Journal of Clinical Personalized Medicine
Vol. 03  No. 01 ( 2024 ), Article ID: 83846 , 8 pages
10.12677/jcpm.2024.31023

肝癌伴微血管侵犯的相关因素研究

尹海龙1*,李衍飞2#

1青海大学研究生院,青海 西宁

2青海大学附属医院肝胆胰二科,青海 西宁

收稿日期:2024年2月25日;录用日期:2024年3月24日;发布日期:2024年3月31日

摘要

肝癌是严重危害人类健康的重大疾病,到2025年,肝癌患者新增将突破100万。肝细胞癌(hepatocellular carcinoma, HCC)是肝癌中最常见的一种,约占85%。我国人口基数较大,是肝癌发病重灾区,发病率在恶性肿瘤中处于第四位,2022年新增肝癌患者为39.9万例,每年因为肝癌而导致的死亡人数约是全世界的一半,在我国的恶性肿瘤致死率排名中,位居第二位。目前最好的根治方法仍然是手术切除,但是肝细胞癌的预后还是不佳。肿瘤的分化程度、数目、大小、有无转移等都会影响到肝癌的预后。在临床上,越来越多的研究表明,手术后经病理确认伴有微血管侵犯(Microvascular invasion, MVI)的患者,其复发率明显升高,生存率明显下降。因此,肝癌的恶性程度及预后,除了与肿瘤大小、数量、远处转移等因素有关外,还与肝癌是否伴有MVI密切相关。因此,判断肝细胞癌是否发生MVI并及时采取适当的干预措施是提高肝细胞癌患者生存率的关键。

关键词

微血管侵犯,肝细胞癌,肝切除术,危险因素,预后

Study on the Related Factors of Hepatocellular Carcinoma with Microvascular Invasion

Hailong Yin1*, Yanfei Li2#

1Graduate School of Qinghai University, Xining Qinghai

2Department of Hepatobiliary Pancreatology, Affiliated Hospital of Qinghai University, Xining Qinghai

Received: Feb. 25th, 2024; accepted: Mar. 24th, 2024; published: Mar. 31st, 2024

ABSTRACT

Liver cancer is a major disease that seriously endangers human health. By 2025, the increase of liver cancer patients will exceed 1 million. HCC (hepatocellular carcinoma, HCC) is one of the most common in liver cancer, about 85%. China has a large population base, is the worst-hit area of liver cancer, the incidence of malignant tumors in the fourth place, in 2022, the number of new liver cancer patients for 399,000 cases, the annual number of deaths caused by liver cancer is about half of the world, in China’s malignant tumor fatality rate ranking second. Surgical resection is still the best option, but the prognosis for hepatocellular carcinoma remains poor. The degree of differentiation, number, size and metastasis of the tumor will affect the prognosis of liver cancer. Clinically, more and more studies have shown that the recurrence rate of patients with microvascular invasion (MVI) confirmed by pathology after surgery is significantly increased, and the survival rate is significantly decreased. The malignant degree and prognosis of HCC, therefore, in addition to and, distant metastasis, tumor size, number and related factors, but also closely related with liver cancer if accompanied by MVI. Therefore, to determine whether MVI occurs in hepatocellular carcinoma and to take appropriate intervention measures in time is the key to improve survival rate of hepatocellular carcinoma patients.

Keywords:Microvascular Invasion, Hepatocellular Carcinoma, Liver Resection, Risk Factors, Prognosis

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

原发性肝癌(Primary liver cancer, PLC)以肝细胞癌(HCC)、肝内胆管癌(ICC)、和混合细胞癌为主,但绝大部分为肝细胞癌,其它类型只有10%~15%。肝细胞癌是世界上最常见的恶性肿瘤之一,并且是与癌症相关死亡的第三大原因 [1] 。乙肝病毒(HBV)感染是导致肝癌的最重要原因,亚太地区新确诊的肝癌患者中,有70%以上都是在乙肝高发区 [2] ,尤其是中国。最近几年,由于医疗技术和治疗观念的不断革新,使得肝癌的治疗得到了快速的发展,治疗方式有:肝切除术、介入治疗、射频消融(RFA)及免疫治疗等 [3] [4] 。但在我国,因肝源紧缺,手术切除仍然是目前最主要的方法 [5] 。

有研究显示,随着手术技术的提升,术后综合治疗的不断完善,HCC病人的5年生存率已经可以控制在22%~81%之间 [6] 。但是,尽管如此,HCC病人手术后复发率仍高达60%,HHC病人的整体预后仍不能令人满意。这样的高复发率和高病死率,极大地影响了HCC患者手术后的长期生存 [7] [8] 。因此,如何防止HCC术后早期复发,已成为限制HCC患者疗效的关键因素。

手术切除后肿瘤复发的危险因素有很多,具体包括了残留病变、血管侵犯、HBV/HCV复制、肝硬化程度、门脉高压的存在和程度以及手术方式等 [9] 。在这当中,许多学者认为,在HCC病人手术后的早期,微血管侵犯是肝细胞癌手术后发生复发和转移,从而影响患者预后的重要危险因素之一,也是HCC病人术后长期生存的独立预测因素之一 [10] [11] [12] 。随着人们对 MVI及其对预后的不利影响的日益认识,MVI已成为HCC研究的热点。

2. MVI的定义

MVI即微血管癌栓,是指肿瘤细胞浸润周围的基质和血管壁,侵入微血管形成癌栓,显微镜下内皮血管腔内有>50个细胞的癌细胞巢,其可进一步增殖形成肉眼癌栓或者转移至远处部位 [13] 。MVI作为一个病理学概念,一般只能在手术后标本切片中得到证实 [14] 。MVI与卫星结节是HCC连续转移过程中不同阶段的两种病理形态,当在组织学上很难区分的情况下,可统称为MVI [15] 。按MVI的数目及分布对其进行病理学分级:M0:未发现MVI;M1(低危组):≤5个MVI,且发生于近癌旁肝组织(≤1 cm);M2 (高危组):>5个MVI,或MVI发生于远癌旁肝组织区域(>1 cm) [16] 。在一项研究中,作者根据浸润深度和组织病理学肿瘤栓子与血管壁的关系,将MVI分为粘连型、浸润型和突破型3种类型,按降序排列,术后长期生存机会降低,前者被归类为非侵入性MVI,而后两者被归类为侵入性MVI [17] 。然而,这些组织病理学分类的临床相关性仍有待验证。

3. MVI的预测

HCC的微血管浸润是一个多步骤的生物学过程,涉及许多因素,包括血清学指标和影像学指标的相互作用 [18] 。近三分之二的高分化HCC在组织学评估中可能存在MVI。高达25%的3 cm < HCC也会有MVI,这表明存在一种具有本质性更具侵袭性的HCC亚型 [19] 。鉴于MVI与切除后微观残留转移性疾病的关联,MVI实际上可能比传统的分级系统能更好地预测复发和生存。如何准确预测肝细胞癌患者术前是否合并MVI是目前的研究热点,现在大多数学者认为血清学标志物和影像学指标(如肿瘤大小、数量、边界和包膜)与MVI的术前预测密切相关 [20] 。

在血清生物标志物方面,许多研究者已经意识到相关指标对HCC合并MVI具有显著的预测价值。例如甲胎蛋白(AFP)和甲胎蛋白晶状体凝集素3 (AFP-L3)和异常凝血酶原(PIVKA-II)已被证实是MVI的独立预测因子。在临床实践中,许多医生使用AFP来诊断HCC [21] 。几十年来,AFP在HCC中一直作为生物标志物发挥作用,这是一项标准化检查,被认为比单纯影像学检查更客观,且易于获得。然而,多达40%的HCC患者的AFP水平正常,尤其是在疾病的早期阶段,这反映了AFP的低敏感性 [22] 。为了改善患者的临床预后,需要确定更可靠的血清生物标志物,另一种克服AFP局限性的方法是将其与PIVKA-II诱导的蛋白质的测量相结合 [23] [24] 。

PIVKA-II是一种异常的凝血酶原蛋白,在HCC患者的血清中以较高水平存在 [25] 。自Liebman [26] 等人首次报告以来,PIVKA-II已被确定为HCC的高度特异性标志物和HCC患者预后指标。在大量研究中,已经发现PIVKA-II和AFP联合测量在HCC早期诊断中的敏感性范围为47.5%至94.0%,特异性范围为53.3%至98.5%,并且这些值优于单独使用任何一种标志物 [27] [28] 。此外,Pote [29] 等人结果表明,PIVKA-II可用于早期HCC的诊断,并可作为MVI的预测标志物。

AFP-L3是AFP的岩藻糖基化变异体,来源于癌性肝细胞,被认为是MVI的独立预测因素 [30] 。据报道,AFP-L3对HCC的特异性高于AFP,代表了其恶性潜力。Shiraki [31] 等人进行的一项回顾性研究 [23] 发现21例肝癌患者中有9例(41%)在影像学诊断前12个月表现出高浓度的AFP-L。若血清AFP-L3能较好地反映HCC患者的发生发展,则可作为HCC人群的筛查指标,从而促进其早期诊断和及时开始治疗 [32] 。

术前影像学检查对MVI的预测有一定的帮助 [33] 。肿瘤直径与HCC患者的发生率呈正相关,随着肿瘤直径的增大,MVI及肝内转移的比例也随之增高,提示患者的预后较差。Eguchi [34] 等人发现,在接受根治性肝切除术的229例HCC患者中,有127例为HCC,无镜下门静脉侵犯,52例为HCC伴镜下门静脉侵犯。其中,MVI阳性组和MVI阴性组肿瘤平均直径分别为5.2 cm和3.0 cm。肿瘤直径现目前被认为是发生MVI的危险因素,所以伴有MVI的HCC患者,手术切除的肝脏组织范围更广,患者的预后越差。此外,还有许多临床特征(包括肿瘤数目,包膜完整性、肿瘤分化程度和影像学表现)与MVI的发生相关,但无法通过单一指标来对MVI进行准确预测 [35] 。相反,需要对多个因素进行全面分析,才能获得更有价值的临床治疗方案。

4. MVI的治疗

手术治疗:HCC患者的预后仍然不尽人意,尽管在过去几十年中已经有了很大的改善。对于HCC患者,手术切除被认为是最有效的治疗方法。随着手术器械的增强和医学研究的进一步发展,解剖性肝切除术后的整体预后和生存率均有明显改善。解剖性肝切除术因肿瘤位置的差异及肝硬化程度,手术切除的范围往往有限,因此有时难以保证足够的手术切缘 [36] 。在接受HCC切除术的患者中,解剖性肝切除术在DFS和OS方面似乎比非解剖性肝切除术更具优势,尤其是在没有肝硬化的患者中 [37] [38] 。根据Feng [39] 等人提供的临床数据,41.9%的HCC患者MVI病理阳性,肿瘤附近(<1 cm)为MVI高发区。由于MVI可侵犯肿瘤包膜并侵犯距肿瘤包膜 ≥ 1 cm的血管,较宽的手术切缘(>1 cm)已被证明可减少组织病理学存在MVI的HCC患者的肿瘤复发 [40] 。如果术前评估患者的肝功能足够并且存在足够的剩余肝组织,解剖性肝切除可能是一个相对更好的选择。如果患者的肝功能储备较差或剩余肝脏容积不足,可以选择非解剖性切除术,但手术切缘必须大于1 cm,只有这样,才能保障病人的肝功能,减少早期局部复发的风险 [41] 。

局部治疗:肝细胞癌切除术后潜在早期复发的机制非常复杂。肝细胞癌的术后复发主要由肝内弥散驱动,最常见于手术切除缘附近,这一结果可能与血供补偿性增高或因手术切除片面而使MVI残存有关 [42] 。目前临床上主要采用的局部治疗方法有:射频消融(RFA)、无水酒精注射(PEI)、微波消融(MWA)及冷冻治疗等方法。在过去十年中,消融疗法的进步改善了早期肝细胞癌消融术的预后;与手术切除相比,RFA的侵入性较小,风险较低,这对肝硬化患者特别有用。因此,美洲肝胆胰协会(AHPBA)和外科肿瘤学会(SSO)目前推荐RFA作为无法进行肝脏手术或肝移植,且直径 < 4 cm远离大血管结构的HCC病人的一线治疗。某些研究进行了多项比较手术切除和RFA的临床试验,结果喜忧参半,一些人认为RFA对直径 < 3 cm的病变效果更好 [43] [44] [45] 。因此,纳入较大的病灶可能混淆了RFA对极早期HCC的疗效。尽管在使用RFA执行和监测消融切缘方面取得了重大进展,但需要更多的研究来进一步阐明MVI或微卫星疾病患者的复发风险 [46] 。

TACE:TACE是中期HCC患者的一线治疗。TACE可减少流向肿瘤的血流量,可通过动脉注射化疗药物和栓塞剂诱发缺血性肿瘤坏死 [47] 。TACE作为HCC辅助治疗的有效性已在临床研究中得到证实 [48] [49] 。一项随机临床试验的荟萃分析发现,除非肿瘤大小 < 5 cm,否则TACE在HCC根治性切除后不会明显改善RFS和OS [50] 。TACE的有效性可能是由于化疗药物进入血管,从而与迁移的肿瘤细胞接触以破坏它们。然而,由于不同人群的肿瘤微环境和肿瘤异质性不同,部分患者仍无法从该治疗中获益。肿瘤微环境可能通过pH值变化、血管系统异常、免疫群体变化和细胞外基质等多种机制在耐药性的启动和维持中发挥关键作用 [51] 。此外,高剂量TACE会损害肝细胞,导致肝功能恶化,对肿瘤细胞的免疫力降低,并增加乙型肝炎病毒再激活的风险。在TACE中,多种药物的联合使用可能会增加肝脏的负担,导致药物性肝损伤,并最终对治疗效果产生不利影响。因此,术后联合TACE治疗应考虑肝功能、手术时间等因素。此外,肿瘤负荷、肿瘤侵袭和术后恢复可能是影响疗效的因素。

肝移植:肝移植提供了最广泛的局部疾病控制形式。然而,在10%~20%的病例中,复发仍然是一个问题,由同种异体移植物复发、腹腔内淋巴结转移和远处转移的混合引起 [52] 。鉴于这种手术的高风险和成本,加上同种异体移植物的供应有限,有很大的动力将器官分配给具有最佳长期生存机会的患者。尽管已发现MVI是HCC移植后肿瘤复发和死亡的最重要预测因子之一,但移植仍然提供了治愈的最佳机会,尤其是对于高危患者。在目前的临床环境中,由于缺乏可用的术前MVI筛查方法,一部分HCC患者将不可避免地将移植作为一线治疗。然而,如果有一种可靠的非侵入性MVI检测方法可用,则MVI的存在可能代表移植的禁忌症,因为相关的生存率较低。

药物治疗:在过去的十年中,分子靶向药物索拉非尼被引入,并已被证明可以通过多种机制抑制肿瘤生长。索拉非尼是一种多靶点、具有口服活性的小分子酪氨酸激酶抑制剂(TKI),通过其抗血管生成和抗增殖作用阻断多种分子途径,该药物有望用于治疗晚期HCC患者 [53] 。仑伐替尼是VEGFR-1、VEGFR-2和VEGFR-3以及成纤维细胞生长因子受体(FGFRs)、血小板衍生生长因子受体(PDGFR) α、RET和KIT的抑制剂。在REFLECT研究中 [54] ,954例不可切除的HCC患者中,仑伐替尼与索拉非尼进行了比较,认为其不劣于索拉非尼。根据REFLECT试验,仑伐替尼于2018年获批用于不可切除HCC的一线治疗。许多研究表明,将索拉非尼与射频消融术或TACE联合治疗HCC可显著改善生存结果。然而,由于HCC的生物学异质性高度,索拉非尼辅助治疗MVI患者亚组的益处有待进一步探索。

5. 小结与展望

MVI是HCC术后复发和长期生存的重要危险因素。肝细胞癌中MVI的存在会显著降低肝切除术或肝移植后的生存结局。不幸的是,MVI只能根据术后手术标本进行确定,限制了其在指导个体化治疗方面的潜在价值。展望未来,轴向成像技术、活检组织的分子表征和新型血清生物标志物的进步有望成为非侵入性MVI检测的未来方法。最终,MVI状态可用于帮助临床医生确定治疗计划,特别是在手术干预方面,并提供更准确的预后。

文章引用

尹海龙,李衍飞. 肝癌伴微血管侵犯的相关因素研究
Study on the Related Factors of Hepatocellular Carcinoma with Microvascular Invasion[J]. 临床个性化医学, 2024, 03(01): 152-159. https://doi.org/10.12677/jcpm.2024.31023

参考文献

  1. 1. Torre, L.A., Bray, F., Siegel, R.L., et al. (2015) Global Cancer Statistics, 2012. CA: A Cancer Journal for Clinicians, 65, 87-108. https://doi.org/10.3322/caac.21262

  2. 2. Wang, W. and Wei, C. (2020) Advances in the Early Diagnosis of Hepatocellular Carcinoma. Genes & Diseases, 7, 308-319. https://doi.org/10.1016/j.gendis.2020.01.014

  3. 3. Benson, A.B., D’Angelica, M.I., Abrams, T.A., et al. (2014) Hepatobiliary Cancers, Version 2.2014. Journal of the National Comprehensive Cancer Network, 12, 1152-1182. https://doi.org/10.6004/jnccn.2014.0112

  4. 4. Heimbach, J.K., Kulik, L.M., Finn, R.S., et al. (2018) AASLD Guidelines for the Treatment of Hepatocellular Carcinoma. Hepatology, 67, 358-380. https://doi.org/10.1002/hep.29086

  5. 5. 吴孟超, 汤钊猷, 刘彤华, 等. 原发性肝癌规范化病理诊断指南(2015年版) [J]. 临床肝胆病杂志, 2015, 31(6): 833-839.

  6. 6. Wang, W., Guo, Y., Zhong, J., et al. (2021) The Clinical Significance of Microvascular Invasion in the Surgical Planning and Postoperative Sequential Treatment in Hepatocellular Carcinoma. Scientific Reports, 11, Article No. 2415. https://doi.org/10.1038/s41598-021-82058-x

  7. 7. Bruix, J., Reig, M. and Sherman, M. (2016) Evidence-Based Diagnosis, Staging, and Treatment of Patients with Hepatocellular Carcinoma. Gastroenterology, 150, 835-853. https://doi.org/10.1053/j.gastro.2015.12.041

  8. 8. Ishizawa, T., Hasegawa, K., Aoki, T., et al. (2008) Neither Multiple Tumors Nor Portal Hypertension Are Surgical Contraindications for Hepatocellular Carcinoma. Gastroenterology, 134, 1908-1916. https://doi.org/10.1053/j.gastro.2008.02.091

  9. 9. Hou, Y.F., Wei, Y.G., Yang, J.Y., et al. (2016) Microvascular Invasion Patterns Affect Survival in Hepatocellular Carcinoma Patients after Second Hepatectomy. The Journal of Surgical Research, 200, 82-90. https://doi.org/10.1016/j.jss.2015.06.069

  10. 10. Erstad, D.J. and Tanabe, K.K. (2019) Prognostic and Therapeutic Implications of Microvascular Invasion in Hepatocellular Carcinoma. Annals of Surgical Oncology, 26, 1474-1493. https://doi.org/10.1245/s10434-019-07227-9

  11. 11. Imamura, H., Matsuyama, Y., Tanaka, E., et al. (2003) Risk Factors Contributing to Early and Late Phase Intrahepatic Recurrence of Hepatocellular Carcinoma after Hepatectomy. Journal of Hepatology, 38, 200-207. https://doi.org/10.1016/S0168-8278(02)00360-4

  12. 12. Wang, M.D., Li, C., Liang, L., et al. (2020) Early and Late Recurrence of Hepatitis B Virus-Associated Hepatocellular Carcinoma. The Oncologist, 25, e1541-e1551. https://doi.org/10.1634/theoncologist.2019-0944

  13. 13. Gouw, A.S.H., Balabaud, C., Kusano, H., et al. (2011) Markers for Microvascular Invasion in Hepatocellular Carcinoma: Where Do We Stand? Liver Transplantation, 17, S72-S80. https://doi.org/10.1002/lt.22368

  14. 14. Zhang, X.P., Wang, K., Wei, X.B., et al. (2019) An Eastern Hepatobiliary Surgery Hospital Microvascular Invasion Scoring System in Predicting Prognosis of Patients with Hepatocellular Carcinoma and Microvascular Invasion after R0 Liver Resection: A Large-Scale, Multicenter Study. The Oncologist, 24, e1476-e1488. https://doi.org/10.1634/theoncologist.2018-0868

  15. 15. Budhu, A., Forgues, M., Ye, Q.H., et al. (2006) Prediction of Venous Metastases, Recurrence, and Prognosis in Hepatocellular Carcinoma Based on a Unique Immune Response Signature of the Liver Microenvironment. Cancer Cell, 10, 99-111. https://doi.org/10.1016/j.ccr.2006.06.016

  16. 16. Cong, W.M., Bu, H., Chen, J., et al. (2016) Practice Guidelines for the Pathological Diagnosis of Primary Liver Cancer: 2015 Update. World Journal of Gastroenterology, 22, 9279-9287. https://doi.org/10.3748/wjg.v22.i42.9279

  17. 17. Yang, L., Gu, D., Wei, J., et al. (2019) A Radiomics Nomogram for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma. Liver Cancer, 8, 373-386. https://doi.org/10.1159/000494099

  18. 18. Psaila, B. and Lyden, D. (2009) The Metastatic Niche: Adapting the Foreign Soil. Nature Reviews Cancer, 9, 285-293. https://doi.org/10.1038/nrc2621

  19. 19. Pawlik, T.M., Delman, K.A., Vauthey, J.N., et al. (2005) Tumor Size Predicts Vascular Invasion and Histologic Grade: Implications for Selection of Surgical Treatment for Hepatocellular Carcinoma. Liver Transplantation, 11, 1086-1092. https://doi.org/10.1002/lt.20472

  20. 20. 周小泉, 赵凯亮, 王卫星. 肝细胞癌微血管侵犯术前预测因素及价值探讨[J]. 微循环学杂志, 2023, 33(2): 55-60.

  21. 21. Song, D.S. and Bae, S.H. (2012) Changes of Guidelines Diagnosing Hepatocellular Carcinoma during the Last Ten-Year Period. Clinical and Molecular Hepatology, 18, 258-267. https://doi.org/10.3350/cmh.2012.18.3.258

  22. 22. Jiang, J.T., Wu, C.P., Xu, N.,et al. (2009) Clinical Evaluation of Serum α-Fetoprotein-IgM Immune Complexes on the Diagnosis of Primary Hepatocellular Carcinoma. Journal of Clinical Laboratory Analysis, 23, 213-218. https://doi.org/10.1002/jcla.20321

  23. 23. Omata, M., Lesmana, L.A., Tateishi, R., et al. (2010) Asian Pacific Association for the Study of the Liver Consensus Recommendations on Hepatocellular Carcinoma. Hepatology International, 4, 439-474. https://doi.org/10.1007/s12072-010-9165-7

  24. 24. Parikh, N.D., Mehta, A.S., Singal, A.G., et al. (2020) Biomarkers for the Early Detection of Hepatocellular Carcinoma. Cancer Epidemiology. Biomarkers & Prevention, 29, 2495-2503. https://doi.org/10.1158/1055-9965.EPI-20-0005

  25. 25. Nanashima, A., Abo, T., Taura, N., et al. (2013) NX-PVKA Levels before and after Hepatectomy of Hepatocellular Carcinoma as Predictors of Patient Survival: A Preliminary Evaluation of an Improved Assay for PIVKA-II. Anticancer Research, 33, 2689-2697.

  26. 26. Liebman, H.A., Furie, B.C., Tong, M.J., et al. (1984) Des-Gamma-Carboxy (Abnormal) Prothrombin as a Serum Marker of Primary Hepatocellular Carcinoma. The New England Journal of Medicine, 310, 1427-1431. https://doi.org/10.1056/NEJM198405313102204

  27. 27. Imamura, H., Matsuyama, Y., Miyagawa, Y., et al. (1999) Prognostic Significance of Anatomical Resection and Des-γ-Carboxy Prothrombin in Patients with Hepatocellular Carcinoma. The British Journal of Surgery, 86, 1032-1038. https://doi.org/10.1046/j.1365-2168.1999.01185.x

  28. 28. Koike, Y., Shiratori, Y., Sato, S., et al. (2001) Des-Gamma-Carboxy Prothrombin as a Useful Predisposing Factor for the Development of Portal Venous Invasion in Patients with Hepatocellular Carcinoma: A Prospective Analysis of 227 Patients. Cancer, 91, 561-569. https://doi.org/10.1002/1097-0142(20010201)91:3<561::AID-CNCR1035>3.0.CO;2-N

  29. 29. Poté, N., Cauchy, F., Albuquerque, M., et al. (2015) Performance of PIVKA-II for Early Hepatocellular Carcinoma Diagnosis and Prediction of Microvascular Invasion. Journal of Hepatology, 62, 848-854. https://doi.org/10.1016/j.jhep.2014.11.005

  30. 30. Aoyagi, Y., Isemura, M., Suzuki, Y., et al. (1985) Fucosylated Alpha-Fetoprotein as Marker of Early Hepatocellular Carcinoma. Lancet, 2, 1353-1354. https://doi.org/10.1016/S0140-6736(85)92643-1

  31. 31. Kumada, T., Nakano, S., Takeda, I., et al. (1999) Clinical Utility of Lens Culinaris Agglutinin-Reactive Alpha-Fetoprotein in Small Hepatocellular Carcinoma: Special Reference to Imaging Diagnosis. Journal of Hepatology, 30, 125-130. https://doi.org/10.1016/S0168-8278(99)80016-6

  32. 32. Zhang, Z., Zhang, Y., Wang, Y., et al. (2016) Alpha-Fetoprotein-L3 and Golgi Protein 73 May Serve as Candidate Biomarkers for Diagnosing Alpha-Fetoprotein-Negative Hepatocellular Carcinoma. OncoTargets and Therapy, 9, 123-129. https://doi.org/10.2147/OTT.S90732

  33. 33. Cho, E.S. AND Choi, J.Y. (2015) MRI Features of Hepatocellular Carcinoma Related to Biologic Behavior. Korean Journal of Radiology, 16, 449-464. https://doi.org/10.3348/kjr.2015.16.3.449

  34. 34. Eguchi, S., Takatsuki, M., Hidaka, M., et al. (2010) Predictor for Histological Microvascular Invasion of Hepatocellular Carcinoma: A Lesson from 229 Consecutive Cases of Curative Liver Resection. World Journal of Surgery, 34, 1034-1038. https://doi.org/10.1007/s00268-010-0424-5

  35. 35. 胡伟, 马新, 袁亮. 肝细胞癌微血管侵犯与术后复发及预后的相关性[J]. 中国中西医结合外科杂志, 2017, 23(6): 587-590.

  36. 36. Liu, Y., Dai, Y., Zhang, X.X., et al. (2018) [Comparative Analysis of Anatomic and Non-Anatomic Hepatectomy for Single Small Hepatocellular Carcinoma with Microvascular Invasion]. Chinese Medical Journal, 98, 1937-1940.

  37. 37. Moris, D., Tsilimigras, D.I., Kostakis, I.D., et al. (2018) Anatomic Versus Non-Anatomic Resection for Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. European Journal of Surgical Oncology, 44, 927-938. https://doi.org/10.1016/j.ejso.2018.04.018

  38. 38. Zhou, Y., Xu, D., Wu, L., et al. (2011) Meta-Analysis of Anatomic Resection versus Nonanatomic Resection for Hepatocellular Carcinoma. Langenbeck’s Archives of Surgery, 396, 1109-1117. https://doi.org/10.1007/s00423-011-0784-9

  39. 39. Feng, L.H., Dong, H., Lau, W.Y., et al. (2017) Novel Microvascular Invasion-Based Prognostic Nomograms to Predict Survival Outcomes in Patients after R0 Resection for Hepatocellular Carcinoma. Journal of Cancer Research and Clinical Oncology, 143, 293-303. https://doi.org/10.1007/s00432-016-2286-1

  40. 40. Liu, M., Wang, L., Zhu, H., et al. (2016) A Preoperative Measurement of Serum MicroRNA-125b May Predict the Presence of Microvascular Invasion in Hepatocellular Carcinomas Patients. Translational Oncology, 9, 167-172. https://doi.org/10.1016/j.tranon.2016.03.002

  41. 41. 聂彬, 赵铁军, 张胜龙. 肝细胞癌伴微血管侵犯不同切缘方案下根治术的预后分析[J]. 肝脏, 2023, 28(8): 921-923, 964.

  42. 42. Yoshida, Y., Kanematsu, T., Matsumata, T., et al. (1989) Surgical Margin and Recurrence after Resection of Hepatocellular Carcinoma in Patients with Cirrhosis. Further Evaluation of Limited Hepatic Resection. Annals of Surgery, 209, 297-301. https://doi.org/10.1097/00000658-198903000-00008

  43. 43. Chen, M.S., Li, J.Q., Liang, H.H., et al. (2005) [Comparison of Effects of Percutaneous Radiofrequency Ablation and Surgical Resection on Small Hepatocellular Carcinoma]. Chinese Medical Journal, 85, 80-83.

  44. 44. Huang, J., Yan, L., Cheng, Z., et al. (2010) A Randomized Trial Comparing Radiofrequency Ablation and Surgical Resection for HCC Conforming to the Milan Criteria. Annals of Surgery, 252, 903-912. https://doi.org/10.1097/SLA.0b013e3181efc656

  45. 45. Lü, M.D., Kuang, M., Liang, L.J., et al. (2006) [Surgical Resection versus Percutaneous Thermal Ablation for Early-Stage Hepatocellular Carcinoma: A Randomized Clinical Trial]. Chinese Medical Journal, 86, 801-805.

  46. 46. Minami, Y., Minami, T., Hagiwara, S., et al. (2018) Ultrasound-Ultrasound Image Overlay Fusion Improves Real-Time Control of Radiofrequency Ablation Margin in the Treatment of Hepatocellular Carcinoma. European Radiology, 28, 1986-1993. https://doi.org/10.1007/s00330-017-5162-8

  47. 47. Llovet, J.M. and Bruix, J. (2003) Systematic Review of Randomized Trials for Unresectable Hepatocellular Carcinoma: Chemoembolization Improves Survival. Hepatology, 37, 429-442. https://doi.org/10.1053/jhep.2003.50047

  48. 48. Chen, Z.H., Zhang, X.P., Zhou, T.F., et al. (2019) Adjuvant Transarterial Chemoembolization Improves Survival Outcomes in Hepatocellular Carcinoma with Microvascular Invasion: A Systematic Review and Meta-Analysis. European Journal of Surgical Oncology, 45, 2188-2196. https://doi.org/10.1016/j.ejso.2019.06.031

  49. 49. Lau, W.Y., Lai, E.C.H., Leung, T.W.T., et al. (2008) Adjuvant Intra-Arterial Iodine-131-Labeled Lipiodol for Resectable Hepatocellular Carcinoma: A Prospective Randomized Trial-Update on 5-Year and 10-Year Survival. Annals of Surgery, 247, 43-48. https://doi.org/10.1097/SLA.0b013e3181571047

  50. 50. Cheng, X., Sun, P., Hu, Q.G., et al. (2014) Transarterial (Chemo) Embolization for Curative Resection of Hepatocellular Carcinoma: A Systematic Review and Meta-Analyses. Journal of Cancer Research and Clinical Oncology, 140, 1159-1170. https://doi.org/10.1007/s00432-014-1677-4

  51. 51. Wang, L., Ke, Q., Lin, N., et al. (2019) Does Postoperative Adjuvant Transarterial Chemoembolization Benefit for All Patients with Hepatocellular Carcinoma Combined with Microvascular Invasion: A Meta-Analysis. Scandinavian Journal of Gastroenterology, 54, 528-537. https://doi.org/10.1080/00365521.2019.1610794

  52. 52. Agopian, V.G., Harlander-Locke, M., Zarrinpar, A., et al. (2015) A Novel Prognostic Nomogram Accurately Predicts Hepatocellular Carcinoma Recurrence after Liver Transplantation: Analysis of 865 Consecutive Liver Transplant Recipients. Journal of the American College of Surgeons, 220, 416-427. https://doi.org/10.1016/j.jamcollsurg.2014.12.025

  53. 53. Liu, L., Cao, Y., Chen, C., et al. (2006) Sorafenib Blocks the RAF/MEK/ERK Pathway, Inhibits Tumor Angiogenesis, and Induces Tumor Cell Apoptosis in Hepatocellular Carcinoma Model PLC/PRF/5. Cancer Research, 66, 11851-11858. https://doi.org/10.1158/0008-5472.CAN-06-1377

  54. 54. Kudo, M., Finn, R.S., Qin, S., et al. (2018) Lenvatinib Versus Sorafenib in First-Line Treatment of Patients with Unresectable Hepatocellular Carcinoma: A Randomised Phase 3 Non-Inferiority Trial. The Lancet, 391, 1163-1173. https://doi.org/10.1016/S0140-6736(18)30207-1

  55. NOTES

    *第一作者。

    #通讯作者。

期刊菜单