子MIP-2,其诱导了中性粒细胞的肺内迁移,能够引起肺损伤 [13] ,童氏等研究显示脓毒症肺损伤后,巨噬细胞开始聚集并活化,分泌MIP-1 Q和多种炎性因子,促进了炎性反应 [14] ,因此AM在ALI参与的肺部炎症的发病机制中起关键作用 [15] 。新的证据显示脓毒症诱导的急性肺损伤中肺泡巨噬细胞的凋亡可释放核组蛋白导致组织损伤,从而加剧肺损伤 [16] [17] 。此外,屏障功能破坏,包括血管、内皮细胞和上皮细胞的损伤,涉及许多疾病的病理生理学方面,包括脓毒症引起的ALI和/或ARDS。崔文瑶 [18] 等人的研究报道曾指出,肺损伤产生的屏障功能障碍的潜在治疗靶点是肌球蛋白轻链激酶,在小鼠模型中,为患有肺损伤的小鼠提供肌球蛋白轻链激酶抑制剂,能够使小鼠的肺功能得到有效保护,让肺部氧气充足,避免酸中毒,研究显示破坏屏障功能的完整性,能加快肺损伤的发展。同时内毒素诱导ALI的实验研究表明脓毒症致肺损伤的过程中,机体可能产生了免疫抑制,表现为淋巴细胞的增殖能力下降甚至凋亡,进而严重损害了免疫系统的反应能力,致使机体易感性增加从而加重肺损伤 [19] 。

2.2. 促炎细胞因子和抗炎细胞因子

脓毒症导致ALI过程中,机体释放多种促炎因子和炎症介质,引起炎症反应。机体内出现的各种炎症因子,以维持内环境平衡,两者无论哪一方过多分泌或持续释放,都会打破促炎/抗炎的稳定状态,导致内环境失衡及ALI的恶化,甚至死亡 [20] 。

2.2.1. 促炎细胞因子和炎症介质

在脓毒症引发相关急性肺损伤时,机体内的促炎细胞因子和炎症介质,其中包括肿瘤坏死因子2α (TNF2α)、IL-1、IL-6、IL-8、血小板激活因子(PAF)及磷脂酶A2 (PLA2)等,其中TNF-α是导致脓毒症及其相关性ALI的多种细胞因子调节网络的启动因子,参与炎性级联活化反应。TNF-α是LPS刺激单核巨噬细胞系统后最早释放的主要炎性细胞因子 [21] ,其具有巨大的细胞毒性作用,会放大和加剧炎症反应,同时也会导致溶酶体漏出,而后出现肺泡毛细血管床的结构破坏、渗透性增加,它还能激活其他细胞因子的合成途径,如IL-6和IL-8,此外还会激活促凝系统和补体系统活性 [22] 。Kothari等 [20] 的研究还发现,随着脓毒症患者病情的逐渐加重以及ALI程度的不断进展,患者体内TNF-α水平逐渐升高。而HMGBl是一种强有力的促炎细胞因子,在急性炎症反应中起重要作用;有研究表明HMGB1可更为有效地刺激免疫细胞产生白介素、TNF-α以及HMGB1等各类促炎介质的表达 [23] ,于细胞因子“瀑布效应”中对下游炎症反应进行持续触发,使此类反应得以维持,促进脓毒血症进展。在脓毒症病人中,病情严重程度正向相关于HMGB1血浆水平。Gustavo等 [24] 研究显示,在局部感染与全身反应中,旨在阻止这些细胞因子级联反应的单一方面的战略未能预防ALI或脓毒症致ALI的发展,表明促炎细胞因子,而不是循环细胞,决定肺损伤是否发生。

2.2.2. 抗炎细胞因子

根据大数据了解到,分析是否有新的抗炎通路不仅有利于预防,而且有利于治疗,并且不止在脓毒症诱导的ALI中,在其它炎症性疾病中,也至关重要。目前,在脓毒症及脓毒症致ALI发病过程中,抗炎细胞因子包括IL-4、IL-5、IL-10、IL-13、IL24、2-巨球蛋白、可溶性肿瘤坏死因子受体II等。脓毒症时抗炎细胞因子随着促炎细胞因子及炎症介质的产生而出现;两者平衡破坏,则为机体炎症反应的开始 [25] [26] 。Kristen D和Anuran C等分别研究显示,热休克蛋白70抑制剂及热休克蛋白90抑制剂在小鼠脓毒症和ALI中可减轻局部和全身炎症反应,改善肺功能,延长生存 [27] [28] 。

2.3. 凝血机制系统和纤溶蛋白溶解

血和纤溶系统功能的紊乱也被认为是脓毒症肺损伤发生发展的重要机制。正常情况下,人体全身循环和肺中凝血纤溶系统呈动态平衡状态。研究发现脓毒症时,这种平衡关系会被打破,内毒素可以直接刺激血管内皮细胞、巨噬细胞等分泌组织因子(tissue factor, TF) [29] 。脓毒症诱导组织因子(TF)表达激活肺凝血以及导致凝血环境,致使纤维蛋白沉积和出现炎症反应,而血小板激活因子(latelet-activating factor, PAF)在内毒素血症的动物中,血及肺中PAF水平明显升高,且在肺循环里的中性粒细胞并引起血管通透增加,因此认为是脓毒症致急性肺损伤的主要介质之一 [30] 。此外,新出现的证据表明,使用抗凝血剂,如组织因子途径抑制物、抗凝血酶、肝素、活化蛋白C和纤溶酶原激活物,特别是组织型纤溶酶原激活物,在ALI和ARDS中改善肺功能及增加氧供作用显著 [31] [32] 。

2.4. 肺表面活性物质(PS)

在脓毒症致肺损伤时,肺泡–毛细血管膜损伤使其通透性增高,导致富含蛋白质的水肿液渗入肺泡内,而PS虽主要由肺泡II型细胞分泌,但也可由磷脂(以磷脂酰胆碱为主)和表面活性物质中的特异蛋白(P-A, SP-B, SP-C, SP-D)构成。PS可致肺泡表面张力降低,在肺容积减少时,使肺泡与末端气道稳定。在肺损伤发病前后,PS发生异常变化,会促进肺损伤发展。有研究 [33] 表明ALl早期肺泡I型上皮细胞缺失,导致膜屏障功能受损。II型上皮细胞是肺泡上皮细胞的干细胞,发生ALI时,肺泡II型上皮细胞受损,分泌肺泡表面活性物质减少,肺泡萎陷,加重肺水肿,且在急性肺损伤的修复过程中,肺泡II型上皮细胞可转化为肺泡I型上皮细胞以维持正常细胞群,阻止肺损伤向ARDS进展。肺表面活性蛋白具有调节局部免疫和炎性反应的作用。研究表明 [34] ,在肺损伤发病前后,表面活性物质中的SP-A、SP-B、SP-C、SP-D等相关蛋白的异常变化均可参与到肺损伤的发展中。

2.5. 氧化应激

正常情况下,机体在代谢反映、酶促反应中不断生成氧自由基(OFR),但由于体内同时存在OFR的酶系统,可以清除OFR,从而达到平衡。如果体内活性氧簇(ROS)产生过多或清除OFR的酶减少,均会影响脂质、蛋白及核酸代谢等,导致氧化与抗氧化系统失衡,损害机体。有研究表明 [35] ,过多的ROS可引起ALI,导致细胞损伤,激活促细胞凋亡信号通路,最终导致肺泡上皮细胞、内皮细胞的死亡。NF-κB是氧自由基损伤肺组织的靶因子之一,NF-κB是脓毒症炎症反应的核心转录因子。应激状态下,它可以启动TNF-1、IL-6、IL-1 B等细胞因子的转录,激活炎性细胞,而炎性介质又会对其进行正反馈调节,形成瀑布样效应,放大并加重炎症反应 [36] 。激活NF-κB信号通路在脓毒症急性肺损伤的发病机制中起重要作用,NF-κB的激活诱导产生调节免疫反应并导致免疫反应的炎症介质募集到肺部 [37] ,此外,NF-κB的持续激活与持续性器官功能障碍有关,而NF-κB的抑制则可对急性肺损伤发挥保护作用 [38] [39] [40] 。

2.6. 细胞焦亡

全身暴露于脂多糖(LPS)会导致严重的内皮细胞焦亡。这种焦亡由半胱氨酸蛋白酶(Caspases)家族介导,相关的蛋白有Caspase-1、4、5、11 [41] 。活化的Caspase-1切割Gasdermin D,使其形成Gasdermin D的N端或C端,Gasdermin D的N端与细胞膜上的磷脂蛋白结合,形成孔洞并将大量炎性因子释放到细胞外。Gasdermin D作为焦亡的直接执行蛋白,在血管内皮细胞损伤中起关键作用 [42] 。

2.7. 细胞凋亡及自噬

在脓毒症相关性的急性肺损伤血管内皮损伤过程中,自噬与凋亡处于一种对抗关系,Bcl-2家族蛋白是自噬与凋亡之间交互作用的调节因子。动物实验研究证实,经LPS处理后肺血管内皮细胞及肺组织细胞凋亡增加,吞噬功能增强,Bcl-2表达降低,Bad表达增加,PINK1/Parkin信号通路激活,而Bcl-2过表达及Bad基因敲除均可减轻LPS诱导的损伤,抑制细胞凋亡及有丝分裂,提高存活率;脓毒症可抑制肺组织中Beclin-1蛋白的表达,但不抑制Beclin-1 mRNA的表达,是典型的自噬激活 [43] 。

2.8. 基因组机制

与其他疾病一样,基因生物学因素在ARDS疾病的发展过程中占有一席之地,并且推动着这些疾病的发展,但大量的证据表明,易患病遗传学体质有助于疾病的发生和增加其严重性 [44] 。MicroRNAs (miRNAs)是一类小的非编码RNA,在许多病理过程中表现出了新兴的调节作用,包括脓毒症诱导的器官功能障碍 [45] 。研究 [46] 发现miR-146a过表达通过抑制NF-κB的激活炎症细胞因子的表达,在体外减轻脓毒症引发的心肌功能障碍。miR-27a通过抑制NF-κB/TAB3信号通路,介导紫杉醇对脓毒症小鼠受损肝脏的保护作用 [47] 。研究 [48] 表明miR-145-5p在肺损伤组织中异常表达可能在ALI的发展中具有潜在作用,miR-145-5p、miR-539-5p通过下调ROCK1的表达,减轻了脓毒症诱导的ALI肺部细胞凋亡和促炎细胞因子的产生 [49] 。

3. 总结与展望

综上所述,脓毒症的病理表现为全身性炎症反应,其中最易且最早发生的为ALI,同时也是并发症中最常见也是预后较差的一类,发病时的促炎/抗炎细胞因子的释放和活化、全身凝血功能的异常、及其氧化应激等均可加速该病的发展并引起全身炎性反应级联扩大效应,导致机体免疫功能失调,肺损伤程度加重,不利于患者预后。目前关于脓毒症相关性急性肺损伤的发病机制深层次尚不清楚,可能存在多种因素共同作用,且研究以动物实验为主,人体发病机制仍需进一步验证。因此,关于脓毒症急性肺损伤的详尽发病机制,未来仍需通过系统深入的研究,最终为临床治疗药物的选择提供理论依据。

文章引用

王 稳,吕荣华. 脓毒症相关性急性肺损伤的发病机制及研究进展
Pathogenesis and Research Progress of Acute Lung Injury Associated with Sepsis[J]. 临床医学进展, 2023, 13(05): 8657-8663. https://doi.org/10.12677/ACM.2023.1351210

参考文献

  1. 1. Hall, M.J., Levant, S. and Defrances, C.J. (2013) Trends in Inpatient Hospital Deaths: National Hospital Discharge Sur-vey, 2000-2010. NCHS Data Brief, 118, 1-8.

  2. 2. Evans, L., Rhodes, A., Alhazzani, W., et al. (2021) Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Medicine, 47, 1181-1247.

  3. 3. Gordon, D.R. and Ellen, C. (2005) Incidence and Outcomes of Acute Lung Injury. The New England Journal of Medicine, 3, 1685-1693.

  4. 4. Claude, A.P. and David, A.S. (2004) The Acute Respiratory Distress Syn-drome. Annals of Internal Medicine, 14, 460-470.

  5. 5. 中华医学会呼吸病学分会. ALI/ARDS的诊断推荐(草案) [J]. 中华结核和呼吸杂志, 2000, 23(4): 203.

  6. 6. 孙德阳, 杨洋, 梁群. 中医药治疗脓毒症急性肺损伤的研究进展[J]. 辽宁中医杂志, 2019, 46(5): 1108-1110.

  7. 7. Shao, Z., Li, Q., Wang, S., et al. (2019) Protective Effects of PNU282987 on Sepsis Induced Acute Lung Injury in Mice. Molecular Medicine Reports, 19, 3791-3798. https://doi.org/10.3892/mmr.2019.10016

  8. 8. Xie, J.F., Wang, H.L., Kang, Y., et al. (2020) The Epidemiology of Sepsis in Chinese ICUs: A National Cross-Sectional Survey. Critical Care Medicine, 48, e209-e218. https://doi.org/10.1097/CCM.0000000000004155

  9. 9. 方步武, 邱奇, 崔乃强, 等. 急腹症全身炎症反应综合征阶段细胞因子及炎症介质的变化特点[J]. 中国危重病急救医学, 2011, 13(9): 542-544.

  10. 10. Cai, S., Zemans, R.L., Young, S.K., et al. (2009) Myeloid Differentiation Protein-2-Dependentand-Independent Neutrophil Accumulation during Escherichia coli Pneumonia. American Journal of Respiratory Cell and Molecular Biology, 40, 701-709. https://doi.org/10.1165/rcmb.2008-0152OC

  11. 11. Fialkow, L., Fochesatto Filho, L., Bozzetti, M.C., et al. (2006) Neutrophil Apoptosis: A Marker of Disease Severity in Sepsis and Sepsis-Induced Acute Respiratory Distress Syn-drome. Critical Care (London, England), 10, R155.

  12. 12. Martin, W.N., Wu, M. and Pasula, R. (2005) A Novel Ap-proach to Restore Lung Immunity during Systemic Immunosuppression. Transactions of the American Clinical and Climatological Association, 116, 221-227.

  13. 13. 张文凯, 吕洁萍, 强准. 肺泡巨噬细胞在脓毒症急性肺损伤中的作用炎症因子与抗炎因子[J]. 中国药物与临床, 2013, 13(7): 876-878.

  14. 14. 童飞, 胡德林, 余又新, 等. 盲肠结扎穿孔脓毒症大鼠巨噬细胞炎症蛋白-1α水平变化的研究[J]. 安徽医药, 2011, 15(9): 1099-1100.

  15. 15. Yu, X., Butt-gereit, A., Lelios, I., et al. (2017) Thecytokine TGF-β Promotes the Development and Homeostasis of Alveolar Macro-phages. Immunity, 47, 903-912. https://doi.org/10.1016/j.immuni.2017.10.007

  16. 16. Li, Z., Scott, M.J., Fan, E.K., et al. (2016) Tissue Damage Negatively Regulates LPS-Induced Macrophage Necroptosis. Cell Death & Differentiation, 23, 1428-1447. https://doi.org/10.1038/cdd.2016.21

  17. 17. Xu, J., Jiang, Y., Wang, J., et al. (2014) Macrophage Endo-cytosis of High Mobility Group Box 1 Triggers Pyroptosis. Cell Death and Differentiation, 21, 1229-1239. https://doi.org/10.1038/cdd.2014.40

  18. 18. 崔文瑶, 王昆鹏, 宁涛, 等. 内毒素血症大鼠肾脏水通道蛋白2等基因表达及肾脏结构功能的改变[J]. 天津医药, 2011, 39(19): 817-819.

  19. 19. Oberholzer, A., Oberholzer, C., Moldawer, L.L., et al. (2001) Sepsis Syndromes: Understanding the Role of Innate and Acquired Immunity. Shock, 16, 83-96. https://doi.org/10.1097/00024382-200116020-00001

  20. 20. Baumhofer, J.M., Beinhauer, B.G., Wang, J.E., et al. (1998) Gene Transfer with IL-4 and IL-13 Improves Survival in Lethal Endotoxemia in the Mouse and Ameliorates Peritoneal Macrophages Immune Competence. European Journal of Immunology, 28, 610-615. https://doi.org/10.1002/(SICI)1521-4141(199802)28:02<610::AID-IMMU610>3.0.CO;2-5

  21. 21. Zhang, X.P., Zhang, L., Wang, Y., et al. (2010) Study of the Protective Effects of Dexamethasone on Multiple Organ Injury in Rats with Severe Acute Pancreatitis. JOP, 8, 400-412.

  22. 22. Marsh, C.B. and Wewers, M.D. (1996) The Pathogenesis of Sepsis. Factors That Modulate the Response to Gram-Negative Bacterial Infection. Clinics in Chest Medicine, 17, 183-197. https://doi.org/10.1016/S0272-5231(05)70308-7

  23. 23. 李杉珊, 罗成群. 外源性HMGB1的研究进展[J]. 国际免疫学杂志, 2012, 35(1): 58-60.

  24. 24. Kothari, N., Bogra, J., Abbas, H., et al. (2013) Tumor Necrosis Factor Gene Pol-ymorphism Results in High TNF Level in Sepsis and Septic Shock. Cytokine, 61, 676-681. https://doi.org/10.1016/j.cyto.2012.11.016

  25. 25. 章梦丽. 脓毒症并发急性呼吸窘迫综合征相关生物标志物的研究进展[J]. 中国急救医学, 2017, 37(3): 203-208.

  26. 26. 唐甜, 谭利平. 炎症反应在脓毒症ARDS发病机制中的作用[J]. 重庆医学, 2017, 46(15): 2146-2149.

  27. 27. Kristen, D.S. and Paul, E.W. (2006) Effects of HSP70.1/3 Gene Knockout on Acute Respiratory Distress Syndrome and the Inflammatory Response Following Sepsis. American Journal of Physiology—Lung Cellular and Molecular Physiology, 290, 956-961. https://doi.org/10.1152/ajplung.00466.2005

  28. 28. Anuran, C., Christiana, D., Fotios, D., et al. (2007) Heat Shock Protein 90 Inhibitors Prolong Survival, Attenuate Inflammation, and Reduce Lung Injury in Murine Sepsis. American Journal of Respiratory and Critical Care Medicine, 176, 667-675. https://doi.org/10.1164/rccm.200702-291OC

  29. 29. Napoleone, E., Di Santo, A., Peri, G., et al. (2004) The Long Pentraxin PTX3 Up-Regulates Tissue Factor in Activated Monocytes: Another Link between Inflammation and Clotting Activation. Journal of Leukocyte Biology, 76, 203-209. https://doi.org/10.1189/jlb.1003528

  30. 30. Schuster, D.P., Metzler, M., Opal, S., et al. (2003) Recombinant Plate-let-Activating Factor Acetylhydrolase to Prevent Acute Respiratory Distress Syndrome and Mortality in Severe Sepsis: Phase IIb, Multi-Center, Randomized, Placebo Controlled, Clinical Trial. Critical Care Medicine, 31, 1612-1619. https://doi.org/10.1097/01.CCM.0000063267.79824.DB

  31. 31. Robert, M. and Kathleen, A.S. (2007) Emerging Role of Anticoagulants and Fibrinolytics in the Treatment of Acute Respiratory Distress Syndrome. Pharmacotherapy, 27, 860-873. https://doi.org/10.1592/phco.27.6.860

  32. 32. Lorraine, B.W., Eric, C., Karen, W.W., et al. (2006) Bench to Bedside: Targeting Coagulation and Fibrinolysis in Acute Lung Injury. American Journal of Physiology—Lung Cel-lular and Molecular Physiology, 291, 307-311. https://doi.org/10.1152/ajplung.00157.2006

  33. 33. Evans, M.J., Cabral, L.J., Stephens, R.J., et al. (1973) Renewal of Alveolar Epithelium in the Rat Following Exposure to NO2. The American Journal of Pathology, 70, 175-198.

  34. 34. Fang, C.Y., Lou, D.Y., Zhou, L.Q., et al. (2021) Natural Products: Potential Treatments for Cispla-tin-Induced Nephrotoxicity. Acta Pharmacologica Sinica, 42, 1951-1969. https://doi.org/10.1038/s41401-021-00620-9

  35. 35. Sepehr, R., Audi, S.H., Maleki, S., et al. (2013) Optical Imaging of Lipopolysaccharide-Induced Oxidative Stress in Acute Lung Injury from Hyperoxia and Sepsis. Journal of Innovative Optical Health Sciences, 6, Article ID: 1350017. https://doi.org/10.1142/S179354581350017X

  36. 36. Cinel, I. and Opal, S.M. (2009) Molecular Biology of Inflam-mation and Sepsis: A Primer. Critical Care Medicine, 37, 291-304. https://doi.org/10.1097/CCM.0b013e31819267fb

  37. 37. Fan, J., Ye, R.D. and Malik, A.B. (2001) Transcriptional Mechanisms of Acute Lung Injury. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 281, L1037-L1050. https://doi.org/10.1152/ajplung.2001.281.5.L1037

  38. 38. Ding, W., Shen, Y., Li, Q., et al. (2018) Therapeutic Mild Hypothermia Improves Early Outcomes in Rats Subjected to Severe Sepsis. Life Sciences, 15, 1-9. https://doi.org/10.1016/j.lfs.2018.03.002

  39. 39. Nallasamy, P., Si, H., Babu, P.V., et al. (2014) Sulforaphane Re-duces Vascular Inflammation in Mice and Prevents TNF-α-Induced Monocyte Adhesion to Primary Endothelial Cells through Interfering with the NF-κB Pathway. The Journal of Nutritional Biochemistry, 25, 824-833. https://doi.org/10.1016/j.jnutbio.2014.03.011

  40. 40. Fonceca, A.M., Zosky, G.R., Bozanich, E.M., et al. (2018) Ac-cumulation Mode Particles and LPS Exposure Induce TLR-4 Dependent and Independent Inflammatory Responses in the Lung. Respiratory Research, 19, Article No. 15. https://doi.org/10.1186/s12931-017-0701-z

  41. 41. Cheng, K.T., Xiong, S., Ye, Z., et al. (2017) Caspase-11-Mediated Endothelial Pyroptosis Underlies Endotoxemia-Induced Lung Injury. Journal of Clinical Investigation, 127, 4124-4135. https://doi.org/10.1172/JCI94495

  42. 42. Mitra, S., Exline, M., Habyarimana, F., et al. (2018) Microparticulate Caspase 1 Regulates Gasdermin D and Pulmonary Vascular Endothelial Cell Injury. American Journal of Respiratory Cell and Molecular Biology, 59, 56-64. https://doi.org/10.1165/rcmb.2017-0393OC

  43. 43. Zhang, Z.H., Chen, Z.G., Liu, R.M., et al. (2020) Bcl-2 Proteins Regulate Mitophagy in Lipopolysaccharide-Induced Acute Lung Injury via PINK1/Parkin Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 6579696. https://doi.org/10.1155/2020/6579696

  44. 44. Hu, Q., Liu, F., Yan, T., et al. (2019) MicroRNA5763p Inhibits the Migration and Proangiogenic Abilities of Hypoxia Treated Glioma Cells through Hypoxia-Inducible Factor1α. International Journal of Molecular Medicine, 43, 2387-2397. https://doi.org/10.3892/ijmm.2019.4157

  45. 45. Adameova, A.D., Bhullar, S.K., Elimban, V., et al. (2018) Activation of Adrenoceptors May Not Be Involved in Arrhythmogenesis in Ischemic Heart Disease. Reviews in Cardiovascular Medicine, 19, 97-101. https://doi.org/10.31083/j.rcm.2018.03.3181

  46. 46. Yang, Q., Zhang, D., Li, Y., et al. (2018) Paclitaxel Alleviated Liver Injury of Septic Mice by Alleviating Inflammatory Response via microRNA-27a/TAB3/NF-κB Signaling Pathway. Biomedicine & Pharmacotherapy, 97, 1424-1433. https://doi.org/10.1016/j.biopha.2017.11.003

  47. 47. Ge, C., Liu, J. and Dong, S. (2018) miRNA-214 Protects Sep-sis-Induced Myocardial Injury. Shock, 50, 112-118. https://doi.org/10.1097/SHK.0000000000000978

  48. 48. Yu, Y.L., Yu, G., Ding, Z.Y., et al. (2019) Overexpression of miR-145-5p Alleviated LPS-Induced Acute Lung Injury. Journal of Biological Regulators and Homeostatic Agents, 33, 1063-1072.

  49. 49. 徐锐峰, 杨威, 王剑冰, 等. miR-145-5p通过抑制ROCK1的表达减轻脓毒症诱导的急性肺损伤[J]. 川北医学院学报, 2021, 36(1): 1-8.

期刊菜单