Pure Mathematics
Vol. 13  No. 02 ( 2023 ), Article ID: 61992 , 9 pages
10.12677/PM.2023.132038

一类奇数阶泛函微分方程周期解的存在性

林梦媛,吴进,陈柏立*

广东工业大学数学与统计学院,广东 广州

收稿日期:2023年1月22日;录用日期:2023年2月21日;发布日期:2023年2月28日

摘要

本文运用Mawhin延拓定理,研究了一类奇数阶泛函微分方程周期解的存在性问题,得到了新的判定准则。

关键词

奇数阶,泛函微分方程,周期解,Mawhin延拓定理

Existence of Periodic Solutions for a Class of Odd Order Functional Differential Equations

Mengyuan Lin, Jin Wu, Baili Chen*

School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou Guangdong

Received: Jan. 22nd, 2023; accepted: Feb. 21st, 2023; published: Feb. 28th, 2023

ABSTRACT

Using Mawhin’s continuation theorem we study the existence of periodic solutions for a class of odd order functional differential equations, and establish a new criterion.

Keywords:Odd Order, Functional Differential Equations, Periodic Solutions, Mawhin’s Continuation Theorem

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

由于泛函微分方程在许多数学模型中有着深刻的应用,因此吸引了国内外大量的学者进行研究 [1] [2] 。其中,周期解问题一直得到学者们的关注,但大部分都只是利用不动点理论、重合度理论或者临界点理论等等讨论了低阶的泛函微分方程 [3] - [15] ,涉及到高阶的却不多 [16] [17] [18] 。

本文将利用Mawhin延拓定理讨论一类奇数阶泛函微分方程

x ( 2 n + 1 ) ( t ) + i = 0 2 n 1 a i ( t ) x ( i ) ( t ) + g ( x ( t τ ( t ) ) ) = p ( t ) (1)

周期解的存在性,其中 τ ( t ) a i ( t ) ( i = 0 , 1 , 2 , , n ) p ( t ) 都是定义在R上具有正周期T的实连续函数。并且 a 0 ( t ) > 0 a 2 k 1 ( t ) > 0 ( k = 1 , 2 , , n ) g ( x ) 是定义在R上的实连续函数。

在第二节中,我们先给出一些预备知识,以及针对周期解存在性的条件做假设。在第三节中,我们将利用Mawhin延拓定理 [19] ,证明方程(1)的周期解存在性。

2. 预备知识

为了证明主要结果,我们需要介绍Mawhin延拓定理 [19] 。

令X和Y是两个Banach空间,且 L : D o m L X Y 是一个线性映射, N : X Y 是一个连续映射。若映射L满足:1) d i m K e r L = c o d i m I m L < + ;2) ImL在Y上是闭的。则称映射 是指标为零的Fredholm算子。若映射L是一个指标为零的Fredholm算子,则存在连续的投影算子 P : X X Q : Y Y ,使得 I m P = K e r L I m L = K e r Q = I m ( I Q ) 成立。令 K p 表示 L | D o m L K e r P : ( I P ) X I m L 的逆,若 Q N ( Ω ¯ ) 是有界的且 K p ( I Q ) N ( Ω ¯ ) ¯ 是紧的,则称映射N是 Ω ¯ 上L-紧的,其中 Ω 是X上的有界开子集。

引理2.1 ( 延拓定理) [19] 令L是一个具有零指标的Fredholm算子,N是一个在 Ω ¯ 上L-紧的非线性算子。如果

1) 对每个 λ ( 0 , 1 ) x Ω , L x λ N x

2) 对每个 x Ω K e r L , Q N x 0 deg ( Q N , Ω K e r L , 0 ) 0

则方程 L x = N x Ω ¯ D o m L 上至少有一个解。

在呈现我们主要结果之前,先作出如下假设:

(H1): M 2 k 1 = max t [ 0 , T ] a 2 k 1 ( t ) a 2 k 1 ( t ) m 2 k 1 = min t [ 0 , T ] a 2 k 1 ( t ) > 0 ( k = 1 , 2 , , n )

(H2): M 2 k 2 = max t [ 0 , T ] | a 2 k 2 ( t ) | ( k = 2 , , n 1 ) , M 0 = max t [ 0 , T ] a 0 ( t ) a 0 ( t ) m 0 = min t [ 0 , T ] a 0 ( t ) > 0

(H3): M 2 n 1 < ( π T ) 2 , M 2 n 2 i + 1 M 2 n 2 i 1 < ( π T ) 2 ( i = 2 , 3 , , n )

(H4):存在正常数r使得 m 0 r 2 > T δ M 0 2 T δ M 0 + M 1 ,且 A D B > 0 1 A * > 0 。其中 δ = e M 0 M 1 T / e M 0 M 1 T 1 A = 1 A *

A * = M 2 n 1 ( T 2 ) 2 + M 2 n 2 ( T 2 ) 3 + + M 1 ( T 2 ) 2 n ,

B = ( M 2 n 1 m 2 n 1 ) ( T 2 ) + M 2 n 2 ( T 2 ) 2 + + M 2 ( T 2 ) 2 n 2 + ( M 1 m 1 ) ( T 2 ) 2 n 1 ,

D = T m 0 r ( M 0 M 1 T δ M 0 + M 1 + m 0 + r 2 ) .

3. 主要结果的证明

定理3.1 若假设(H1)~(H4)成立,且满足

lim | x | sup | g ( x ) x | r , (2)

lim | x | sgn ( x ) g ( x ) = + , (3)

则方程(1)至少存在一个T周期解。

为了证明定理3.1,我们要做如下准备工作。令

X : = { x | x C 2 n ( R , R ) , x ( t + T ) = x ( t ) , t R } ,

x ( 0 ) ( t ) = x ( t ) ,并在空间X上定义如下范数:

x = max 0 j 2 n max t [ 0 , T ] | x ( 2 n ) ( t ) | .

类似地,令 Y : = { y | y C ( R , R ) , y ( t + T ) = y ( t ) , t R } ,在空间Y上定义如下范数:

y 0 = max t [ 0 , T ] | y ( t ) | .

显然, ( X , ) ( Y , 0 ) 都是Banach空间。

分别定义算子 L : X Y N : X Y ,如下

L x ( t ) = x ( 2 n + 1 ) ( t ) , t R ; N x ( t ) = p ( t ) i = 0 2 n 1 a i ( t ) x ( i ) ( t ) g ( x ( t τ ( t ) ) ) , t R . (4)

易知算子L是一个指标为零的Fredholm算子,再定义投影算子P、Q分别为

P x ( t ) = x ( 0 ) = x ( T ) , t R , x X ; Q y ( t ) = 1 T 0 T y ( s ) d s , t R , y Y . (5)

容易验证,算子N是一个在 Ω ¯ 上是L-紧的非线性算子。

考虑如下的辅助方程

x ( 2 n + 1 ) ( t ) + λ i = 0 2 n 1 a i ( t ) x ( i ) ( t ) + λ g ( x ( t τ ( t ) ) ) = λ p ( t ) , (6)

其中 0 < λ < 1

引理3.2 [20] 令 x ( t ) C n ( R , R ) C T ,则

x ( i ) 1 2 0 T | x ( i + 1 ) ( s ) | d s , i = 1 , 2 , , n 1.

其中 n 2 ,且 C T : = { x | x C ( R , R ) , x ( t + T ) = x ( t ) , t R }

引理3.3 [21] 设M,λ是两个正数,且满足 0 < M < ( π T ) 2 0 < λ < 1 ,则对任意的函数 φ ( t ) ( t [ 0 , T ] ) ,方程

{ x ( t ) + λ M x ( t ) = λ φ ( t ) x ( 0 ) = x ( T ) , x ( 0 ) = x ( T )

有唯一解,其表达形式如下:

x ( t ) = 0 T G ( t , s ) λ φ ( s ) d s ,

其中, α = λ M

G ( t , s ) = { ω ( t s ) , ( k 1 ) T s t k T , ω ( T + t s ) , ( k 1 ) T t s k T ( k N ) .

ω ( t ) = cos α ( t T 2 ) 2 α sin α T 2 .

引理3.4 若定理3.1中的条件被满足,且 x ( t ) 是方程(6)的一个T周期解,则存在独立于λ的常数 D i ( i = 0 , 1 , , 2 n ) ,使得

x ( i ) D i , t [ 0 , T ] , i = 0 , 1 , , 2 n . (7)

证明:设 x ( t ) 是方程(6)的一个T周期解。令

ε = m 0 r 2 T δ M 0 2 T δ M 0 + M 1 .

由(2)知,存在一个正常数 M ¯ 1 > 0 ,使得

| g ( x ( t ) ) | r | x ( t ) | , | x ( t ) | > M ¯ 1 , t R . (8)

E 1 = { t | t [ 0 , T ] , | x ( t ) | M ¯ 1 } , E 2 = [ 0 , T ] \ E 1 . (9)

ρ = max E 2 g ( x ) . (10)

由(6)、(8)、(9)和(10)式和引理3.2,有

x ( 2 n ) 0 1 2 0 T | x ( 2 n + 1 ) ( t ) | d t λ 2 0 T [ | i = 0 2 n 1 a i ( t ) x ( i ) ( t ) | + | g ( x ( t τ ( t ) ) ) | + | p ( t ) | ] d t λ T 2 [ M 2 n 1 x ( 2 n 1 ) 0 + M 2 n 2 x ( 2 n 2 ) 0 + + M 0 x ( 0 ) 0 ] + λ 2 0 T | g ( x ( t τ ( t ) ) ) | d t + λ T 2 p 0

T 2 [ M 2 n 1 T 2 + M 2 n 2 ( T 2 ) 2 + + M 1 ( T 2 ) 2 n 1 ] x ( 2 n ) 0 + T 2 M 0 x 0 + 1 2 [ E 1 | g ( x ( t τ ( t ) ) ) | d t + E 2 | g ( x ( t τ ( t ) ) ) | d t ] + T 2 p 0 A * x ( 2 n ) 0 + T 2 ( M 0 + r + ε ) x 0 + T 2 ( ρ + p 0 ) = A * x ( 2 n ) 0 + m 0 r 2 D x 0 + T 2 C . (11)

其中, C = ρ + p 0 , D = T m 0 r ( M 0 M 1 T δ M 0 + M 1 + m 0 + r 2 )

由假设(H4)和(11)式,有

x ( 2 n ) 0 ( 1 A * ) 1 ( m 0 r 2 D x 0 + T 2 C ) . (12)

由(6)式和引理3.3,得

x ( 2 n 1 ) ( t ) = λ 0 T G 1 ( t , t 1 ) [ ( M 2 n 1 a 2 n 1 ( t 1 ) ) x ( 2 n 1 ) ( t 1 ) + p ( t 1 ) g ( x ( t 1 τ ( t 1 ) ) ) ] d t 1 λ 0 T G 1 ( t , t 1 ) i = 0 2 n 2 a i ( t 1 ) x ( i ) ( t 1 ) d t 1 , (13)

其中, α 1 = λ M 2 n 1

G 1 ( t , t 1 ) = { ω 1 ( t t 1 ) , ( k 1 ) T t 1 t k T , ω 1 ( T + t t 1 ) , ( k 1 ) T t t 1 k T ( k N ) .

ω 1 ( t ) = cos α 1 ( t T 2 ) 2 α 1 sin α 1 T 2 , 0 T G 1 ( t , t 1 ) d t 1 = 1 λ M 2 n 1 .

由(13)式和引理3.3,得

x ( 2 n 3 ) ( t ) = λ 0 T G 2 ( t , t 1 ) 0 T G 1 ( t 1 , t 2 ) [ p ( t 2 ) g ( x ( t 2 τ ( t 2 ) ) ) ] d t 2 d t 1 + λ 0 T G 2 ( t , t 1 ) 0 T G 1 ( t 1 , t 2 ) ( M 2 n 1 a 2 n 1 ( t 2 ) ) x ( 2 n 1 ) ( t 2 ) d t 2 d t 1 + λ 0 T G 2 ( t , t 1 ) [ M 2 n 3 M 2 n 1 x ( 2 n 3 ) ( t 1 ) λ 0 T G 1 ( t 1 , t 2 ) a 2 n 3 ( t 2 ) x ( 2 n 3 ) ( t 2 ) d t 2 ] d t 1 λ 0 T G 2 ( t , t 1 ) 0 T G 1 ( t 1 , t 2 ) [ i = 0 2 n 4 a i ( t 2 ) x ( i ) ( t 2 ) + a 2 n 2 ( t 2 ) x ( 2 n 2 ) ( t 2 ) ] d t 2 d t 1 , (14)

其中, α 2 = M 2 n 1 M 2 n 3

G 2 ( t , t 2 ) = { ω 2 ( t t 2 ) , ( k 1 ) T t 2 t k T , ω 2 ( T + t t 2 ) , ( k 1 ) T t t 2 k T ( k N ) .

ω 2 ( t ) = cos α 2 ( t T 2 ) 2 α 2 sin α 2 T 2 , 0 T G 2 ( t , t 2 ) d t 2 = M 2 n 1 M 2 n 3 .

利用数学归纳法,可以得到

x ( t ) = λ 0 T G n ( t , t 1 ) 0 T G 1 ( t n 1 , t n ) [ p ( t n ) g ( x ( t n τ ( t n ) ) ) ] d t n d t 1 + λ 0 T G n ( t , t 1 ) 0 T G 1 ( t n 1 , t n ) ( M 2 n 1 a 2 n 1 ( t n ) ) x ( 2 n 1 ) ( t n ) d t n d t 1 + 0 T G n ( t , t 1 ) 0 T G 2 ( t n 2 , t n 1 ) [ M 2 n 3 M 2 n 1 x ( 2 n 3 ) ( t n 1 ) λ 0 T G 1 ( t n 1 , t n ) a 2 n 3 ( t n ) x ( 2 n 3 ) ( t n ) d t n ] d t n 1 d t 1

+ 0 T G n ( t , t 1 ) 0 T G 3 ( t n 3 , t n 2 ) [ M 2 n 5 M 2 n 3 x ( 2 n 5 ) ( t n 2 ) λ 0 T G 2 ( t n 2 , t n 1 ) 0 T G 1 ( t n 1 , t n ) a 2 n 5 ( t n ) x ( 2 n 5 ) ( t n ) d t n d t n 1 ] d t n 2 d t 1 + + + 0 T G n ( t , t 1 ) [ M 1 M 3 x ( 1 ) ( t 1 ) λ 0 T G n 1 ( t 1 , t 2 ) 0 T G n 2 ( t 2 , t 3 ) 0 T G 1 ( t n 1 , t n ) a 1 ( t n ) x ( 1 ) ( t n ) d t n d t 2 ] d t 1 λ 0 T G n ( t , t 1 ) 0 T G 1 ( t n 1 , t n ) [ k = 1 n 1 a 2 k ( t n ) x ( 2 k ) ( t n ) ] d t n d t 1 λ 0 T G n ( t , t 1 ) 0 T G 1 ( t n 1 , t n ) [ a 0 ( t n ) x ( 0 ) ( t n ) ] d t n d t 1 . (15)

其中, α i = M 2 n 2 i + 1 M 2 n 2 i + 3 , 2 i n

G i ( t , t 1 ) = { ω i ( t t i ) , ( k 1 ) T t i t k T , ω i ( T + t t i ) , ( k 1 ) T t t i k T ( k N ) .

ω i ( t ) = cos α i ( t T 2 ) 2 α i sin α i T 2 , 0 T G i ( t , t i ) d t i = M 2 n 2 i + 3 M 2 n 2 i + 1 , 2 i n .

再根据(15)式和常数变易法,

x ( t ) = ( e M 0 M 1 T 1 ) 0 t Φ ( t , s ) { λ 0 T G n ( s , t 1 ) 0 T G 1 ( t n 1 , t n ) [ p ( t n ) g ( x ( t n τ ( t n ) ) ) ] d t n d t 1 + λ 0 T G n ( s , t 1 ) 0 T G 1 ( t n 1 , t n ) ( M 2 n 1 a 2 n 1 ( t n ) ) x ( 2 n 1 ) ( t n ) d t n d t 1 + 0 T G n ( s , t 1 ) 0 T G 2 ( t n 2 , t n 1 ) [ M 2 n 3 M 2 n 1 x ( 2 n 3 ) ( t n 1 ) λ 0 T G 1 ( t n 1 , t n ) a 2 n 3 ( t n ) x ( 2 n 3 ) ( t n ) d t n ] d t n 1 d t 1 + +

+ 0 T G n ( s , t 1 ) [ M 1 M 3 x ( 1 ) ( t 1 ) λ 0 T G n 1 ( t 1 , t 2 ) 0 T G n 2 ( t 2 , t 3 ) 0 T G 1 ( t n 1 , t n ) a 1 ( t n ) x ( 1 ) ( t n ) d t n d t 2 ] d t 1 λ 0 T G n ( s , t 1 ) 0 T G 1 ( t n 1 , t n ) [ k = 1 n 1 a 2 k ( t n ) x ( 2 k ) ( t n ) ] d t n d t 1 } d s + ( e M 0 M 1 T 1 ) o t Φ ( t , s ) { M 0 M 1 x ( s ) λ 0 T G n ( s , t 1 ) 0 T G 1 ( t n 1 , t n ) [ a 0 ( t n ) x ( 0 ) ( t n ) ] d t n d t 1 } d s + 0 T Φ ( t , s ) { λ 0 T G n ( s , t 1 ) 0 T G 1 ( t n 1 , t n ) [ p ( t n ) g ( x ( t n τ ( t n ) ) ) ] d t n d t 1 + λ 0 T G n ( s , t 1 ) 0 T G 1 ( t n 1 , t n ) ( M 2 n 1 a 2 n 1 ( t n ) ) x ( 2 n 1 ) ( t n ) d t n d t 1

+ 0 T G n ( s , t 1 ) 0 T G 2 ( t n 2 , t n 1 ) [ M 2 n 3 M 2 n 1 x ( 2 n 3 ) ( t n 1 ) λ 0 T G 1 ( t n 1 , t n ) a 2 n 3 ( t n ) x ( 2 n 3 ) ( t n ) d t n ] d t n 1 d t 1 + + + 0 T G n ( s , t 1 ) [ M 3 M 1 x ( 1 ) ( t 1 ) λ 0 T G n 1 ( t 1 , t 2 ) 0 T G n 2 ( t 2 , t 3 ) 0 T G 1 ( t n 1 , t n ) a 1 ( t n ) x ( 1 ) ( t n ) d t n d t 2 ] d t 1 λ 0 T G n ( s , t 1 ) 0 T G 1 ( t n 1 , t n ) [ k = 1 n 1 a 2 k ( t n ) x ( 2 k ) ( t n ) ] d t n d t 1 } d s + 0 T Φ ( t , s ) { M 0 M 1 x ( s ) λ 0 T G n ( s , t 1 ) 0 T G 1 ( t n 1 , t n ) [ a 0 ( t n ) x ( 0 ) ( t n ) ] d t n d t 1 } d s . (16)

其中

Φ ( t , s ) = e M 0 M 1 ( s t ) e M 0 M 1 T 1 , Φ ( t , s ) Φ ( t , t + T ) = e M 0 M 1 T e M 0 M 1 T 1 = δ ,

0 t Φ ( t , s ) d s = M 1 ( 1 e M 0 M 1 T ) M 0 ( e M 0 M 1 T 1 ) M 1 M 0 ( e M 0 M 1 T 1 ) .

由(8)、(9)、(10)、(16)式和引理3.2,得

x 0 ( 1 M 0 + T δ M 1 ) { p 0 + ρ + [ M 0 m 0 + ( r + ε ) ] x 0 + [ ( M 2 n 1 m 2 n 1 ) ( T 2 ) + M 2 n 2 ( T 2 ) 2 + ( M 2 n 3 m 2 n 3 ) ( T 2 ) 3 + M 2 n 4 ( T 2 ) 4 + + ( M 3 m 3 ) ( T 2 ) 2 n 3 + M 2 ( T 2 ) 2 n 2 + ( M 1 m 1 ) ( T 2 ) 2 n 1 ] x ( 2 n ) 0 } , (17)

经化简后,有

M 0 M 1 T δ M 0 + M 1 x 0 ( M 0 m 0 + r + ε ) x 0 p 0 + ρ + [ ( M 2 n 1 m 2 n 1 ) ( T 2 ) + M 2 n 2 ( T 2 ) 2 + ( M 2 n 3 m 2 n 3 ) ( T 2 ) 3 + + M 2 ( T 2 ) 2 n 2 + ( M 1 m 1 ) ( T 2 ) 2 n 1 ] x ( 2 n ) 0 , (18)

因此,根据假设(H4)、(18)式和ε的取值,可得

x 0 2 ( B x ( 2 n ) 0 + C ) m 0 r . (19)

结合(12)式和(19)式,得

( 1 A * ) x ( 2 n ) 0 D ( B x ( 2 n ) 0 + C ) + T C 2 , (20)

因此有

( A D B ) x ( 2 n ) 0 D C + T C 2 , (21)

其中, C = ρ + p 0 , D = T m 0 r ( M 0 M 1 T δ M 0 + M 1 + m 0 + r 2 ) .

再由假设(H4)和(21)式,得到

x ( 2 n ) 0 D C + T C / 2 A D B = D 2 n . (22)

联立(19)和(22)式,得

x 0 2 ( B D 2 n + C ) m 0 r = D 0 . (23)

最后,由(22)、(23)式和引理3.2,得到

x ( i ) 0 D i , ( 0 i 2 n ) .

引理3.4得证。

定理3.1的证明:设 x ( t ) 是方程(6)的一个T周期解。由引理3.4知,存在独立于λ的常数 D i ( i = 0 , 1 , , 2 n ) ,使得(7)式成立。由(3)式知,存在正常数 M 2 > 0 ,使得

sgn ( x ) g ( x ) > 0 , | x ( t ) | > M 2 , t R . (24)

取一正常数 D ¯ > max 0 i 2 n { D i } + M 2 ,令

Ω : = { x X | x < D ¯ } .

此时 是指标为零的Fredholm算子,N是在 Ω ¯ 上L-紧的非线性算子。对任意有界的周期解 x ( t ) ,当 x Ω D o m L λ ( 0 , 1 ) 时,有 L x λ N x

x Ω K e r L 时,有 x = D ¯ x = D ¯ ,再结合(3)和(5)式可得

x ( i ) ( t ) = 0 , i = 1 , 2 , , n 1 , 1 T 0 T [ i = 0 2 n 1 a 0 ( t ) D ¯ + g ( D ¯ ) p ( t ) ] d t < 0 , 1 T 0 T [ i = 0 2 n 1 a 0 ( t ) D ¯ g ( D ¯ ) + p ( t ) ] d t > 0. (25)

然后由上式可知,当 x Ω K e r L 时,有

Q N x = 1 T 0 T [ i = 0 2 n 1 a i ( t ) x ( i ) ( t ) g ( x ( t τ ( t ) ) ) + p ( t ) ] d t 0. (26)

故对任意的 x Ω K e r L η ( 0 , 1 ) ,有

x H ( x , η ) = η x 2 + x T ( 1 η ) 0 T [ i = 0 2 n 1 a i ( t ) x ( i ) ( t ) g ( x ( t τ ( t ) ) ) + p ( t ) ] d t 0. (27)

因此, H ( x , η ) 是一个同伦映射。进而有

deg ( Q N , Ω K e r L , 0 ) = deg { 1 T 0 T [ i = 0 2 n 1 a i ( t ) x ( i ) ( t ) g ( x ( t τ ( t ) ) ) + p ( t ) ] d t , Ω K e r L , 0 } = deg ( x , Ω K e r L , 0 ) 0. (28)

根据引理2.1可知,方程 L x = N x Ω ¯ D o m L 上至少存在一个解。因此,方程(1)至少存在一个 周期解。定理3.1得证。

基金项目

广东省自然科学基金资助项目(2018A030313871)。

文章引用

林梦媛,吴 进,陈柏立. 一类奇数阶泛函微分方程周期解的存在性
Existence of Periodic Solutions for a Class of Odd Order Functional Differential Equations[J]. 理论数学, 2023, 13(02): 345-353. https://doi.org/10.12677/PM.2023.132038

参考文献

  1. 1. Hale, J.K. and Lunel, S.M.V. (2013) Introduction to Functional Differential Equations. Springer Science & Business Media, Berlin.

  2. 2. Kuang, Y. (1990) Global Stability of Gause-Type Predator-Prey Systems. Journal of Mathematical Biology, 28, 463-474. https://doi.org/10.1007/BF00178329

  3. 3. Candan, T. (2016) Existence of Positive Periodic Solutions of First Order Neutral Differential Equations with Variable Coefficients. Applied Mathematics Letters, 52, 142-148. https://doi.org/10.1016/j.aml.2015.08.014

  4. 4. Fan, M. and Wang, K. (2001) Periodicity in a Delayed Ratio-Dependent Predator-Prey System. Journal of Mathematical Analysis and Applications, 262, 179-190. https://doi.org/10.1006/jmaa.2001.7555

  5. 5. Guo, Z. and Yu, J. (2005) Multiplicity Results for Periodic Solutions to Delay Differential Equations via Critical Point Theory. Journal of Differential Equations, 218, 15-35. https://doi.org/10.1016/j.jde.2005.08.007

  6. 6. Guo, Z. and Yu, J. (2003) The Existence of Periodic and Subharmonic Solutions of Subquadratic Second Order Difference Equations. Journal of the London Mathematical So-ciety, 68, 419-430. https://doi.org/10.1112/S0024610703004563

  7. 7. Lu, S. and Ge, W. (2004) Some New Results on the Existence of Periodic Solutions to a Kind of Rayleigh Equation with a Deviating Argument. Nonlinear Analysis: Theory, Methods & Applications, 56, 501-514. https://doi.org/10.1016/j.na.2003.09.021

  8. 8. Lu, S. and Yu, X. (2020) Periodic Solutions for Second Order Dif-ferential Equations with Indefinite Singularities. Advances in Nonlinear Analysis, 9, 994-1007. https://doi.org/10.1515/anona-2020-0037

  9. 9. Raffoul, Y.N. (2012) Existence of Positive Periodic Solutions in Neutral Nonlinear Equations with Functional Delay. The Rocky Mountain Journal of Mathematics, 42, 1983-1993. https://doi.org/10.1216/RMJ-2012-42-6-1983

  10. 10. Wang, W. and Shen, J. (2020) Positive Periodic Solutions for Neutral Functional Differential Equations. Applied Mathematics Letters, 102, Article ID: 106154. https://doi.org/10.1016/j.aml.2019.106154

  11. 11. Yang, H. and Zhang, L. (2020) Three Positive Periodic Solutions of Second Order Nonlinear Neutral Functional Differential Equations with Delayed Derivative. Advances in Difference Equations, 2020, Article No. 164. https://doi.org/10.1186/s13662-020-02630-z

  12. 12. Rojas, P.D. and Torres, V.P.J. (2021) Periodic Bouncing Solu-tions of the Lazer-Solimini Equation with Weak Repulsive Singularity. Nonlinear Analysis: Real World Applications, 64, Article ID: 103441. https://doi.org/10.1016/j.nonrwa.2021.103441

  13. 13. Lomtatidze, A. and Šremr, J. (2021) On Positive Periodic So-lutions to Second-Order Differential Equations with a Sub-Linear Non-Linearity. Nonlinear Analysis: Real World Ap-plications, 57, Article ID: 103200. https://doi.org/10.1016/j.nonrwa.2020.103200

  14. 14. 丁伟岳. 扭转映射的不动点与常微分方程的周期解[J]. 数学学报, 1982(2): 227-235.

  15. 15. 王根强, 燕居让. 二阶非线性中立型泛函微分方程周期解的存在性[J]. 数学学报: 中文版, 2004, 47(2): 379-384.

  16. 16. Cao, J. and He, G. (2004) Periodic Solutions for Higher-Order Neutral Differential Equations with Several Delays. Computers & Mathematics with Applications, 48, 1491-1503. https://doi.org/10.1016/j.camwa.2004.07.007

  17. 17. Guo, C., O’Regan, D., Xu, Y., et al. (2009) Existence of Peri-odic Solutions for a Class of Even Order Differential Equations with Deviating Argument. Electronic Journal of Qual-itative Theory of Differential Equations, 2009, Paper No. 12. https://doi.org/10.14232/ejqtde.2009.4.12

  18. 18. Wang, K. and Lu, S. (2007) On the Existence of Periodic Solutions for a Kind of High-Order Neutral Functional Differential Equation. Journal of Mathematical Analysis and Applications, 326, 1161-1173. https://doi.org/10.1016/j.jmaa.2006.03.078

  19. 19. Gaines, R.E. and Mawhin, J.L. (2006) Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin.

  20. 20. Li, J. and Wang, G. (2005) Sharp Inequalities for Periodic Functions. Applied Mathematics E-Notes, 5, 75-83.

  21. 21. Shen, J. and Liang, R. (2007) Periodic Solutions for a Kind of Second Order Neutral Functional Differential Equations. Applied Mathematics and Computation, 190, 1394-1401. https://doi.org/10.1016/j.amc.2007.02.137

  22. NOTES

    *通讯作者。

期刊菜单