Advances in Clinical Medicine
Vol. 13  No. 02 ( 2023 ), Article ID: 61109 , 5 pages
10.12677/ACM.2023.132183

低温、低氧对肥胖的影响及机制研究进展

朱强1,张瑞霞2*

1青海大学研究生院,青海 西宁

2青海大学附属医院内分泌科,青海 西宁

收稿日期:2023年1月8日;录用日期:2023年2月1日;发布日期:2023年2月8日

摘要

肥胖是由遗传和环境等因素共同作用而导致的慢性代谢性疾病,是21世纪最具挑战性的公共卫生问题之一。全球的肥胖患病率呈明显的上升趋势,根据最新的流行病学调查显示,肥胖的患病率存在显著的地理差异,高海拔地区的肥胖患病率明显低于平原地区。很少有人研究高原环境暴露对肥胖的影响,最近有人提出了低温、低氧等因素作为一种新型减肥策略,学者们对其研究还处于初步探究阶段,尚未完全阐明。本文检索了当前的相关文献,总结了低温、低氧等因素对肥胖的影响及机制相关最新研究,支持低温、低氧因素可能是调节肥胖的观点。

关键词

低温,低氧,肠道菌群,肥胖

Research Progress on the Effect and Mechanism of Hypothermia and Hypoxia on Obesity

Qiang Zhu1, Ruixia Zhang2*

1Qinghai University Graduated School, Xining Qinghai

2Department of Endocrinology, Affiliated Hospital of Qinghai University, Xining Qinghai

Received: Jan. 8th, 2023; accepted: Feb. 1st, 2023; published: Feb. 8th, 2023

ABSTRACT

Obesity is a chronic metabolic disease caused by genetic and environmental factors. It is one of the most challenging public health problems in the 21st century. The prevalence of obesity in the world shows an obvious upward trend. According to the latest epidemiological survey, there are significant geographical differences in the prevalence of obesity. The prevalence of obesity in high-altitude areas is significantly lower than that in plain areas. Few people have studied the impact of high altitude environmental exposure on obesity. Recently, some people have proposed low temperature, hypoxia and other factors as a new weight loss strategy. Scholars’ research on it is still in the preliminary exploration stage, and has not been fully clarified. This paper searched the current relevant literature, summarized the latest research on the effects and mechanisms of hypothermia, hypoxia and other factors on obesity, and supported the view that hypothermia, hypoxia and other factors may regulate obesity.

Keywords:Low Temperature, Hypoxia, Intestinal Flora, Obesity

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

肥胖不仅会引起社会心理问题,还会带来包括呼吸、循环、消化、内分泌代谢等一系列严重的健康问题,造成巨大的疾病负担、生活质量下降、预期寿命缩短。根据世界卫生组织的估计,全球约一半以上的成年人超重或肥胖 [1],因此迫切需要一种有效的减重方法。研究发现,与生活在低海拔地区的人相比,生活在高海拔地区的人往往更瘦,海拔与肥胖患病率呈负相关 [2]。针对这一研究有人提出低温、低氧等因素可作为一种新型的减重策略,但有人却持相反观点 [3] [4]。低温、低氧等因素对肥胖的调节机制复杂且尚未完全明确,是否会给人类肥胖带来好处仍然未知。本文总结了低温、低氧等因素对肥胖影响及机制的相关最新研究,可能会为肥胖的治疗提供新的信息,有助于未来制定新的减重策略。

2. 低温

生活在极端环境中的动物已经进化出特定的行为和生理策略以求生存。研究发现,冷暴露会增加棕色脂肪组织(brown adipose tissue, BAT)和褐色脂肪组织(beige adipose tissue, BeAT)中解偶联蛋白-1 (uncoupling protein 1, UCP-1)的表达水平,UCP-1通过线粒体中跨膜蛋白使用葡萄糖和脂肪酸进行非战栗产热,消耗能量、提高体温 [5],朱红娟等人则通过对高原鼠兔研究发现,高原鼠兔产热基因表达增加,如骨骼肌中的过氧化物酶体增殖物激活受体-γ辅激活因子1α (peroxisome proliferator-activated receptor-γ coactivator-1α, pgc-1α)、过氧化物酶体增殖物激活受体α (peroxisome proliferator-activated receptor α, ppar α)、肌脂蛋白(sarcolipin, SLN)及白色脂肪组织(white adipose tissues, WAT)和BAT中pgc-1α、pparα等,以适应高原低温环境 [6],因此冷暴露可能是一种有的效减重方法。然而Mckie等人研究发现,间歇性冷暴露会引起大鼠快速和持续的摄食增加进而导致肥胖 [3]。Zhu等人也通过对小鼠慢性冷暴露研究发现,慢性冷暴露小鼠中央杏仁核中c-fos免疫反应显著增加,激活神经肽Y (neuropeptide Y, NPY)能神经元,增加小鼠中央杏仁核中的促食欲肽水平、降低小鼠下丘脑腹内侧核中的厌食性脑源性神经营养因子(BDNF) mRNA水平,进而增加小鼠食欲,最终导致小鼠脂肪积累和肥胖 [7]。而Robert等人则进一步通过对12名瘦的男性和9名肥胖男性冷暴露能量消耗(energy expenditure, EE)量热仪器定量分析发现,与瘦的男性相比,肥胖男性可用于增加的EE更少、冷诱导产热(cold-induced thermogenesis, CIT)能力更小,可能是由于其基础热量产生更多 [8]。因此,低温对肥胖的影响及其机制尚未明确,可能与低温暴露的时间及受试者肥胖程度相关。

3. 低氧

低氧对肥胖的调节机制复杂且不完全清楚,研究发现,低氧可通过介导缺氧诱导因子(Hypoxia-Inducible Factor, HIF)使其下级通路发生改变和直接调节激素水平影响食欲、能量消耗,因此低氧可能是调节肥胖的关键因素 [9]。但低氧对肥胖的益处可能与低氧的程度、性别、遗传等相关,极端的低氧暴露,则可能对机体产生不利影响。在低氧条件下,HIF与编码区下游的低氧反应元件结合介导的低氧反应促进促红细胞生成素(erythropoietin, EPO)的合成。Sukanya等人通过小鼠实验发现,EPO可能对饮食诱导的肥胖具有减重作用,但进一步研究发现,EPO调节脂肪累积具有性别二态性,EPO可减少雄性小鼠的脂肪量,而雌性小鼠的雌激素则取代了EPO的减重作用 [10]。Jameson等人对美国陆空军服役军人研究也发现,随着海拔的升高,EPO水平升高,有助于降低肥胖率,但女性军人体重下降与低氧所致EPO水平升高的相关性却不明确 [11]。瘦素是一种由脂肪组织分泌的激素,可抑制食欲,减少脂肪吸收,增加脂肪酸利用,减轻体重,在能量代谢调节中起重要作用。低氧和瘦素之间似乎存在相关性,但关于低氧与血浆瘦素水平之间的相关文献报道不一致,有称低氧导致血浆瘦素水平升高、降低或不变。Li等人通过对大鼠实验发现,短期低氧可使大鼠血浆瘦素水平增加,体重减轻 [12]。Florian等人对男性研究也发现,男性短期低氧暴露血浆瘦素水平也增加,体重也减轻 [13]。因此,短期低氧暴露似乎可介导血浆瘦素水平的升高抑制食欲,减轻体重。但Hannes等人首次对长期低氧暴露研究发现,长期低氧暴露不会改变瘦素mRNA的表达,不降低体重,这表明长期低氧暴露后瘦素所致减重效果可能趋于稳定 [14]。胃饥饿素(Ghrelin)是胃内产生的一种肽,可促进食欲。2005年Shukla等人首次证明,急性低氧暴露后会降低空腹Ghrelin水平,抑制食欲,减轻体重 [15]。然而Mekjavic等人研究发现,成年男性长期低氧暴露后Ghrelin浓度似乎没有降低 [4]。因此,尽管在动物及人身上确实观察到低氧介导的反应可调节体重,但确切的生理机制仍不清楚,应进一步探索低氧对肥胖的潜在独立影响因素。

4. 肠道微生物群

众所周知,肠道微生物群的组成不是一成不变的,受遗传、环境等因素的影响,而肠道微生物群的种类及数量可能会影响某些物质的吸收,进而影响宿主的肥胖 [16]。这一事实提出了一种具有吸引力的可能性,即通过操纵肠道微生物群促进减重或预防肥胖。与平原地区不同,高原地区独特的环境特点、居民独特的生活方式和饮食习惯,形成了其独特的肠道微生物群,对宿舍的营养、代谢等产生重大影响。但很少有人研究低温、低氧因素如何介导肠道微生物群改变对肥胖的影响。通过对人和大鼠研究发现,肠道微生物群的组成与海拔分布显著相关 [17] [18]。Wang Feng等人研究发现,急性低氧时,小鼠的香农、辛普森和阿克曼氏菌显著增加,厚壁菌门、拟杆菌门和双歧杆菌比例显著降低,代谢显著升高 [19]。WangFan等人研究发现,慢性间歇性低氧可降低小鼠A. muciniphila丰度,导致肠杯状细胞密度降低、肠道通透性增加、消化功能受损,同时可上调厚壁菌门、双歧杆菌属和乳酸杆菌属,激活过氧化物酶体增殖物激活受体-γ (peroxisome proliferator-activated receptor-γ, PPAR-γ),上调UCP1表达促进BAT消耗 [20]。Wu等人则发现,小鼠肠道HIF-2α可调节肠道乳酸,使牛磺酸结合胆酸和脱氧胆酸水平升高,激活脂肪G蛋白偶联胆汁酸受体,进而上调UCP1和线粒体肌酸激酶2 (mitochondrial creatine kinase 2, CKMT2)的表达,使白色脂肪组织产热增加,减轻体重 [21]。而Marika等人研究发现,急性(1天)和慢性(4周)冷暴露可改变与小鼠肥胖相关的肠道微生物群组成,急性冷暴露可升高Adlercreutzia、Mogibacteriaceae、Ruminococcaceae和Desulfovibrio水平,而慢性冷暴露则可降低Bacilli、Erysipelotrichaceae水平,进而减少冷暴露时摄食增加所引起的肥胖 [22]。因此,低温、低氧对宿主肠道菌群的组成及代谢具有明显影响,但其机制不同。研究低温、低氧等因素介导肠道微生物群的改变与肥胖之间的关系更具意义。

5. 结论

综上所述,低温、低氧等因素可介导基因水平、神经反应性、HIF通路、激素水平、肠道微生物群的组成和功能等的改变,影响机体能量摄入、吸收与消耗,从而调节体重,可能作为一种潜在的新型减肥策略;但这种益处似乎与低温、低氧暴露的时间及程度密切相关,其具体机制尚未明确。鉴于肥胖在世界范围内的流行,显然需要一种更新颖、更有效的减重和预防肥胖的方法。低温、低氧是否会给人类肥胖治疗带来好处值得进一步研究。

基金项目

青海省基础研究计划项目(2019-ZJ-7079),低温、低氧双重因素对大鼠骨骼肌细胞脂肪代谢的影响。

文章引用

朱 强,张瑞霞. 低温、低氧对肥胖的影响及机制研究进展
Research Progress on the Effect and Mechanism of Hypothermia and Hypoxia on Obesity[J]. 临床医学进展, 2023, 13(02): 1327-1331. https://doi.org/10.12677/ACM.2023.132183

参考文献

  1. 1. World Health Organization (2021) Obesity and Overweight. http://www.who.int/mediacentre/factsheets/fs311/en/

  2. 2. Voss, J.D., Masuoka, P., Webber, B.J., Scher, A.I. and At-kinson, R.L. (2013) Association of Elevation, Urbanization and Ambient Temperature with Obesity Prevalence in the United States. International Journal of Obesity, 37, 1407-1412. https://doi.org/10.1038/ijo.2013.5

  3. 3. McKie, G.L., Shamshoum, H., Hunt, K.L., et al. (2022) Intermittent Cold Exposure Improves Glucose Homeostasis Despite Exacerbating Diet-Induced Obesity in Mice Housed at Thermoneutral-ity. The Journal of Physiology, 600, 829-845. https://doi.org/10.1113/JP281774

  4. 4. Mekjavic, I.B., Amon, M., Kölegård, R., et al. (2016) The Effect of Normobaric Hypoxic Confinement on Metabolism, Gut Hormones, and Body Composition. Frontiers in Physiology, 7, Article 202. https://doi.org/10.3389/fphys.2016.00202

  5. 5. McMillan, A.C. and White, M.D. (2015) Induction of Thermo-genesis in Brown and Beige Adipose Tissues: Molecular Markers, Mild Cold Exposure and Novel Therapies. Current Opinion in Endocrinology & Diabetes and Obesity, 22, 347-352. https://doi.org/10.1097/MED.0000000000000191

  6. 6. Zhu, H., Zhong, L., Li, J., Wang, S. And Qu, J. (2021) Differential Expression of Metabolism-Related Genes in Plateau Pika (Ochotona curzoniae) at Different Altitudes of Qinghai—Tibet Plateau. Frontiers in Genetics, 12, Article 784811. https://doi.org/10.3389/fgene.2021.784811

  7. 7. Zhu, P., Zhang, Z.-H., Huang, X.-F., et al. (2018) Cold Expo-sure Promotes Obesity and Impairs Glucose Homeostasis in Mice Subjected to a High-Fat Diet. Molecular Medicine Re-ports, 18, 3923-3931. https://doi.org/10.3892/mmr.2018.9382

  8. 8. Brychta, R.J., Huang, S., Wang, J., et al. (2019) Quantification of the Capacity for Cold-Induced Thermogenesis in Young Men with and without Obesity. The Journal of Clinical Endocri-nology & Metabolism, 104, 4865-4878. https://doi.org/10.1210/jc.2019-00728

  9. 9. Palmer, B.F. and Clegg, D.J. (2014) Ascent to Altitude as a Weight Loss Method: The Good and Bad of Hypoxia Inducible Factor Activation. Obesity, 22, 311-317. https://doi.org/10.1002/oby.20499

  10. 10. Suresh, S., Rajvanshi, P.K. and Noguchi, C.T. (2020) The Many Facets of Erythropoietin Physiologic and Metabolic Response. Frontiers in Physiology, 10, Article 1534. https://doi.org/10.3389/fphys.2019.01534

  11. 11. Voss, J.D., Allison, D.B., Webber, B.J., Otto, J.L. and Clark, L.L. (2014) Lower Obesity Rate during Residence at High Altitude among a Military Population with Frequent Migration: A Quasi Experimental Model for Investigating Spatial Causation. PLOS ONE, 9, e93493. https://doi.org/10.1371/journal.pone.0093493

  12. 12. Lu, Y., Feng, L., Xie, M., et al. (2016) Hypoxic Living and Ex-ercise Training Alter Adipose Tissue Leptin/Leptin Receptor in Rats. Frontiers in Physiology, 7, Article 554. https://doi.org/10.3389/fphys.2016.00554

  13. 13. Lippl, F.J., Neubauer, S., Schipfer, S., et al. (2010) Hypobaric Hy-poxia Causes Body Weight Reduction in Obese Subjects. Obesity, 18, 675-681. https://doi.org/10.1038/oby.2009.509

  14. 14. Högel, J. and Netzer, N.C. (2015) Hannes Gatterer Sven Haacke b Martin Burtscher Martin Faulhaber Andreas Melmerc Christoph Ebenbichler c Kingman P. Strohl d.

  15. 15. Debevec, T. (2017) Hypoxia-Related Hormonal Appetite Modulation in Humans during Rest and Exercise: Mini Review. Frontiers in Physiology, 8, Article 366. https://doi.org/10.3389/fphys.2017.00366

  16. 16. Davis, C.D. (2016) The Gut Microbi-ome and Its Role in Obesity. Nutrition Today, 51, 167-174. https://doi.org/10.1097/NT.0000000000000167

  17. 17. Lan, D., Ji, W., Lin, B., et al. (2017) Correlations between Gut Microbiota Community Structures of Tibetans and Geography. Scientific Reports, 7, Article No. 16982. https://doi.org/10.1038/s41598-017-17194-4

  18. 18. Suzuki, T.A, Phifer-Rixey, M., Mack, K.L., et al. (2019) Host Genetic Determinants of the Gut Microbiota of Wild Mice. Molecular Ecology, 28, 3197-3207. https://doi.org/10.1111/mec.15139

  19. 19. Wang, F., Zhang, H., Xu, T., Hu, Y. and Jiang, Y. (2022) Acute Exposure to Simulated High-Altitude Hypoxia Alters Gut Microbiota in Mice. Archives of Microbiology, 204, Article No. 412. https://doi.org/10.1007/s00203-022-03031-4

  20. 20. Wang, F., Zou, J., Xu, H., et al. (2022) Effects of Chronic In-termittent Hypoxia and Chronic Sleep Fragmentation on Gut Microbiome, Serum Metabolome, Liver and Adipose Tissue Morphology. Frontiers in Endocrinology, 13, Article 820939. https://doi.org/10.3389/fendo.2022.820939

  21. 21. Wu, Q., Liang, X., Wang, K., et al. (2021) Intestinal Hypoxia-Inducible Factor 2α Regulates Lactate Levels to Shape the Gut Microbiome and Alter Thermogenesis. Cell Metabolism, 33, 1988-2003. https://doi.org/10.1016/j.cmet.2021.07.007

  22. 22. Ziętak, M., Kovatcheva-Datchary, P., Markiewicz, L.H., et al. (2016) Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure. Cell Metabolism, 23, 1216-1223. https://doi.org/10.1016/j.cmet.2016.05.001

  23. NOTES

    *通讯作者。

期刊菜单