Advances in Clinical Medicine
Vol. 13  No. 03 ( 2023 ), Article ID: 62994 , 12 pages
10.12677/ACM.2023.133631

脑小血管病相关研究进展

李佳宁1,周彦均1,马佳丽2,李永秋3*

1华北理工大学研究生院,河北 唐山

2华北理工大学附属医院神经内科,河北 唐山

3唐山市工人医院神经内科,河北 唐山

收稿日期:2023年2月21日;录用日期:2023年3月16日;发布日期:2023年3月24日

摘要

随着社会的不断发展,脑小血管病(cerebral small vessel disease, CSVD)已经成为老年人群的重要疾病之一,科技的发展也使CSVD的检出率逐渐提高。CSVD是一种从多方面影响人们健康的疾病,不同个体在发病形式、发病程度上都具有特异性。本文从CSVD的多个方面展开进行系统性回顾,目的在于使人们更全面的了解CSVD,为CSVD的早期防治提供依据。

关键词

脑小血管病,磁共振成像,危险因素,影像学标志物,生物标志物

Advances in the Research of Cerebral Small Vessel Disease

Jianing Li1, Yanjun Zhou1, Jiali Ma2, Yongqiu Li3*

1The Graduate School, North China University of Science and Technology, Tangshan Hebei

2Internal Medicine-Neurology, Affiliated Hospital of North China University of Science and Technology, Tangshan Hebei

3Internal Medicine-Neurology, Tangshan Gongren Hospital, Tangshan Hebei

Received: Feb. 21st, 2023; accepted: Mar. 16th, 2023; published: Mar. 24th, 2023

ABSTRACT

With the development of society, cerebral small vascular disease has become one of the important diseases in the elderly population, the rate of diagnosis of CSVD is also increasing with the development of science and technology. CSVD can affect people’s health in many ways. Different people have different clinical manifestations at different stages of this disease. This article is a systematic review of CSVD from various aspects, and the purpose is to make people more aware of this disease, so as to achieve the early prevention and treatment of CSVD.

Keywords:Cerebral Small Vessel Disease, Magnetic Resonance Imaging, Risk Factors, Imaging Markers, Biomarkers

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

近些年来,脑血管病发病率逐年增长,已经成为危害人们生命健康及高致残率的第三大危险因素,严重缩短了人们的寿命,降低了人们的生活质量,成为了广受社会关注的重大公共问题 [1]。脑血管病发病率的提高,引起了社会的重视,同时也有越来越多的研究人员开始完善相关方面的各种研究,如脑血管病发病机制的探索,挖掘脑血管病的危险因素,脑血管病的治疗与护理等,致力于从病因方面早期发现,早期预防,早期治疗,达到降低脑血管病发病率的目的。在脑血管病中,不容忽视但通常又不被人们所重视的为CSVD。脑血管病中的20%都由CSVD病所构成 [2],而且CSVD的发病率不低于急性脑血管病,甚至远高于急性脑血管病的发病率。不同于急性脑血管病的起病迅速,症状明显,通常为隐匿起病,早期的临床表现通常不易被识别辨认,患者及家属不易引起重视,甚至有些社区医护者及非专科医生都不易识别。

2. 脑小血管病定义

CSVD是一种老年人中常见的临床疾病,而社会经济的发展及科技进步,我国老龄化日益严重,人们平均寿命普遍提高,这使得CSVD的发病率逐年增长,大多数老年人的生活都受到了影响,生活质量严重下降 [3]。流行病学调查及研究表明,CSVD在不同地区、不同性别的发病率没有差异,但随着年龄的增长,发病率逐渐提高,流行病调查显示,65岁以上的老年人患病率明显提高,而90岁以上的老年人几乎都患有CSVD,具有CSVD临床表现或影像学的表现 [3] [4] [5] [6]。CSVD是在定义上指由各种病因导致的颅内脑小血管发生病变,从而引发的一系列临床、病理、影像综合改变的颅内综合征 [7] [8] [9]。脑小血管通常是指直径为50~400 um颅内小血管 [2],如小动脉、小静脉、毛细血管、微静脉及小静脉等。

3. 脑小血管病的临床表现及影像学表现

3.1. 脑小血管病的临床表现

CSVD早期可无症状或症状轻,通常不易被发觉,但随着病情的进展,逐步出现遍布颅内及全身躯体的症状,症状的临床表现形式多种多样,会从各个方面影响老年人的健康。典型的临床表现如血管性认知障碍及痴呆,老年的抑郁问题及情绪的异常,尿失禁及排尿障碍,步态异常等,并且随不同的个体及发病阶段,表现形式都不尽相同 [10]。CSVD作为引起血管性认知障碍的重要原因之一,可以引发超过一半以上的血管性认知障碍。血管性认知障碍通常导致人们的执行力及事件处理能力的下降,而记忆力一般不受影响 [7],而且CSVD造成的认知障碍通常呈现为进行性发展的,是无法逆转的 [11]。

3.2. 脑小血管病的影像学表现

依据起病形式的不同,CSVD的临床及影像学表现也会有所不同,急性起病的CSVD通常会进展为急性小梗死或者脑的微出血,表现为急性脑卒中的类似表现,如感觉性障碍、运动性障碍、共济功能障碍及构音障碍等;而CSVD的认知障碍通常是由慢性CSVD发展而来,除认知障碍外,脑白质的损坏还会导致锥体外系症状的发生,如姿势及行走步态的异常表现,括约肌功能的减退导致的尿失禁等 [12] [13]。CSVD带来的症状已经严重影响了患者的日常生活,给患者心理、行动及生活等多方面造成了不可磨灭的伤害及损伤,甚至会给患者及家属乃至社会造成沉重的负担。CSVD早期不易识别,但通常在影像学上有明显的标志,根据国际神经影像学血管性改变标准化报道共识,脑白质高信号,血管周围间隙扩大,血管源性腔梗灶,脑微出血,近期皮质下小梗死都为CSVD在核磁影像学上的标志物,并且对其进行了定性及定量的描述 [9]。CSVD虽然早期伤害不明显,甚至不被人们所发觉重视,特别是容易被当成老龄化的正常现象,但后期造成的危害重大,所以我们应该从社会方面重视CSVD。我们不仅要认识到CSVD的重要性及危害性,做到早期治疗,了解CSVD的临床表现及影像学标志物,做到早期诊断,还要不断探索CSVD的病因、发病机制及危险因素,做到早期预防。

由于CSVD早期临床表现不明显,不易被察觉的特点,我们诊断CSVD多依靠影像学进行辅助诊断,如磁共振成像(Magnetic Resonance Imaging, MRI)、动脉自旋标记(Arterial Spin Labeling, ASL)磁共振成像、7T核磁成像等,其中目前被广泛应用及熟知的是磁共振成像。MRI作为一种无创的检查方法,已经普遍被人们接受认可,一般情况下,脑组织结构、代谢功能状态都能被以影像形式呈现。CSVD的特殊性,使得影像判别标准尤为重要。而神经影像学血管性改变报告标准(STRIVE)早已提出CSVD主要有6中影像标志物,分别为:腔隙,近期皮质下梗死(Recent Small Subcortical Infarction, RSSI),脑白质高信号(White Matter Lesion, WMH),脑微出血(Cerebral Microbleeds, CMBs),扩大的血管周围间隙(Enlarged Perivascular Spaces, EPVS),脑萎缩 [14] [15] [16] [17] [18]。磁共振成像技术可以根据不同的序列,观测到不同的CSVD标志物,从而得出CSVD的诊断 [19] [20] :其中T1WI像可更好的观测到腔隙性脑梗死,表现为TIWI上直径为3~15 mm的类圆形低信号。T2WI像则可更好的观测到脑白质高信号,为侧脑室旁或深部脑白质旁上T2WI像高信号 [21],同时可以依据Fazikas量表,将脑室旁和深部白质病变分别进行评分,这为后续CSVD负荷评分提供了基础 [22]。而脑微出血则可在磁敏感加权成像中得到更为清晰的体现 [23],直径多为2~5 mm,最大直径达10 mm的类圆形等密度信号缺失灶(低信号),且边界清晰 [24]。而DWI像则可更好的观测近期皮质下梗死,能够很好的评估脑组织的病变,具有准确性高,方便简洁的特点,随着近些年来对DWI的普遍应用已经成为CSVD组织损伤程度的重要判别指标 [25],而近期皮质下梗死是指小穿支动脉梗死,等多发生于半卵圆中心、内囊、豆状核、丘脑、桥脑 [26] [27]。而扩大的血管周围间隙则呈现出与脑脊液相似的信号,直径小于3 mm,充满着液体并且沿着血管分布,可表现为线性或圆形 [24] [28] [29],依据数量的多少也可进行评分分级 [30],为脑血管病负荷的评分奠定基础。

在临床上单独的影响标志大多是不存在的,通常我们可以在一位患者的核磁影像学中看到多种CSVD的影像学标志,所以从是否具有某一影像学标志评判CSVD严重程度的方法是不可取的。所以在2014年Staals J等学者就提出CSVD总负荷的概念 [31],其中共选取腔隙、脑白质高信号、脑微出血、扩大的血管周围间隙四种影像学标志,从而进行评分,分值范围为0~4分。相较于单一的影像学标志来说,CSVD负荷评分能够更加全面的体现疾病的严重程度,也更全面的体现脑组织受累程度,分值越高,脑组织受累越广泛,CSVD程度更重。CSVD病总负荷评分逐渐成为衡量严重程度的综合性指标,也被更广泛的应用于各种研究中。

4. 脑小血管病发病机制及病因分型

4.1. 脑小血管病发病机制

虽然我们对CSVD的发病机制已经有了一定的探索,但对复杂的CSVD来说,仅仅是了解了一部分。目前已知导致CSVD的病因很多,如血管因素导致的CSVD,其中主要为动脉粥样硬化,最为常见的为小动脉粥样硬化及小动脉硬化 [32]。其他血管因素还包括如小静脉的系统功能紊乱及血脑屏障通透性增加 [33] [34],免疫炎性反应带来的血脑屏障的破坏导致CSVD的发生 [35]。其他病因及发病机制还包括慢性脑的低灌注影响、遗传与基因因素、脑–肠轴的影响及放射治疗导致提高CSVD的患病率等 [10] [36] - [40]。具体了解CSVD的发病机制,首先要了解脑小血管在颅内的组成。脑小血管涉及到的颅内血管通常为直径为40~500 um的小血管 [2],它们由大动脉分支而来,从颅内大动脉及脑膜的小动脉发出分支,连接毛细血管网,最后汇总于小静脉,形成完整的通路,建立起侧支循环,起着重要的畅通调节颅内血流分布的作用 [41]。

4.2. 脑小血管病病因分型

CSVD最常见的分型标准就是病因分型,早在2010年就有学者提出可以根据病因分型将CSVD分为6种类型 [42] :① 小动脉血管的硬化,这属于血管因素中最常见的病因之一,它与小动脉粥样硬化都属于血管因素导致的CSVD。小动脉粥样硬化也是目前在我国心脑血管病重最常见的病因 [43],动脉粥样硬化在镜下表现为内层脂质核心,外层纤维冒,当斑块损坏后,会激活免疫反应,同时血管内皮细胞的损伤导致组织因子释放,导致血管收缩,从而影响血液在血管内流速的改变。多种因素的公共作用加速了血管内的血栓形成速度 [44],从而导致CSVD中腔隙性脑梗死的形成。不同于动脉粥样硬化,小动脉硬化主要发生于血管内膜,主要病理表现为纤维素样的坏死及纤维物质的沉积,脂质的变性,动脉阶段性的损伤,微小动脉硬化及微粥瘤的形成。这一病理过程并不局限于某一部位的血管,多累及全身的小血管,镜下可见小动脉呈玻璃样变的病理变化 [45],同时高血压病、糖尿病与其也有着不可分割的联系 [46],所以一般又被称作高血压病性小血管病。② 炎症及免疫介导的小血管病,目前有学说提示,免疫炎性反应可能会带来血脑屏障的破坏及血管的炎性破坏,这可能是免疫炎症反应导致CSVD的重要原因 [47]。血脑屏障起到保护脑组织的作用,原理为血脑屏障可以通过调节自身控制物质的进出,过滤掉血液中对脑组织有害的分子 [48]。当血脑屏障破坏,大量炎症因子进入脑组织,诱发一系列反应损伤脑细胞 [49] [50]。而炎症因子如C-反应蛋白、肿瘤坏死因子-α等则会通过损伤血脑屏障进入脑组织,从而加重血脑屏障的破坏 [50] [51] [52] [53]。③ 散发性和遗传性脑淀粉样血管病,这种疾病通常在老年人中较为常见,病理表现为淀粉样的蛋白质沉积在不同位置,如大脑皮层下、小血管壁、软脑膜等。主要是是通过导致血管扩张,形成微小动脉瘤,闭塞血管等方式导致CSVD的形成。散发性的脑淀粉样血管病通常与ApoE基因相关,遗传性的脑淀粉样血管病通常表现为常染色体显性遗传 [54] [55] [56]。④ 遗传性小血管病,较为常见的有:伴皮质下梗死和脑白质病的常染色体显性遗传性脑动脉病及隐性遗传性脑动脉病,遗传性血管性视网膜病等 [57] [58] [59] [60]。⑤ 静脉胶原病。⑥ 其他小血管病。

5. 脑小血管病的危险因素

CSVD的社会危害性大,发病人群数量多,所以探索CSVD危险因素刻不容缓。但CSVD发病机制有很多,虽然目前已经有部分危险已经被人们熟知,但仍有些病因不明确,我们仍需在以前研究的基础上不断探索,早期防治CSVD,阻止疾病的发生发展。

5.1. 年龄

随着年龄的增长,CSVD的发病率明显提高。而研究发现,高达100%的90岁上患者都具有脑白质高信号的影像学标志,并且有5%的几率存在于50岁以上患者 [61] ;而在45~50岁的人群中,可能微出血的检出率仅有个位数,但随着年龄的增长,在80~90岁人群中,微出血检出率大大提高,甚至达到了36% [62]。早期的解剖研究发现,颅内的不同小血管结构可组建呈的脑小血管网,而其中含有丰富的神经血管单元(NVU) [63]。这是由神经元、星形胶质细胞、内皮细胞、周皮细胞、血管平滑肌细胞等所构成的具有一定结构功能的颅内特殊神经元 [64]。随着年龄的增长,提供给脑部的血液、营养物质、能量都减少,神经元因缺乏供给而衰竭死亡,导致颅内神经细胞的功能下降及损伤 [64]。同时在年龄增长的过程中,人体内整体生理功能的下降,血管内皮细胞功能逐渐减弱,血管的弹性减弱,脆性升高,使得血管尤其小血管的调节能力减弱,使得人体内血管受损。年龄为CSVD发生的重要因素之一,虽为不可人为干涉的因素,但也应该提高重视,加强中老年人的影像学检查,及时发现疾病,延缓疾病的发生发展,从而减轻相应的临床表现,提高老年人的生活质量,为家人及社会方面减轻负担。

5.2. 性别

目前,在性别方面没有某一性别明显提高CSVD的确切说法。有部分研究表示,老年女性人群相较于老年男性人群的发病率更高,原因可能和激素水平有关,雌激素作为一种能够降低血液中血脂水平的激素,具有减慢血管动脉硬化的作用,而女性绝经后的雌激素水平会相较于绝经前有较大的降低,增加了血管硬化的风险,从而提高了CSVD的患病率,所以有研究表明,66岁后女性发病率明显高于男性 [65]。国外曾有研究报告,大血管梗死和小血管闭塞性梗死是男性发生脑卒中的主要形式 [66],并且国内也有研究显示,男性患CSVD的风险高于女性 [67] [68]。我们初步分析这可能与男性有吸烟、饮酒等不良习惯的人群大于女性,也有可能和男性压力大于女性等因素相关,这都加速了颅内小动脉的病理改变,提高了CSVD的发生率。

5.3. 基因遗传因素

随着科技的发展,基因检测技术逐渐成熟,人们发现遗传性CSVD的种类越来越多,而基因遗传因素成为CSVD的重要致病因素之一。遗传性CSVD又被成为单基因CSVD [69] [70],种类多种多样,包括:常染色体显性遗传的伴皮层下梗死和白质脑病的常染色体显性遗传性脑动脉病(CADASIL),伴性遗传的Fabry病等。相较于其他疾病的不稳定性,CADASIL具有相对平缓且稳定的发病过程,20~40岁首先出现偏头痛症状,40~60岁出现反复的缺血性脑卒中,60岁后出现智力、记忆力、情感的减退及障碍,平均死亡年龄为60~70岁 [71] [72],我国已发表个例报道多例。磁共振成像技术虽然能诊断CSVD,但随着基因技术的发展,某些特定的基因也可以逐渐作为筛查CSVD的指标,对CSVD的早期筛查诊断起着非常关键性的作用,将会是人类医学科技进步的一大步。

5.4. 高血压

目前高血压(Hypertension, HT)已经成为影响脑血管病三大危险因素之一 [2],且HT与年龄增长为CSVD的独立危险因素 [73] [74]。长时间的血压增高会导致血管的弹性减弱,脆性增加 [75] [76],导致后期轻微的血压波动就容易发生脑的微出血或局灶性的缺血 [77]。国内有研究表明,血压中的收缩压为CSVD的危险因素之一 [78]。而HT引起CSVD的主要机制除了致使血管弹性减弱外,还可以通过破坏血脑屏障、氧化应激反应及炎症反应等渠道导致CSVD的发生发展 [7] [79]。流行病学调查显示,目前全球范围内HT患者高达11.3亿 [79],HT具有发病率高,发病人数广等特点,作为CSVD的重要危险因素,已经严重影响了机体的平衡,造成多种疾病的发生发展。除了持续增高的血压,长时间血压的大范围波动也会影响脑组织的功能,随着人们对血压的了解与重视,24小时动态血压监测(ABPM)、动态血压(ABP)、血压变异性(BPV)及血压昼夜规律等的提出,更加高效、准确、全面的获取了血压信息,预测脑组织及其他靶器官的受损情况 [80] [81] [82] [83] [84]。

5.5. 糖尿病

糖尿病(Diabetes Mellitus, DM)作为和高血压、高同型半胱氨酸血症并列为引起脑血管病的三大危险因素之一 [2],与CSVD的发生发展中具有密切的联系。流行病学调查显示,在急性脑卒中患者中,约有33%都伴有DM [76]。目前有研究显示,血糖的增高会导致颅内脑组织细胞发生低氧,能量供给不足,从而致使颅内小血管发生损伤 [85] ;同时,增高的血糖加快了动脉粥样硬化及板块的形成,提高了脑血管病的发生率 [86]。糖化血红蛋白(HbA1c)是反应人体内近3个月内血糖平均水平的综合性指标,是由血液中的血红蛋白(Hb)与血糖相结合,与血糖成正向相关 [87]。有研究表明,Hb水平的高低与脑微出血的发生及数量和脑白质高信号的发生发展都密切相关 [88] [89] [90] [91]。所以,DM作为CSVD的可能影响因素之一,应该被重视并提高血糖的控制。

5.6. 高同型半胱氨酸血症

同型半胱氨酸(Homocysteine)作为蛋氨酸代谢过程中由脱甲基作用所产生的一种含疏基的非必须氨基酸,在正常的血液环境及机体功能下由肾脏进行排泄,保持在血液中浓度的稳定。研究表明,当血液中的同型半胱氨酸水平持续异常增高时成为高同型半胱氨酸血症(Hyperhomocysteinemia, HCY),心脑血管疾病的患病率会大幅度提高 [92]。Hcy对大动脉造成血管损伤的浓度明显高于小血管造成同等损伤的浓度,这间接说明,Hcy对CSVD的影响更为敏感 [93]。Hcy不仅提示疾病的发生,大量的研究表明,同型半胱氨酸水平的高低对判断疾病的严重程度也有一定的提示作用,如血液中同型半胱氨酸水平也一定程度反应认知功能的损伤程度 [94] [95],甚至能在一定程度上诊断CSVD的亚型 [96]。而Hcy在人体内的机制尚不完全明确,目前推测Hcy发病机制可能和氧化损伤、质代谢异常、神经毒性作用等相关。

5.7. 血脂

血脂一般包括总胆固醇(Total Cholesterol, TC)、甘油三酯(Total Triglyceride, TG)、高密度脂蛋白(High Density Lipoprotein Cholesterol, LDL-C)、低密度脂蛋白(Lov Density Lipoprotein Cholesterol, HDL-C)等,而在正常人体中,相较于TG、TC、HDL-C对内环境造成的影响,LDL-C往往起着保护性作用 [97]。血脂代谢的紊乱往往加大了心脑血管疾病的发病临床,主要机制为血液中除LDL-C外的脂类异常增多,导致了相关淀粉样βtua蛋白的沉积,逐渐形成斑块致使血管发生粥样硬化 [98] [99] ;除此外,研究表明TG还具有一定程度的促凝作用,TG水平升高后使得血流内更易形成血栓,导致局部血管的梗死;有研究表明,HDL-C的异常增高,会导致提高CSVD分型中腔隙和脑白质高信号的发病率 [100],并且持续5年的强化降脂会使脑血管病的发病率降低16% [101],但也有研究表明,将HDL-C降低芝70 mg/dl以下可能会在一定程度上增加脑出血的风险 [102] [103] [104],并且HDL-C的降低可能会增加CSVD中腔隙性脑梗死患者患脑微出血的患病率 [105]。而LDL-C作为保护因素,能够减轻痴呆等CSVD造成的疾病的发生发展。综合来看,血脂与CSVD的发生发展密不可分,但在具体的机制及影响方面尚不完全明确,我们仍需要进一步完善相关研究,探索血脂与CSVD的关系。

5.8. 尿酸

尿酸(Uric Acid, UA)是由嘌呤核苷酸经过复杂的代谢过程,由最终的代谢为黄嘌呤所氧化生成的,而超氧自由基及过氧化氢等因子则有这一系列的代谢反应及过程中产生,这些因子及产物促进了氧化应激反应 [106],增加了体内的炎性反应及血管、内皮细胞的损伤。而据研究显示,作为人体内天然氧化剂的UA,约有50%的抗氧化作用都有UA产生 [107],这一过程是通过清除体内自由基从而减轻细胞内皮所受氧化应激作用来实现的,而抗氧作用在一定程度上减少了血管及脑组织的损坏。这说明,UA具有抗两个方面的作用,一方面可以抑制氧化作用的发生,同时另一方面也可以促进氧化作用。一般情况下,人体内的UA经过肾脏、肠道排出肠外并稳定在正常范围,当人体内平衡被打破时,血液中UA会持续出现升高,表现为高尿酸状态。有学者曾做相关研究表示,在急性缺血性脑卒中初期,低水平的UA可能起到保护脑细胞的作用 [108] ;同时也有研究发现,高水平的UA会造成脑部血管内皮细胞损伤,从而引发CSVD中脑白质高信号的发生 [109] [110] [111],Ryu等研究也证明UA和脑微出血相关 [112],也有研究发现UA的升高是腔隙性脑梗死的危险因素之一 [113]。综合上述观点,大量研究都表明UA和CSVD是相关的,但和CSVD具体分型的相关性尚不明确,仍需继续探索研究。

6. 总结与展望

随着社会经济的发展,人口年龄不断增长,CSVD在人群中的发病率日渐提高。CSVD早期临床症状不明显,不易被人们所重视,但随着病情的发展会出现血管性认知障碍、情绪异常、排尿障碍及步态异常等累及多系统的症状,严重影响了人们的生活质量。目前虽然已经对CSVD的发病机制及病因进行了相关研究及探索,但尚不完全明确,仍有许多问题需要进行研究探索。而人们目前对CSVD的危险因素也有了一定程度的研究,除不可干预的因素如年龄、性别、基因遗传等外,我们可以通过改善可干预因素如控制血压、血糖、血脂等降低CSVD的发病率,延缓CSVD的进展。所以,CSVD的病因、发病机制及危险因素的探索就显得尤为重要,期待能有更多关于CSVD的相关研究,为临床提供更多的治疗方案方法,从而提高CSVD患病人群的生活质量。

文章引用

李佳宁,周彦均,马佳丽,李永秋. 脑小血管病相关研究进展
Advances in the Research of Cerebral Small Vessel Disease[J]. 临床医学进展, 2023, 13(03): 4403-4414. https://doi.org/10.12677/ACM.2023.133631

参考文献

  1. 1. 王拥军, 李子孝, 谷鸿秋, 等. 中国卒中报告2019(中文版)(1) [J]. 中国卒中杂志, 2020, 15(10): 1037-1043.

  2. 2. Rizzoni, D., Rizzoni, M., Nardin, M., et al. (2019) Vascular Aging and Disease of the Small Vessels. High Blood Pressure & Cardiovascular Prevention, 26, 183-189. https://doi.org/10.1007/s40292-019-00320-w

  3. 3. Cannistraro, R.J., Badi, M., Eidelman, B.H., et al. (2019) CNS Small Vessel Disease: A Clinical Review. Neurology, 92, 1146-1156. https://doi.org/10.1212/WNL.0000000000007654

  4. 4. Haffner, C., Malik, R. and Dichgans, M. (2016) Ge-netic Factors in Cerebral Small Vessel Disease and Their Impact on Stroke and Dementia. Journal of Cerebral Blood Flow & Metabolism, 36, 158-171. https://doi.org/10.1038/jcbfm.2015.71

  5. 5. Litak, J., Mazurek, M., Kulesza, B., et al. (2020) Cerebral Small Vessel Disease. International Journal of Molecular Sciences, 21, 9729. https://doi.org/10.3390/ijms21249729

  6. 6. Choidak-Lukasiewicz, J., Dziadkowiak, E., Zimny, A., et al. (2021) Cerebral Small Vessel Disease: A Review. Advances in Clinical and Experimental Medicine, 30, 349-356. https://doi.org/10.17219/acem/131216

  7. 7. 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国脑小血管病诊治共识[J]. 中华神经科杂志, 2015, 48(10): 838-844.

  8. 8. Pantoni, L. (2010) Cerebral Small Vessel Disease: From Pathogenesis and Clinical Characteristics to Therapeutic Challenges. The Lancet Neurology, 9, 689-701. https://doi.org/10.1016/S1474-4422(10)70104-6

  9. 9. Wardlaw, J.M. and Smith, E.E. (2013) Neuroimaging Standards for Research into Small Vessel Disease and Its Contribution to Ageing and Neurodegeneration. The Lancet Neurology, 12, 822-838. https://doi.org/10.1016/S1474-4422(13)70124-8

  10. 10. Shi, Y. and Wardlaw, J.M. (2016) Update on Cerebral Small Vessel Disease: A Dynamic Whole-Brain Disease. Stroke and Vascular Neurology, 1, 83-92. https://doi.org/10.1136/svn-2016-000035

  11. 11. Huijts, M., Duits, A., van Oostenbrugge, R.J., et al. (2013) Accumulation of MRI Markers of Cerebral Small Vessel Disease Is Associated with Decreased Cognitive Function. A Study in First-Ever Lacunar Stroke and Hypertensive Patients. Frontiers in Aging Neuroscience, 5, 72. https://doi.org/10.3389/fnagi.2013.00072

  12. 12. Zhang, A.J., Yu, X.J. and Wang, M. (2010) The Clinical Man-ifestations and Pathophysiology of Cerebral Small Vessel Disease. Neuroscience Bulletin, 26, 257-264. https://doi.org/10.1007/s12264-010-1210-y

  13. 13. 刘小溪. 脑小血管病对脑卒中预后影响的研究进展[J]. 中国临床医生杂志, 2019, 47(7): 780-782.

  14. 14. Gorelick, P.B., Scuteri, A., Black, S.E., et al. (2011) Vascular Contri-butions to Cognitive Impairment and Dementia: A Statement for Healthcare Professionals from the American Heart As-sociation/American Stroke Association. Stroke, 42, 2672-2713. https://doi.org/10.1161/STR.0b013e3182299496

  15. 15. 倪俊, 徐运. 脑小血管病转化医学研究中国专家共识[J]. 中国中杂志, 2018, 13(8): 853-870.

  16. 16. Bai, Y., Han, Y.D., Yan, X.L., et al. (2018) Adipose Mesenchymal Stem Cell-Derived Exosomes Stimulated by Hydrogen Peroxide Enhanced Skin Flap Recovery in Ischemia-Reperfusion Injury. Biochemical and Biophysical Research Communications, 500, 310-317. https://doi.org/10.1016/j.bbrc.2018.04.065

  17. 17. Kim, B.J. and Lee, S.H. (2015) Prognostic Impact of Cerebral Small Vessel Disease on Stroke Outcome. Journal of Stroke, 17, 101-110. https://doi.org/10.5853/jos.2015.17.2.101

  18. 18. Wardlaw, J.M., Smith, C. and Dichgans, M. (2019) Small Vessel Disease: Mechanisms and Clinical Implications. The Lancet Neurology, 18, 684-696. https://doi.org/10.1016/S1474-4422(19)30079-1

  19. 19. Patel, B. and Markus, H.S. (2011) Magnetic Resonance Imaging in Cerebral Small Vessel Disease and Its Use as a Surrogate Disease Marker. International Journal of Stroke, 6, 47-59. https://doi.org/10.1111/j.1747-4949.2010.00552.x

  20. 20. 中国研究型医院学会脑小血管病专业委员会《中国脑小血管病诊治专家共识》编写组. 中国脑小血管病诊治专家共识2021[J]. 中国卒中杂志, 2021, 16(7): 716-726.

  21. 21. Lampe, L., et al. (2019) Lesion Location Matters: The Relationships between White Matter Hyperintensi-ties on Cognition in the Healthy Elderly. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the Inter-national Society of Cerebral Blood Flow and Metabolism, 39, 36-43. https://doi.org/10.1177/0271678X17740501

  22. 22. Van Straaten, E.C.W., Fazekas, F., Rostrup, E., et al. (2006) Impact of White Matter Hyperintensities Scoring Method on Correlations with Clinical Data: The LADIS Study. Stroke: A Journal of Cerebral Circulation, 37, 836-840. https://doi.org/10.1161/01.STR.0000202585.26325.74

  23. 23. Fazekas, F., Chawluk, J., Alavi, A., et al. (1987) MR Signal Abnormalities at 1.5T in Alzheimer’s Dementia and Normal Aging. American Journal of Roentgenology, 149, 351-356. https://doi.org/10.2214/ajr.149.2.351

  24. 24. Fazekas, F., Frayne, R., Wardlaw, J.M., et al. (2013) Neuroimaging Standards for Research into Small Vessel Disease and Its Contribution to Ageing and Neurodegeneration. The Lancet Neurology, 12, 822-838. https://doi.org/10.1016/S1474-4422(13)70124-8

  25. 25. Gunda, B., Porcher, R., Duering, M., et al. (2014) ADC Histograms from Routine DWI for Longitudinal Studies in Cerebral Small Vessel Disease: A Field Study in CADASIL. PLOS ONE, 9, e97173. https://doi.org/10.1371/journal.pone.0097173

  26. 26. Rutten-Jacobs, L.C.A. and Markus, H.S. (2017) Vascular Risk Factor Profiles Differ between Magnetic Resonance Imaging-Defined Subtypes of Younger-Onset Lacunar Stroke. Stroke: A Journal of Cerebral Circulation, 48, 2405. https://doi.org/10.1161/STROKEAHA.117.017813

  27. 27. Hernández, M.C.V., et al. (2015) A Comparison of Location of Acute Symptomatic vs. “Silent” Small Vessel Lesions. International Journal of Stroke: Official Journal of the International Stroke Society, 10, 1044-1050. https://doi.org/10.1111/ijs.12558

  28. 28. Chabriat, H., Zhu, Y.C., Tzourio, C., et al. (2011) Frequency and Loca-tion of Dilated Virchow-Robin Spaces in Elderly People: A Population-Based 3D MR Imaging Study. AJNR. American Journal of Neuroradiology, 32, 709-713. https://doi.org/10.3174/ajnr.A2366

  29. 29. Liang, Y., et al. (2018) Enlarged Perivascular Spaces in the Centrum Semiovale Are Associated with Poststroke Depression: A 3-Month Prospective Study. Journal of Affective Disorders, 228, 166-172.

  30. 30. Doubal, F.N., Dennis, M.S., Maclullich, A.M., et al. (2010) Enlarged Perivascular Spaces on MRI Are a Feature of Cerebral Small Vessel Disease. Stroke: A Journal of Cerebral Circulation, 41, 450-454. https://doi.org/10.1161/STROKEAHA.109.564914

  31. 31. Staals, J., Makin, S.D., Doubal, F.N., et al. (2014) Stroke Subtype, Vascular Risk Factors, and Total MRI Brain Small-Vessel Disease Burden. Neurology, 83, 1228-1234. https://doi.org/10.1212/WNL.0000000000000837

  32. 32. 徐群. 脑小血管病影像标志共识指南解读[J]. 神经病学与神经康复学志, 2016, 12(1): 17-23.

  33. 33. Jiang, J., Huang, X., Zhang, Y., et al. (2019) Total MRI Burden of Cerebral Vessel Disease Correlates with the Progression in Patients with Acute Single Small Subcortical Strokes. Brain and Behavior, 9, e01173. https://doi.org/10.1002/brb3.1173

  34. 34. Li, Q., Yang, Y., Reis, C., et al. (2018) Cerebral Small Vessel Disease. Cell Transplantation, 27, 1711-1712. https://doi.org/10.1177/0963689718795148

  35. 35. Caunca, M.R., De Leon-Benedetti, A., Latour, L., et al. (2019) Neuroimaging of Cerebral Small Vessel Disease and Age-Related Cognitive Changes. Frontiers in Aging Neuro-science, 11, 145. https://doi.org/10.3389/fnagi.2019.00145

  36. 36. Petersen, M., Frey, B.M., Schlemm, E., et al. (2020) Network Localisation of White Matter Damage in Cerebral Small Vessel Disease. Scientific Reports, 10, Article No. 9210. https://doi.org/10.1038/s41598-020-66013-w

  37. 37. Weller, R.O., Hawkes, C.A., Kalaria, R.N., et al. (2015) White Matter Changes in Dementia: Role of Impaired Drainage of Interstitial Fluid. Brain Pathology, 25, 63-78. https://doi.org/10.1111/bpa.12218

  38. 38. Ghaznawi, R., Geerlings, M.I., Jaarsma-Coes, M.G., et al. (2019) The Association between Lacunes and White Matter Hyperintensity Features on MRI: The SMART-MR Study. Journal of Cerebral Blood Flow & Metabolism, 39, 2486-2496. https://doi.org/10.1177/0271678X18800463

  39. 39. Hansen, T.P., Cain, J., Thomas, O., et al. (2015) Dilated Perivascular Spaces in the Basal Ganglia Are a Biomarker of Small-Vessel Disease in a Very Elderly Population with Dementia. AJNR: American Journal of Neuroradiology, 36, 893-898. https://doi.org/10.3174/ajnr.A4237

  40. 40. Cheng, A.L., Batool, S., Mc Creary, C.R., et al. (2013) Susceptibil-ity—Weighted Imaging Is More Reliable than T2*-Weighted Gradient Recalled Echo MRI for Detecting Microbleeds. Stroke, 44, 2782-786. https://doi.org/10.1161/STROKEAHA.113.002267

  41. 41. Cannistraro, R.J., Badi, M., Eidelman, B.H., et al. (2019) CNS Small Vessel Disease: A Clinical Review. Neurology, 92, 1146-1156. https://doi.org/10.1212/WNL.0000000000007654

  42. 42. Pantoni, L. (2010) Cerebral Small Vessel Disease: From Pathogenesis and Clinical Characteristics to Therapeutic Challenges. The Lancet Neurology, 9, 689-701. https://doi.org/10.1016/S1474-4422(10)70104-6

  43. 43. Genkel, V.V., Kuznetcova, A.S. and Shaposhnik, I.L. (2020) Biomechanical Forces and Atherosclerosis: From Mechanism to Diagnosis and Treatment. Current Cardiology Reviews, 16, 187-197. https://doi.org/10.2174/1573403X15666190730095153

  44. 44. Durham, A.L., Speer, M.Y., Scatena, M., et al. (2018) Role of Smooth Muscle Cells in Vascular Calcification: Implications in Atherosclerosis Stiffness. Cardiovascular Research, 114, 590-600. https://doi.org/10.1093/cvr/cvy010

  45. 45. Inagaki, T., Fujiwara, K., Shinohara, Y., et al. (2021) Perivascular Macrophages Produce Type I Collagen around Cerebral Small Vessels under Prolonged Hyper-tension in Rats. Histochemistry and Cell Biology, 155, 503-512. https://doi.org/10.1007/s00418-020-01948-9

  46. 46. Blevins, B.L., Vinters, H.V., Love, S., et al. (2021) Brain Arteriolosclerosis. Acta Neuropathologica, 141, 1-24. https://doi.org/10.1007/s00401-020-02235-6

  47. 47. Troili, F., Cipollini, V., Moci, M., et al. (2020) Perivascular Unit: This Must Be the Place. The Anatomical Crossroad between the Immune, Vascular and Nervous System. Frontiers in Neuroanatomy, 14, 17. https://doi.org/10.3389/fnana.2020.00051

  48. 48. Thrippleton, M.J., Backes, W.H., Sourbron, S., et al. (2019) Quantifying Blood-Brain Barrier Leakage in Small Vessel Disease: Review and Consensus Recommendations. Alz-heimer’s & Dementia, 15, 840-858. https://doi.org/10.1016/j.jalz.2019.01.013

  49. 49. Li, T., Huang, Y., Cai, W., et al. (2020) Age-Related Cerebral Small Vessel Disease and Inflammaging. Cell Death & Disease, 11, 932. https://doi.org/10.1038/s41419-020-03137-x

  50. 50. Fu, Y. and Yan, Y. (2018) Emerging Role of Immunity in Cerebral Small Vessel Disease. Frontiers in Immunology, 9, 67. https://doi.org/10.3389/fimmu.2018.00067

  51. 51. Jian, B., Hu, M., Cai, W., et al. (2020) Update of Immunose-nescence in Cerebral Small Vessel Disease. Frontiers in Immunology, 11, Article ID: 585655. https://doi.org/10.3389/fimmu.2020.585655

  52. 52. Noz, M.P., Ter Telgte, A., Wiegertjes, K., et al. (2018) Trained Immunity Characteristics Are Associated with Progressive Cerebral Small Vessel Disease. Stroke, 49, 2910-2917. https://doi.org/10.1161/STROKEAHA.118.023192

  53. 53. Hickman, S., Izzy, S., Sen, P., et al. (2018) Microglia in Neurodegeneration. Nature Neuroscience, 21, 1359-1369. https://doi.org/10.1038/s41593-018-0242-x

  54. 54. Young, K.Z., Xu, G., Keep, S.G., et al. (2021) Overlapping Protein Accumulation Profiles of CADASIL and CAA: Is There a Common Mechanism Driving Cerebral Small-Vessel Disease? The American Journal of Pathology, 191, 1871-1887. https://doi.org/10.1016/j.ajpath.2020.11.015

  55. 55. Charidimou, A., Boulouis, G., Gurol, M.E., et al. (2017) Emerging Concepts in Sporadic Cerebral Amyloid Angiopathy. Brain, 140, 1829-1850. https://doi.org/10.1093/brain/awx047

  56. 56. Take, Y., Chikai, Y., Shimamori, K., et al. (2021) Amyloid β Ag-gregation Induces Human Brain Microvascular Endothelial Cell Death with Abnormal Actin Organization. Biochemistry and Biophysics Reports, 29, Article ID: 101189. https://doi.org/10.1016/j.bbrep.2021.101189

  57. 57. Giau, V.V., Bagyinszky, E., Youn, Y.C., et al. (2019) Ge-netic Factors of Cerebra Small Vessel Disease and Their Potential Clinical Outcome. International Journal of Molecular Sciences, 20, 4298. https://doi.org/10.3390/ijms20174298

  58. 58. Wang, M.M. (2018) CADASIL. In: Hand-book of Clinical Neurology, Vol. 148, Elsevier, Amsterdam, 733-743. https://doi.org/10.1016/B978-0-444-64076-5.00047-8

  59. 59. Uemura, M., Nozaki, H., Kato, T., et al. (2020) HTRA-Related Cerebral Small Vessel Disease: A Review of the Literature. Frontiers in Neurology, 11, 545. https://doi.org/10.3389/fneur.2020.00545

  60. 60. de Boer, I., Pelzer, N. and Terwindt, G. (2019) Retinal Vascu-lopathy with Cerebral Leukoencephalopathy and Systemic Manifestations. In: Adam, M.P., Ardinger, H.H., Pagon, R.A., et al., Eds., GeneReviews® [Internet], University of Washington, Seattle, 1993-2023.

  61. 61. de Leeuw, F.E., de Groot, J.C., Achten, E., et al. (2001) Prevalence of Cerebral White Matter Lesions in Elderly People: A Population Based Mag-netic Resonance Imaging Study. The Rotterdam Scan Study. Journal of Neurology, Neurosurgery and Psychiatry, 70, 9-14. https://doi.org/10.1136/jnnp.70.1.9

  62. 62. Poels, M.M., Vernooij, M.W., Ikram, M.A., et al. (2010) Prev-alence and Risk Factors of Cerebral Microbleeds: An Update of the Rotterdam Scan Study. Stroke, 41, S103-S106.

  63. 63. Iadecola, C. (2017) The Neurovascular Unit Coming of Age: A Journey through Neurovascular Cou-pling in Health and Disease. Neuron, 96, 17-42. https://doi.org/10.1016/j.neuron.2017.07.030

  64. 64. 樊亚超, 王海峰, 王新, 等. 缺血性脑小血管病患者轻度认知障碍的危险因素和临床特征: 回顾性病例系列研究[J]. 国际脑血管病杂志, 2012, 20(8): 564-569.

  65. 65. 史艳, 郭力, 解庆凡, 王飞, 刘雅林. 缺血性脑小血管病的相关危险因素性别差异的研究[J]. 中风与神经疾病杂志, 2015, 32(8): 695-698.

  66. 66. Appelros, P., Stegmayr, B. and Terént, A. (2009) Sex Differences in Stroke Epidemiology: A Systematic Review. Stroke, 40, 1082-1090. https://doi.org/10.1161/STROKEAHA.108.540781

  67. 67. 李卫征, 刘鸣, 吴波, 郝子龙, 冯社军. 不同性别脑卒中危险因素类型及预后的比较研究[J]. 中国实用内科杂志, 2009, 29(5): 444-446.

  68. 68. 史艳, 郭力, 王飞, 闫振宇, 韩沁宇, 刘雅林. 缺血性脑小血管病160例相关危险因素分析[J]. 脑与神经疾病杂志, 2015, 23(6): 461-464.

  69. 69. Søndergaard, C.B., et al. (2017) Hereditary Cerebral Small Vessel Disease and Stroke. Clinical Neurolo-gy and Neurosurgery, 155, 45-57. https://doi.org/10.1016/j.clineuro.2017.02.015

  70. 70. Saito, R. and Lioutas, V.-A. (2020) Diagnosis and Management of Monogenic Cerebral Small Vessel Diseases. European Journal of Neurol-ogy, 27, 1097-1098. https://doi.org/10.1111/ene.14222

  71. 71. 胡新星, 秦超, 程道宾, 叶子明, 王天保. 伴皮质下梗死和白质脑病的常染色体显性遗传性脑动脉病的临床特点(附1家系报告) [J]. 临床神经病学杂志, 2013, 26(4): 254-256.

  72. 72. 向瑶, 周珂, 王国瑾. 伴脑出血的CADASIL(附1例报道) [J]. 卒中与神经疾病, 2010, 17(3): 169-171.

  73. 73. Zhou, L.W., Panenka, W.J., Al-Momen, G., et al. (2020) Cerebral Small Vessel Disease, Risk Factors, and Cognition in Tenants of Precarious Housing. Stroke, 51, 3271-3278. https://doi.org/10.1161/STROKEAHA.120.030446

  74. 74. Del Brutto, O.H., Mera, R.M., Recalde, B.Y., et al. (2020) Cerebral Small Vessel Disease in Community-Dwelling Older Adults Living in Remote Rural Settings. Journal of the Neurological Sciences, 416, Article ID: 117016. https://doi.org/10.1016/j.jns.2020.117016

  75. 75. 詹媛, 张玉萍, 李雷利, 等. 高同型半胱氨酸血症与脑血管疾病相关性的研究进展[J]. 中华临床医师杂志, 2017, 17(3): 506-509.

  76. 76. 王倩. 114例脑小血管病临床影像分析[D]: [硕士学位论文]. 长春: 吉林大学, 2015.

  77. 77. Liu, N., Xue, Y., Tang, J., et al. (2021) The Dynamic Change of Phenotypic Markers of Smooth Muscle Cells in an Animal Model of Cerebral Small Vessel Disease. Microvascular Re-search, 133, Article ID: 104061. https://doi.org/10.1016/j.mvr.2020.104061

  78. 78. 提衍丽. 脑小血管病致认知情感障碍相关危险因素分析[D]: [硕士学位论文]. 长春: 吉林大学, 2015.

  79. 79. 马俊怡, 徐运. 高血压患者大脑的结构/功能MRI改变[J]. 中风与神经疾病杂志, 2020, 37(6): 502-504.

  80. 80. Kario, K., Hoshide, S., Chia, Y.C., et al. (2021) Guidance on Ambula-tory Blood Pressure Monitoring: A Statement from the HOPE Asia Network. The Journal of Clinical Hypertension (Greenwich), 23, 411-421. https://doi.org/10.1111/jch.14128

  81. 81. Zawadzki, M.J., Small, A.K. and Gerin, W. (2017) Ambulatory Blood Pressure Variability: A Conceptual Review. Blood Pressure Monitoring, 22, 53-58. https://doi.org/10.1097/MBP.0000000000000230

  82. 82. Klarenbeek, P., Van Oostenbrugge, R.J., Rouhl, R.P., et al. (2013) Ambulatory Blood Pressure in Patients with Lacunar Stroke: Association with Total MRI Burden of Cere-bral Small Vessel Disease. Stroke, 44, 2995-2999. https://doi.org/10.1161/STROKEAHA.113.002545

  83. 83. Yamaguchi, Y., Wada, M., Sato, H., et al. (2014) Impact of Ambulatory Blood Pressure Variability on Cerebral Small Vessel Disease Progression and Cognitive Decline in Community-Based Elderly Japanese. The American Journal of Hypertension, 27, 1257-1267. https://doi.org/10.1093/ajh/hpu045

  84. 84. Lau, L.-H., et al. (2019) Prevalence of Diabetes and Its Effects on Stroke Outcomes: A Meta-Analysis and Literature Review. Journal of Diabetes Investigation, 10, 780-792. https://doi.org/10.1111/jdi.12932

  85. 85. 刘辉文, 金铃, 颜勇华, 等. Ⅱ型糖尿病动脉血管病变与血小板的关系研究[J]. 医学临床研究, 2013, 30(8): 1581-1583.

  86. 86. Wang, L. and Tang, C.J. (2020) Targeting Platelet in Ath-erosclerosis Plaque Formation: Current Knowledge and Future Perspectives. International Journal of Molecular Sciences, 21, 9760. https://doi.org/10.3390/ijms21249760

  87. 87. 刘付湘. 糖化血红蛋白检测方法研究与实践[J]. 糖尿病新世界, 2019, 22(15): 194-195+198. https://doi.org/10.16658/j.cnki.1672-4062.2019.15.194

  88. 88. 罗云, 李政, 张佳慧, 李敬伟, 卢正娟. 脑梗死患者急性应激性血糖升高与糖化血红蛋白的相关性[J]. 中华老年医学杂志, 2020, 39(2): 155-158.

  89. 89. 左兴云. 缺血性脑血管病伴脑微出血的危险因素分析[J]. 当代医学, 2020, 26(6): 185-187.

  90. 90. De Havenon, A., Majersik, J.J., Tirsc Hwell, D.L., et al. (2019) Blood Pressure, Glycemic Control, and White Mater Hyperintensity Progression in Type 2 Diabetics. Neurology, 92, e1168-e1175. https://doi.org/10.1212/WNL.0000000000007093

  91. 91. 徐畅, 王变荣, 孙奕, 黄丹青, 郑慧芬. 脂蛋白相关磷脂酶A2与脑白质疏松的相关性研究[J]. 实用老年医学, 2020, 34(4): 335-338.

  92. 92. Xie, Y., Feng, H., Peng, S., et al. (2017) Association of Plasma Homocysteine, Vitamin B12 and Folate Levels with Cognitive Function in Parkin-son’s Disease: A Meta-Analysis. Neuroscicnce Letters, 636, 190-195. https://doi.org/10.1016/j.neulet.2016.11.007

  93. 93. 王立侠, 董俊兴, 焦敬美. 血浆同型半胱氨酸与不同类型脑小血管病相关性分析[J]. 中国实用神经疾病杂志, 2014, 17(24): 75-76.

  94. 94. Smith, A.D., Refsum, H., Bot-tiglieri, T., et al. (2018) Homocysteine and Dementia: An International Consensus Statement. Journal of Alzheimer’s Disease, 62, 561-570. https://doi.org/10.3233/JAD-171042

  95. 95. 朱阿娣, 周俊山, 张颖冬. 脑小血管病患者认知功能障碍与血浆同型半胱氨酸的关系[J]. 中华全科医学, 2014, 12(11): 1745-1747.

  96. 96. Piao, X.Y., et al. (2018) Association between Homocysteine and Cerebral Small Vessel Disease: A Meta-Analysis. Journal of Stroke and Cerebrovascular Diseases, 27, 2423-2430. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.04.035

  97. 97. 梅歆, 乾威, 马丽娜•艾山拜伏小亮, 任卫华. 血脂 尿酸 同型半胱酸 糖化血红蛋白与脑小血管病严重程度的相关性[J]. 西部医学, 2016, 28(6): 815-817+822.

  98. 98. Cheng, Y.-W., Chiu, M.-J., Chen, Y.-F., et al. (2020) The Contribution of Vascular Risk Factors in Neurodegenerative Disorders. Alzheimer’s Research & Therapy, 12, 88-91. https://doi.org/10.1186/s13195-020-00658-7

  99. 99. Nagga, K., Gustavsson, A.-M., Stomrud, E., et al. (2017) Increased Midlife Triglycerides Predict Brain β-Amyloid and Tau Pathology 20 Years Later. Neurology, 90, 73-81. https://doi.org/10.1212/WNL.0000000000004749

  100. 100. 牛晓波, 猴元冲, 郭旭亮, 李晓楠. 脑小血管病各亚型相关危险因素分析[J]. 中国实用神经疾病杂志, 2014, 17(21): 46-49.

  101. 101. Welchkm (2009) Review of the SPARCL Trial and Its Subanalyses. Current Atherosclerosis Reports, 11, 315-321. https://doi.org/10.1007/s11883-009-0048-0

  102. 102. Trompet, S. and Vliet, P. (2009) Pravastatin and Cognitive Function in the Elderly. Results of the PROSPER Study. Journal of Neurology, 257, 85-90. https://doi.org/10.1007/s00415-009-5271-7

  103. 103. Biessels, G.J. (2019) Effect of Linagliptin on Cognitive Per-formance in Patients with Type 2 Diabetes and Cardiorenal Comorbidities. Diabetes Care, 42, 1930-1938. https://doi.org/10.2337/dc19-0783

  104. 104. Ma, C., Gurol, M.E. and Huang, Z. (2019) Low-Density Lipoprotein Cholesterol and Risk of Intracerebral Hemorrhage: A Prospective Study. Neurology, 93, 445-457. https://doi.org/10.1212/WNL.0000000000007853

  105. 105. 贾珂, 王玮婧, 周正宏, 唐晓梅, 刘伟, 于逢春. 老年腔隙性脑梗死患者血脂与脑微出血风险的相关生研究[J]. 中华老年心脑血管病杂志, 2020, 22(6): 625-628.

  106. 106. Puddu, P., et al. (2012) The Relationships among Hyperuricemia, Endothelial Dysfunction, and Cardio-vascular Diseases: Molecular Mechanisms and Clinical Implications. Journal of Cardiology, 59, 235-242. https://doi.org/10.1016/j.jjcc.2012.01.013

  107. 107. Fabbrini, E., et al. (2014) Effect of Plasma Uric Acid on Anti-oxidant Capacity, Oxidative Stress, and Insulin Sensitivity in Obese Subjects. Diabetes, 63, 976-981. https://doi.org/10.2337/db13-1396

  108. 108. Wu, H., Jia, Q., Liu, G., et al. (2014) Decreased Uric Acid Levels Correlate with Poor Outcomes in Acute Ischemic Stroke Patients, but Not in Cerebral Hemorrhage Patients. Journal of Stroke and Cerebrovascular Diseases, 23, 469-475. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.04.007

  109. 109. Vannorsdall, T.D., et al. (2008) Cerebral Is-chemia Mediates the Effect of Serum Uric Acid on Cognitive Function. Stroke, 39, 3418-3420. https://doi.org/10.1161/STROKEAHA.108.521591

  110. 110. 刘文雪, 孙逸君, 孙铭, 杨焕荣. 高尿酸血症对糖尿病肾病患者血管内皮功能的影响[J]. 中国医师杂志, 2017, 19(5): 755-757.

  111. 111. Schretlen, D.J., et al. (2007) Se-rum Uric Acid and Brain Ischemia in Normal Elderly Adults. Neurology, 69, 1418-1423. https://doi.org/10.1212/01.wnl.0000277468.10236.f1

  112. 112. Ryu, W.-S., et al. (2013) Serum Uric Acid Levels and Cerebral Microbleeds in Patients with Acute Ischemic Stroke. PLOS ONE, 8, e55210. https://doi.org/10.1371/journal.pone.0055210

  113. 113. 暴茜茜, 郑连红, 杨群玲. 同型半胱氨酸、血尿酸水平与腔隙性脑梗死的关系研究[J]. 实用心脑肺血管病杂志, 2019, 27(8): 51-55.

  114. NOTES

    *通讯作者。

期刊菜单