Advances in Clinical Medicine
Vol. 12  No. 04 ( 2022 ), Article ID: 50142 , 7 pages
10.12677/ACM.2022.124372

高度近视并发白内障相关机制研究进展

任晓,王理论*,韩登雷

延安大学附属医院,陕西 延安

收稿日期:2022年3月8日;录用日期:2022年3月31日;发布日期:2022年4月12日

摘要

高度近视早期容易并发核性白内障并且病情发展较快,引起视力不同程度的下降,影响日常工作和生活,但是此病具体发生机制目前尚不清楚,因此本文在氧化应激损伤;蛋白组学;基因组学;内质网应激;房水中细胞因子、补体因子和蛋白浓度改变;房水和玻璃体中炎性细胞因子表达这几个方面进行阐述,对于了解其发生发展有重要意义。

关键词

高度近视并发白内障,发病机制

Research Progress on the Related Mechanism of High Myopia with Cataract

Xiao Ren, Lilun Wang*, Denglei Han

Yan’an University Affiliated Hospital, Yan’an Shaanxi

Received: Mar. 8th, 2022; accepted: Mar. 31st, 2022; published: Apr. 12th, 2022

ABSTRACT

High myopia is easy to be complicated by nuclear cataract in the early stage and the disease develops rapidly, causing different degrees of vision decline in patients, affecting daily work and life. Therefore, this review focuses on oxidative stress injury; proteomics; genomics; endoplasmic reticulum stress; changes in the concentrations of cytokines, complement factors and proteins in the aqueous humor; and the expression of inflammatory cytokines in aqueous humor and vitreous, which are of great significance for understanding its occurrence and development.

Keywords:High Myopia with Cataract, Pathogenesis

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

高度近视是指眼球屈光度大于−6.0D或者眼轴长度大于26 mm,是一种几乎对整个眼球的前节到后节都有影响的疾病 [1],是全球范围内导致失明的主要原因。亚洲人群中高度近视的患病率(6.8%~21.6%),远高于其他人群(2.0%~2.3%) [2]。研究发现高度近视患者容易并发晶体疾病,导致晶体透明性下降 [3]。高度近视患者比正常人更容易快速进展为核性白内障 [4],随着高度近视发病率的增加,高度近视白内障(HMC)的发病率也随之增加 [5]。因此了解HMC可能的眼部特征和发病机制尤为重要。

2. HMC眼部特征

HMC患者通常视力较差,一方面由于晶体透明性下降引起,由于其早期易并发核性白内障,且病情进展快,对视力影响较大 [4];另一方面主要是由于高度近视容易引起眼底并发症造成的视力损害,如合并黄斑裂孔、黄斑劈裂、黄斑部出血、脉络膜新生血管、漆裂纹破裂、脉络膜视网膜萎缩、后巩膜葡萄肿和视网膜脱离等因素 [6] [7] [8] [9]。

3. HMC潜在发病机制研究

3.1. 氧化应激损伤

晶体具有低氧、还原性谷胱甘肽(GSH)和抗坏血酸水平通常很高以及含有密集但是排列有序的长寿蛋白,这些使晶体保持一定的透明性,而晶体蛋白的氧化损伤是白内障形成的重要机制 [10]。研究发现 [11],白内障患者晶体中GSH和超氧化物歧化酶水平较低而氧化型谷胱甘肽(GSSG)水平较高,氧化作用在近视并发性白内障中更明显。白内障合并严重近视的患者晶体中丙二醛水平(MDA)升高,明显高于年龄相关性白内障中的水平,提示脂质过氧化可能参与HMC的发展 [11] [12],说明高度近视的眼睛抗氧化能力弱,容易受到氧化损伤 [13]。

有学说认为,随着眼轴的增长,玻璃体腔被拉长,代谢物或者营养物质向晶体后方扩散减少,会导致局部抗氧化作用减弱,导致晶体代谢障碍,造成白内障发生 [14]。有研究报道 [15],行高压氧治疗的患者,更容易发生核性白内障。完整的玻璃体,将晶体后表面与其他结构分割开,并给晶体提供一个低氧的环境 [16]。另有研究发现,玻璃体切除术中以及术后较长时间,氧分压会增加,使晶体暴露在高氧环境中,可能导致核性白内障的发生 [17] [18]。高度近视患者玻璃体液化发生率较高,使晶体长期暴露在高氧环境中,氧化应激会导致晶体上皮细胞受损,而晶体上皮细胞是晶体正常代谢的中心,进而导致晶体混浊,发生白内障 [13] [19]。

高度近视患者血清中氨基丙二酸和棕榈油酸浓度升高,提示体内的氧化应激增加,既往研究证明氧化应激在近视进展中起作用,氧化损伤过程中自由基超氧化物的产生等会对晶状体等产生损害,进而发生白内障 [19] [20],这可能是HMC的发病机制之一。

3.2. 蛋白组学

晶状体蛋白(α-crystallin)是人类晶体中最丰富的结构蛋白,它包含两种亚型,分别为αA-晶体蛋白、αB-晶体蛋白 [21],αA-crystallin不光是结构蛋白同时也是一种分子伴侣,防止晶体氧化损伤,在维持晶状体透明度方面起着关键作用,αA-晶体蛋白与晶体的纤维细胞质膜相联系会导致晶体混浊,引起白内障的发生 [22]。在HMC患者晶体αA-晶体蛋白CRYAA基因的启动子CpG岛被高度甲基化,因此αA-晶体蛋白的表达下调,导致晶体透明性的改变 [1] [13] [23]。

有研究发现高度近视患者房水中发现87种蛋白质表达下调,其中包括6种晶体蛋白(β-晶体蛋白S、β-晶体蛋白B2、γ-晶体蛋白C、γ-晶体蛋白D、β-晶体蛋白B1和β-晶体蛋白A3) [24],它们对维持晶体的透明度以及参与白内障的形成起重要作用 [25] [26]。因此,其表达下调,可能是HMC的发病机制之一。

3.3. 基因组学

HMC相关的抗氧化应激因子还包括谷胱甘肽S-转移酶p1 (GSTP1)、核因子、红系样蛋白2 (NRF2)、8-氧化鸟嘌呤DNA糖基化酶(OGG1)、硫氧还蛋白(TXN)、硫氧还蛋白还原酶1 (TXNED1)和硫氧还蛋白还原酶2 (TXNRD2)六种 [13] [27] [28] [29] [30] [31],GSTP1和TXNRD2在HMC中的表达下调比在年龄相关性白内障(ARC)中明显,Zhu等人 [13] 发现HMC人群的平均年龄低于ARC,HMC患者核颜色分级显著高于ARC,说明HMC患者发生晶体混浊更早以及程度更严重,这可能与GSTP1启动子的高甲基化和TXNRD2甲基化参与了HMC的形成有关 [31]。

既往研究证明HMC患者的晶状体上皮细胞凋亡与普通ARC患者的晶状体上皮细胞凋亡有很大不同 [32],Tian等人研究发现高度近视晶体囊膜上基因数据中KLF6和ATF4两个基因差异表达,推测这两种基因可能在高度近视患者的晶体上皮细胞凋亡中起重要作用,并导致晶体中更多的蛋白损伤和降解,引起晶体透明性下降,最终造成白内障 [33]。

LEPREL1在眼睛发育中起重要作用,研究发现编码脯氨酰3-羟化酶2 (P3H2)的LEPREL1基因纯合子突变引起的高度近视容易较早并发白内障 [34] [35]。P3H2可以羟化胶原蛋白,这些胶原蛋白广泛表达于小鼠胚胎中含有胶原纤维的组织中,包括眼睛,脯氨酰羟化是I、II、IV、V等胶原蛋白的重要翻译后修饰,IV型胶原存在于各种眼结构中,包括晶状体、虹膜、视网膜、视网膜色素上皮和小梁网,胶原蛋白修饰的破坏也是HMC的发病机制之一,但是具体机制还需进一步研究 [35] [36] [37]。

3.4. 内质网应激

白内障是由内质网应激引起的晶体上皮细胞凋亡造成的 [38],在缺氧和氧化应激的状态下,由错误折叠的内质网蛋白积累引起的内质网应激称为未折叠蛋白反应(UPR) [39] [40],大量未折叠蛋白可与免疫球蛋白结合蛋白(BIP)结合,从而激活PERK/EIF2a/ATF4-ATF3-CHOP和ATF6通路以及IRE1/XBP1,诱导晶体上皮细胞凋亡 [38] [41],GRP78也被称为BIP,是主要的内质网伴侣蛋白,也是UPR的主要调节因子,研究发现HMC组GRP78水平明显上调 [41],说明内质网应激在HMC发生过程中起重要作用。

3.5. 房水中细胞因子、补体因子、蛋白浓度改变

高度近视眼随着眼轴增长会造成眼底营养代谢障碍,引起脉络膜视网膜萎缩进而会引起房水中转化生长因子-β-诱导因子(TGIF) [42] 和色素上皮衍生因子(PEDF) [43] 的表达发生改变,而PEDF在透明晶体的形态和功能中起重要作用,Segev等人 [44] 发现色素上皮衍生因子表达的大幅下调可能导致白内障的形成。因此,色素上皮衍生因子浓度降低可能在HMC的形成中起重要作用。Shin等人 [45] 发现高度近视患者房水中VEGF与ARC患者相比水平降低,以及VEGF/PEDF比率显着低于ARC组,VEGF是由分化的RPE细胞分泌,在高度近视患者中RPE出现退行性变,导致VEGF水平下降 [46],同时Yuan等人 [47] 的研究也发现高度近视患者房水中VEGF水平降低。PEDF是一种内在的抗血管生成因子 [48],其和VEGF保持平衡,而研究发现在高度近视患者眼内VEGF/PEDF平衡被破坏 [45],这可能是HMC发展的一个机制。

近来有学者发现HMC患者房水中补体因子H (CFH)的含量高于低度近视并发白内障和单纯白内障组患者房水中CFH含量 [49],既往研究发现CFH与C3b结合可以加速旁路途径C3-转化酶(C3b-Bb)的衰退 [50],补体级联的激活产物有助于其他炎症介质的产生,因此可以促进炎症部位的组织损伤,这与AMD的发生有密切关系 [51] [52],同时研究发现CFH可在晶体中表达 [53],因此从分子学机制探讨HMC患者CFH含量的高低在疾病的发生发展中是否和AMD的发生过程类似,还需要大量实验进一步验证。

Wen等人 [54] 对HM合并白内障患者使用iTRAQ房水蛋白质组学分析发现,与单纯白内障组相比,HMC组中PLG (纤溶酶原蛋白)的表达水平显着上调 [55],PLG可被组织或尿激酶型纤溶酶原激活剂激活为活性纤溶酶,既往研究证实纤溶酶与炎症反应有关,通过GO富集分析房水中差异表达蛋白中的PLG可能是由于参与涉及补体系统的免疫过程引起的眼损伤 [54]。因此,PLG可能在HMC的发生中起重要作用,但是具体机制还需进一步探究。

3.6. 房水和玻璃体中炎性细胞因子表达

高度近视被认为是一种炎症相关性疾病 [56],有研究发现高度近视患者房水中有炎性细胞因子表达 [47]。既往研究发现HMC与ARC患者房水中IL-1ra和MCP-1的表达有显著差异,与ARC患者相比,HMC患者房水中IL-1ra的表达减少,MCP-1的表达增加,进一步说明HMC患者前房存在炎症反应 [57]。Zhang等人 [58] 在对HMC和非近视性白内障患者房水的检测中,发现房水中MMP-2 (基质金属蛋白酶)因子浓度明显升高。MMP-2在高度近视眼轴形成过程中起重要作用,可能是通过IGF-1/STAT3通路介导的MMP-2在巩膜过表达加速近视眼眼轴的延长 [59] [60],同时Zhang等人进一步证明高度近视白内障患者房水中Ang-1升高,提示其与HMC可能有关 [58],但具体机制还需进一步探究。

研究发现高度近视患者房水中TGF-β2浓度升高,Zhang等人 [61] 研究数据表明,HMC患者的囊袋皱缩综合征患病率高于ARC患者,高度近视是CCS的一个危险因素并且发现TGF-β2在CCS形成中起发挥作用。Zhuang等人 [60] 发现高度近视患者玻璃体内MMP2水平高于非高度近视者,其与转化生长因子-β2水平呈显著正相关,表明玻璃体内MMP2水平升高可能与转化生长因子-β2的调节有关,其可能促进CCS的发生。炎症因子在CCS的形成中起重要作用,提示我们HMC患者术后要常规使用抗炎眼药水,减少术后并发症的发生。

4. 总结和展望

本文对高度近视白内障患者的眼部特征以及从氧化应激、内质网应激以及房水中细胞因子以及炎性因子表达等方面对HMC可能的发病机制进行综述。由于高度近视白内障发展较快,对视力影响大,因此发现延缓疾病进展的问题丞待解决。随着这些机制的发现,可以为后期干预疾病的进展以及研究治疗疾病的药物提供可能。

文章引用

任 晓,王理论,韩登雷. 高度近视并发白内障相关机制研究进展
Research Progress on the Related Mechanism of High Myopia with Cataract[J]. 临床医学进展, 2022, 12(04): 2583-2589. https://doi.org/10.12677/ACM.2022.124372

参考文献

  1. 1. Zhu, X.J., Zhou, P., Zhang, K.K., Yang, J., Luo, Y. and Lu, Y. (2013) Epigenetic Regulation of α A-Crystallin in High Myopia-Induced Dark Nuclear Cataract. PLoS ONE, 8, e81900. https://doi.org/10.1371/journal.pone.0081900

  2. 2. Wong, Y. and Saw, S. (2016) Epidemiology of Pathologic Myopia in Asia and Worldwide. Asia-Pacific Journal of Ophthalmology, 5, 394-402. https://doi.org/10.1097/APO.0000000000000234

  3. 3. Pan, C., Cheung, C.Y., Aung, T., et al. (2013) Differential Associations of Myopia with Major Age-Related Eye Diseases. Ophthalmology, 120, 284-291. https://doi.org/10.1016/j.ophtha.2012.07.065

  4. 4. Morteza, M. and Hossein, A. (2008) Prevalence of Cataract Type in Relation to Axial Length in Subjects with High Myopia and Emmetropia in an Indian Population. American Journal of Ophthalmology, 146, 176-181. https://doi.org/10.1016/j.ajo.2008.04.004

  5. 5. Pan, C., Boey, P.Y., Cheng, C., et al. (2013) Myopia, Axial Length, and Age-Related Cataract: The Singapore Malay Eye Study. Investigative Ophthalmology & Visual Science, 54, 4498-4502. https://doi.org/10.1167/iovs.13-12271

  6. 6. Zhu, X., Li, D., Du, Y., et al. (2018) DNA Hypermethylation-Mediated Downregulation of Antioxidant Genes Contributes to the Early Onset of Cataracts In Highly Myopic Eyes. Redox Biology, 19, 179-189. https://doi.org/10.1016/j.redox.2018.08.012

  7. 7. Chang, L., Pan, C., Ohno-Matsui, K., et al. (2013) Myopia-Related Fundus Changes in Singapore Adults with High Myopia. American Journal of Ophthalmology, 155, 991-999. https://doi.org/10.1016/j.ajo.2013.01.016

  8. 8. Todorich, B., Scott, I.U., Flynn, J.H.W., et al. (2013) Macular Retinoschisis Associated with Pathologic Myopia. Retina (Philadelphia, Pa.), 33, 678-683. https://doi.org/10.1097/IAE.0b013e318285d0a3

  9. 9. Li, T., Wang, X., Zhou, Y., et al. (2018) Paravascular Abnormalities Observed by Spectral Domain Optical Coherence Tomography Are Risk Factors for Retinoschisis in Eyes with High Myopia. Acta Ophthalmologica, 96, e515-e523. https://doi.org/10.1111/aos.13628

  10. 10. Dolar-Szczasny, J., Święch-Zubilewicz, A. and Mackiewicz, J. (2019) A Review of Current Myopic Foveoschisis Management Strategies. Seminars in Ophthalmology, 34, 146-156. https://doi.org/10.1080/08820538.2019.1610180

  11. 11. Fan, X. and Monnier, V.M. (2021) Protein Posttranslational Modification (PTM) by Glycation: Role in Lens Aging and Age-Related Cataractogenesis. Experimental Eye Research, 210, Article ID: 108705. https://doi.org/10.1016/j.exer.2021.108705

  12. 12. Micelli-Ferrari, T., Vendemiale, G., Grattagliano, I., et al. (1996) Role of Lipid Peroxidation in the Pathogenesis of Myopic and Senile Cataract. British Journal of Ophthalmology, 80, 840-843. https://doi.org/10.1136/bjo.80.9.840

  13. 13. Simonelli, F., Nesti, A., Pensa, M., Romano, L., Savastano, S., Rinaldi, E. and Auricchio, G. (1989) Lipid Peroxidation and Human Cataractogenesis in Diabetes and Severe Myopia. Experimental Eye Research, 49, 181-187. https://doi.org/10.1016/0014-4835(89)90088-2

  14. 14. Chang, M.A., Congdon, N.G., Bykhovskaya, I., et al. (2005) The Association between Myopia and Various Subtypes of Lens Opacity. Ophthalmology, 112, 1395-1401. https://doi.org/10.1016/j.ophtha.2005.02.017

  15. 15. Palmquist, B.M., Philipson, B. and Barr, P.O. (1984) Nuclear Cataract and Myopia during Hyperbaric Oxygen Therapy. British Journal of Ophthalmology, 68, 113-117. https://doi.org/10.1136/bjo.68.2.113

  16. 16. Beebe, D.C., Holekamp, N.M., Siegfried, C., et al. (2011) Vitreoretinal Influences on Lens Function and Cataract. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 1293-1300. https://doi.org/10.1098/rstb.2010.0228

  17. 17. Thompson, J.T. (2004) The Role of Patient Age and Intraocular Gas Use in Cataract Progression after Vitrectomy for Macular Holes and Epiretinal Membranes. American Journal of Ophthalmology, 137, 250-257. https://doi.org/10.1016/j.ajo.2003.09.020

  18. 18. Holekamp, N.M., Shui, Y. and Beebe, D.C. (2005) Vitrectomy Surgery Increases Oxygen Exposure to the Lens: A Possible Mechanism for Nuclear Cataract Formation. American Journal of Ophthalmology, 139, 302-310. https://doi.org/10.1016/j.ajo.2004.09.046

  19. 19. Francisco, B., Salvador, M. and Amparo, N. (2015) Oxidative Stress in Myopia. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 750637. https://doi.org/10.1155/2015/750637

  20. 20. Ke, C., Xu, H., Chen, Q., et al. (2021) Serum Metabolic Signatures of High Myopia among Older Chinese Adults. Eye, 35, 817-824. https://doi.org/10.1038/s41433-020-0968-z

  21. 21. Zhu, X., Gaus, K., Lu, Y., et al. (2010) Alpha- and Beta-Crystallins Modulate the Head Group Order of Human Lens Membranes during Aging. Investigative Ophthalmology & Visual Science, 51, 5162-5167. https://doi.org/10.1167/iovs.09-4947

  22. 22. Timsina, R., Khadka, N.K., Maldonado, D., et al. (2021) Interaction of Alpha-Crystallin with Four Major Phospholipids of Eye Lens Membranes. Experimental Eye Research, 202, Article ID: 108337. https://doi.org/10.1016/j.exer.2020.108337

  23. 23. Zhou, P., Luo, Y., Liu, X., et al. (2012) Down-Regulation and CpG Island Hypermethylation of CRYAA in Age-Related Nuclear Cataract. The FASEB Journal, 26, 4897-4902. https://doi.org/10.1096/fj.12-213702

  24. 24. Ji, Y., Rong, X., Ye, H., et al. (2015) Proteomic Analysis of Aqueous Humor Proteins Associated with Cataract Development. Clinical Biochemistry, 48, 1304-1309. https://doi.org/10.1016/j.clinbiochem.2015.08.006

  25. 25. Hejtmancik, J.F., Wingfield, P. and Sergeev, Y.V. (2004) β-Crystallin Association. Experimental Eye Research, 79, 377-383. https://doi.org/10.1016/j.exer.2004.06.011

  26. 26. Heon, E., Priston, M., Schorderet, D.F., et al. (1999) The Gamma-Crystallins and Human Cataracts: A Puzzle Made Clearer. The American Journal of Human Genetics, 65, 1261-1267. https://doi.org/10.1086/302619

  27. 27. Xing, K.Y. and Lou, M.F. (2010) Effect of Age on the Thioltransferase (Glutaredoxin) and Thioredoxin Systems in the Human Lens. Investigative Ophthalmology & Visual Science, 51, 6598-6604. https://doi.org/10.1167/iovs.10-5672

  28. 28. Elanchezhian, R., Palsamy, P., Madson, C.J., et al. (2012) Age-Related Cataracts: Homocysteine Coupled Endoplasmic Reticulum Stress and Suppression of Nrf2-Dependent Antioxidant Protection. Chemico-Biological Interactions, 200, 1-10. https://doi.org/10.1016/j.cbi.2012.08.017

  29. 29. Qi, R., Gu, Z. and Zhou, L. (2015) The Effect of GSTT1, GSTM1 and GSTP1 Gene Polymorphisms on the Susceptibility of Age-Related Cataract in Chinese Han Population. International Journal of Clinical and Experimental Medicine, 8, 19448-19453.

  30. 30. Wang, F., Ma, J., Han, F., et al. (2016) DL-3-n-butylphthalide Delays the Onset and Progression of Diabetic Cataract by Inhibiting Oxidative Stress in Rat Diabetic Model. Scientific Reports, 6, Article No. 19396. https://doi.org/10.1038/srep19396

  31. 31. Chen, J., Zhou, J., Wu, J., et al. (2017) Aberrant Epigenetic Alterations of Glutathione-S-Transferase P1 in Age-Related Nuclear Cataract. Current Eye Research, 42, 402-410. https://doi.org/10.1080/02713683.2016.1185129

  32. 32. Tian, F., Dong, L., Zhou, Y., et al. (2014) Rapamycin-Induced Apoptosis in HGF-Stimulated Lens Epithelial Cells by AKT/mTOR, ERK and JAK2/STAT3 Pathways. International Journal of Molecular Sciences, 15, 13833-13848. https://doi.org/10.3390/ijms150813833

  33. 33. Tian, F., Zhao, J., Bu, S., et al. (2020) KLF6 Induces Apoptosis in Human Lens Epithelial Cells through the ATF4-ATF3-CHOP Axis. Drug Design, Development and Therapy, 14, 1041-1055. https://doi.org/10.2147/DDDT.S218467

  34. 34. Mordechai, S., Gradstein, L., Pasanen, A., et al. (2011) High Myopia Caused by a Mutation in LEPREL1, Encoding Prolyl3-Hydroxylase2. The American Journal of Human Genetics, 89, 438-445. https://doi.org/10.1016/j.ajhg.2011.08.003

  35. 35. Guo, H., Tong, P., Peng, Y., et al. (2014) Homozygous Loss-of-Function Mutation of the LEPREL1 Gene Causes Severe Non-Syndromic High Myopia with Early-Onset Cataract. Clinical Genetics, 86, 575-579. https://doi.org/10.1111/cge.12309

  36. 36. Saika, S., Kawashima, Y., Miyamoto, T., et al. (1998) Immunolocalization of Prolyl 4-Hydroxylase Subunits, Alpha-Smooth Muscle Actin, and Extracellular Matrix Components in Human Lens Capsules with Lens Implants. Experimental Eye Research, 66, 283-294. https://doi.org/10.1006/exer.1997.0434

  37. 37. Vranka, J., Stadler, H.S. and Bächinger, H.P. (2009) Expression of Prolyl 3-Hydroxylase Genes in Embryonic and Adult Mouse Tissues. Cell Structure and Function, 34, 97-104. https://doi.org/10.1247/csf.09002

  38. 38. Tian, F., Zhao, J., Bu, S., et al. (2020) KLF6 Induces Apoptosis in Human Lens Epithelial Cells through the ATF4-ATF3-CHOP Axis. Drug Design, Development and Therapy, 14, 1041-1055. https://doi.org/10.2147/DDDT.S218467

  39. 39. Szegezdi, E., Logue, S.E., Gorman, A.M., et al. (2006) Mediators of Endoplasmic Reticulum Stress-Induced Apoptosis. EMBO Reports, 7, 880-885. https://doi.org/10.1038/sj.embor.7400779

  40. 40. Oakes, S.A. and Papa, F.R. (2015) The Role of Endoplasmic Reticulum Stress in Human Pathology. Annual Review of Pathology, 10, 173-194. https://doi.org/10.1146/annurev-pathol-012513-104649

  41. 41. Yang, J., Zhou, S., Gu, J., et al. (2015) UPR Activation and the Down-Regulation of α-Crystallin in Human High Myopia-Related Cataract Lens Epithelium. PLoS ONE, 10, e137582. https://doi.org/10.1371/journal.pone.0137582

  42. 42. Lam, D.S., Lee, W.S., Leung, Y.F., et al. (2003) TGFbeta-Induced Factor: A Candidate Gene for High Myopia. Investigative Ophthalmology & Visual Science, 44, 1012-1015. https://doi.org/10.1167/iovs.02-0058

  43. 43. Ogata, N., Imaizumi, M., Miyashiro, M., et al. (2005) Low Levels of Pigment Epithelium-Derived Factor in Highly Myopic eyes with Chorioretinal Atrophy. American Journal of Ophthalmology, 140, 937-939. https://doi.org/10.1016/j.ajo.2005.05.037

  44. 44. Segev, F., Mor, O., Segev, A., et al. (2005) Downregulation of Gene Expression in the Ageing Lens: A Possible Contributory Factor in Senile Cataract. Eye (London), 19, 80-85. https://doi.org/10.1038/sj.eye.6701423

  45. 45. Shin, Y.J., Nam, W.H., Park, S.E., et al. (2012) Aqueous Humor Concentrations of Vascular Endothelial Growth Factor and Pigment Epithelium-Derived Factor in High Myopic Patients. Molecular Vision, 18, 2265-2270.

  46. 46. Tolmachova, T., Wavre-Shapton, S.T., Barnard, A.R., et al. (2010) Retinal Pigment Epithelium Defects Accelerate Photoreceptor Degeneration in Cell Type-Specific Knockout Mouse Models of Choroideremia. Investigative Ophthalmology & Visual Science, 51, 4913-4920. https://doi.org/10.1167/iovs.09-4892

  47. 47. Yuan, J., Wu, S., Wang, Y., et al. (2019) Inflammatory Cytokines in Highly Myopic Eyes. Scientific Reports, 9, Article No. 3517. https://doi.org/10.1038/s41598-019-39652-x

  48. 48. Ho, T., Chen, S., Yang, Y., et al. (2009) Cytosolic Phospholipase A2-α Is an Early Apoptotic Activator in PEDF-Induced Endothelial Cell Apoptosis. American Journal of Physiology-Cell Physiology, 296, C273-C284. https://doi.org/10.1152/ajpcell.00432.2008

  49. 49. García-Gen, E., Penadés, M., Mérida, S., et al. (2021) High Myopia and the Complement System: Factor H in Myopic Maculopathy. Journal of Clinical Medicine, 10, 2600. https://doi.org/10.3390/jcm10122600

  50. 50. Weiler, J.M., Daha, M.R., Austen, K.F. and Fearon, D.T. (1976) Control of the Amplification Convertase of Complement by the Plasma Protein beta1H. Proceedings of the National Academy of Sciences of the United States of America, 73, 3268-3272. https://doi.org/10.1073/pnas.73.9.3268

  51. 51. Donoso, L.A., Kim, D., Frost, A., et al. (2006) The Role of Inflammation in the Pathogenesis of Age-Related Macular Degeneration. Survey of Ophthalmology, 51, 137-152. https://doi.org/10.1016/j.survophthal.2005.12.001

  52. 52. Bok, D. (2005) Evidence for an Inflammatory Process in Age-Related Macular Degeneration Gains New Support. Proceedings of the National Academy of Sciences of the United States of America, 102, 7053-7054. https://doi.org/10.1073/pnas.0502819102

  53. 53. Mandal, M.N. and Ayyagari, R. (2006) Complement Factor H: Spatial and Temporal Expression and Localization in the Eye. Investigative Ophthalmology & Visual Science, 47, 4091-4097. https://doi.org/10.1167/iovs.05-1655

  54. 54. Wen, K., Shao, X., Li, Y., et al. (2021) The Plasminogen Protein Is Associated with High Myopia as Revealed by the iTRAQ-Based Proteomic Analysis of the Aqueous Humor. Scientific Reports, 11, Article No. 8789. https://doi.org/10.1038/s41598-021-88220-9

  55. 55. Godier, A. and Hunt, B.J. (2013) Plasminogen Receptors and Their Role in the Pathogenesis of Inflammatory, Autoimmune and Malignant Disease. Journal of Thrombosis and Haemostasis, 11, 26-34. https://doi.org/10.1111/jth.12064

  56. 56. Herbort, C.P., Papadia, M. and Neri, P. (2011) Myopia and Inflammation. Journal of Ophthalmic and Vision Research, 6, 270-283.

  57. 57. Zhu, X., Zhang, K., He, W., et al. (2016) Proinflammatory Status in the Aqueous Humor of High Myopic Cataract Eyes. Experimental Eye Research, 142, 13-18. https://doi.org/10.1016/j.exer.2015.03.017

  58. 58. Zhang, J.S., Da, W.J., Zhu, G.Y., et al. (2020) The Expression of Cytokines in Aqueous Humor of High Myopic Patients with Cataracts. Molecular Vision, 26, 150-157.

  59. 59. Liu, Y.X. and Sun, Y. (2018) MMP-2 Participates in the Sclera of Guinea Pig with Form-Deprivation Myopia via IGF-1/STAT3 Pathway. European Review for Medical and Pharmacological Sciences, 22, 2541-2548.

  60. 60. Zhuang, H., Zhang, R., Shu, Q., et al. (2014) Changes of TGF-β2, MMP-2, and TIMP-2 Levels in the Vitreous of Patients with High Myopia. Graefe’s Archive for Clinical and Experimental Ophthalmology, 252, 1763-1767. https://doi.org/10.1007/s00417-014-2768-2

  61. 61. Zhang, K., Zhu, X., Chen, M., et al. (2016) Elevated Transforming Growth Factor-β 2 in the Aqueous Humor: A Possible Explanation for High Rate of Capsular Contraction Syndrome in High Myopia. Journal of Ophthalmology, 2016, Article ID: 5438676. https://doi.org/10.1155/2016/5438676

  62. NOTES

    *通讯作者。

期刊菜单