Advances in Clinical Medicine
Vol. 13  No. 04 ( 2023 ), Article ID: 64773 , 9 pages
10.12677/ACM.2023.134955

丁香有效成分在抗肿瘤方面的研究进展

秦振伟,廖德仲*

贵州中医药大学基础医学院,贵州 贵阳

收稿日期:2023年3月26日;录用日期:2023年4月21日;发布日期:2023年4月28日

摘要

丁香为桃金娘科植物丁香的干燥花蕾,有抗炎、抗氧化、抗菌、杀虫、镇痛和抗肿瘤等多种生物学活性,然而中药丁香作为一种香料,显示出对机体绿色和无毒副作用的效果,更是现代肿瘤研究的热点药物之一,因此丁香作为新的抗肿瘤的药物有着非常高的潜在的研究价值,丁香及丁香有效成分对乳腺癌、结直肠癌、黑色素瘤、宫颈癌、胃癌和肺癌等有着明显的抗肿瘤作用,研究表明,丁香及丁香有效成分可以通过多种途径直接或间接抑制肿瘤细胞生长和诱导着肿瘤细胞的凋亡。本文综述了近几年来国内外文献,对丁香及丁香有效成分的抗肿瘤作用进行了综述。

关键词

丁香,丁香酚,抗肿瘤

Research Progress on Antitumor Effects of Active Components of Clove

Zhenwei Qin, Dezhong Liao*

School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang Guizhou

Received: Mar. 26th, 2023; accepted: Apr. 21st, 2023; published: Apr. 28th, 2023

ABSTRACT

Clove is the dried flower bud of myrtiaceae plant clove, which has various biological activities such as anti-inflammatory, antioxidant, antibacterial, insecticidal, analgesic and anti-tumor. However, as a kind of fragrance, clove, a traditional Chinese medicine, has shown its green effect and non-toxic side effects on the body, and is one of the hot drugs in modern tumor research. Therefore, as a new anti-tumor drug, clove has very high potential research value. Clove and its active components have obvious anti-tumor effects on breast cancer, colorectal cancer, melanoma, cervical cancer, gastric cancer and lung cancer, etc. Studies have shown that clove and its active components can directly or indirectly inhibit the growth of tumor cells and induce the apoptosis of tumor cells through a variety of ways. This paper reviews the literature at home and abroad in recent years, and reviews the antitumor effects of clove and its active components.

Keywords:Clove, Eugenol, Antitumor

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

在过去二十年里,随着人口和老龄化的加剧,癌症已经成为全世界范围内的一个公共健康问题,2020年全球有1929万新的癌症病例和995万癌症死亡病例,中国占全球新诊断病例的24%,占全球癌症相关死亡病例的30% [1] [2] 。因此随着癌症的发病率和死亡率的增加,中国在癌症控制和预防方面正面临着前所未有的挑战。

2. 中医学对肿瘤的认识

在中医的研究中,将肿瘤归于症瘕、积聚的范畴 [3] ,根据中医理论,癌症是由身体的内源性生理条件和外源性致病因素之间的不平衡引起的,身体的内部状况在癌症的发病中起着主导作用,只有当身体自身的防御系统失效时,各种因素才能诱发癌症,用中医的话讲,这些因素包括毒,热和血瘀,它们在人们虚弱的时候,没有力量抵抗的情况下进行攻击 [4] ,中医认为癌症是一种系统性疾病,与整个身体的状态有关。在治疗疾病的过程中整体观念贯穿着整个中医的思想,癌症也是身体处理致病因素能力崩溃的表现,而不是细胞或器官的局部疾病。因此,中医的治疗理念和策略强调对整个身体进行整体调节和改善,而不是切除肿瘤块或杀死癌细胞,最近的研究表明,中医中药在肿瘤治疗中显示出低毒性、无明显副作用的有益效果 [5] ,中医药已经成为一种新的治疗癌症的策略。

丁香为桃金娘科植物丁香的干燥花蕾,又名公丁香、丁子香,呈研棒状,长1~2 cm,呈红棕色或棕褐色,入水即沉,富油性,始载于《药性赋》,味辛,性温,归脾、胃和肾经,既是一种药食两用的中草药,又是一种名贵的香料。主要产于印度尼西亚、尼马来西亚等地,是我国进口“南药”之一,在我国的使用已经有很长的历史,具有温中降逆,散寒止痛,温肾助阳的功效,可治疗脾胃虚寒,呃逆吐泻,心腹冷痛,肾虚阳痿等症。《本草汇》中记载丁香气雄而善行,上可达心肺“疗胸痹”下可入肝肾“疗肾气,奔豚气,阴痛,壮阳暖腰膝”。现代药理研究表明丁香在抗炎 [6] 、抗病毒 [7] 、抗菌 [8] 、杀虫 [9] 、抗氧化 [10] 、镇痛 [11] 和抗肿瘤 [12] 等方面均有作用。丁香含有多种活性化学成分已经被证实是酚类分子和黄酮类化合物的主要来源,如丁香酚,黄酮类、氢化丁香酸、槲皮素、山奈酚,以及阿魏酸、咖啡酸、鞣花酸和水杨酸等酚类酸 [13] ,然而丁香含有的主要化学成分丁香酚也在多种肿瘤中体现出抗肿瘤和预防肿瘤的特性 [14] [15] [16] ,本文在系统查阅国内外相关文献的基础上,对其中的抗肿瘤的药理作用进行了总结,为今后丁香有效成分的研究和癌症的治疗提供更多参考。

3. 丁香抗肿瘤作用

3.1. 乳腺癌

乳腺癌是造成全世界女性死亡的主要原因,其发病率和死亡率仍然在上升 [17] ,大多数的乳腺癌都包含浸润型,已经超出了导管和腺体的范围,进入周围组织和淋巴结。因此早期的诊断可以提高患者的生存率 [18] 。最初,有研究表明通过BSLT实验和MTT实验,丁香对乳腺癌的MCF-7细胞系有着明显的生长抑制作用 [19] ,另一项研究也表明丁香处理后的MCF-7细胞凋亡时伴随着ROS的产生和DNA损伤,随后又激活DNA修复机制,包括ATM、HA2.X和SMC1蛋白的磷酸化以及P53的激活。此外还发现,丁香处理导致MAPK信号(Erk, JNK, p38 MAPK)和Akt的磷酸化 [20] ,更有趣的是,丁香外用可有效缓解或抑制乳腺癌前病变,通过阻断HER2/PI3KAKT信号途径诱导MCF-10A细胞凋亡和使细胞周期S期阻滞,从而降低HER2蛋白表 [21] 。有些学者也发现丁香提取物处理后的MCF-7细胞细胞周期也阻滞在S期,同时通过线粒体凋亡途径而导致细胞的凋亡,在动物体内也发现丁香提取物呈剂量依赖性抑制大鼠乳腺癌发生 [22] 。Al-Sharif等人发现,4 µM丁香酚可以抑制ER阴性和ER阳性乳腺癌细胞的增殖 [23] 也可通过靶向caspase途径和诱导自噬细胞死亡而发挥作用 [24] 。另一项研究表明,丁香酚处理后显示出抑制迁移的作用,它主要通过减少MDA-MB-231乳腺癌细胞的侵袭和迁移来降低MMP-2和MMP-9的表达 [25] ,然而更有学者研究发现丁香提取物与FMSP纳米粒子联合使用降低乳腺癌细胞的存活率和细胞的增殖,同时也促进乳腺癌细胞的凋亡 [26] 。由此可见,丁香对乳腺癌的治疗有着多种途径,可预防体内乳腺癌的发生及抑制乳腺癌的增殖和迁移,也可通过线粒体途径促进细胞的凋亡,因此对于丁香治疗乳腺癌的机制有待更进一步的研究。

3.2. 结直肠癌

结直肠癌是世界上第四大癌症死亡的原因 [27] ,占全世界每年诊断出的所有癌症和与癌症有关的死亡人数的大约10%。大多数的结直肠癌是异常的隐窝开始,演变为息肉,并最终发展为结直肠癌,它的发病机制是改变肿瘤抑制基因的失活并激活了癌基因有关 [28] ,当然也与多种遗传和表观遗传相关。Darina Slame nová等人的研究发现丁香酚有明显的自由基清除活性,表现出抗氧化能力,也通过细胞毒性实验和彗星实验检测丁香酚对caco-2的作用,结果显示丁香酚对caco-2具有较强的细胞毒性从而抑制细胞增殖,诱导细胞凋亡与形态学变化和DNA碎片有关的程序性细胞死亡密切相关,进一步研究还发现,丁香酚还可诱导caco-2细胞系出现DNA损伤 [29] 。Li Cong等研究发现丁香提取物可以抑制HT-29细胞生长和集落形成,并在体内也表现出有抑制肿瘤生长的作用,也通过AMPK/ULK途径诱导的HT-29细胞的自噬的方式,从而体现出丁香提取物抗肿瘤的特性 [30] 。有趣的是,Islam M. El-Garawani报道了一项研究,将丁香油与茴香混合使用在caco-2细胞系中,会导致细胞周期S期阻滞,也会诱导细胞凋亡出现一些细胞凋亡的特征和形态的改变和出现了使完整的DNA片段化 [31] ,因此推测丁香在Caco-2细胞中可能使细胞的ss DNA断裂,与这些细胞消除丁香酚诱导的自由基的能力降低有关,又能够使caco-2细胞阻滞在细胞周期的S期。Saravana Kumar Jaganathan [32] 等人研究了丁香酚可以抑制结肠癌细胞系的增殖,随着丁香酚浓度的增加,结肠癌细胞系的增殖能力逐渐下降,丁香酚通过阻滞细胞周期G1来抑制细胞的增殖和诱导细胞的凋亡,丁香酚还通过减少MMP,从而增加ROS的产生,由于ROS的增加导致了DNA的断裂,还伴随着P53的激活和PARP的裂解增加,最后,导致caspase-3增强从而诱导着结肠癌细胞的凋亡。刘明华 [33] 等人发现丁香的活性部分可以明显抑制结直肠癌细胞的增殖,通过Hoechst 33258染色结果发现细胞出现典型的凋亡形态特征,如凋亡小体。有趣的是,丁香活性部分不光引起细胞的凋亡,还导致细胞自噬,LC3的表达下调,由于PI3K/Akt/mTOR信号通路在通过不同的途径调节细胞凋亡和自噬方面扮演者重要的角色,丁香活性部分作用后抑制了PI3K/Akt/mTOR信号通路成员的磷酸化,因此我们可以发现丁香通过阻滞细胞周期,DNA损伤,自噬和线粒体途径导致结肠癌的凋亡抑制其增殖。

3.3. 黑色素瘤

黑色素瘤是最具侵袭性和致命的皮肤癌之一 [34] ,产生于环境和遗传因素引起的表皮的黑色素细胞的恶性转化,是白人群中肿瘤生长最迅速的一类肿瘤。目前的手术治疗、化疗药物,免疫治疗均不能令人满意。因此预防和早期诊断是对付这种肿瘤的唯一有效手段。Rita Ghosh研究发现,丁香酚能够抑制黑色素瘤体内和体外的生长,抑制细胞的转移,由于E2F1转录因子为黑色素瘤细胞的增殖提供了生长动力,丁香酚通过抑制E2F1的活性,使细胞阻滞在细胞周期的S期,从而抑制黑色素瘤的生长 [35] 。还有一些学者研究发现丁香可以扰乱细胞骨架而导致细胞结构的改变导致细胞质回缩、萎缩、细胞裂解和细胞脱落,从而使细胞质膜的破坏,并伴有线粒体的损伤,从而导致ROS的产生和细胞周期G2M期消失,由于Bax在线粒体依赖性凋亡途径中起着关键作用,从而导致Bax过表达和DNA损伤有关,最终形成凋亡小体并诱导细胞凋亡 [36] ,有趣的是,丁香酚的异构体,丁香酚溴化二聚体,是最有效的丁香酚衍生物,能够显示出对黑色素瘤细胞的抗增殖作用,阻止细胞的增长,从而促进黑色素瘤细胞的凋亡,而不影响正常细胞的生长 [37] 。因此丁香作为治疗黑色素瘤有着巨大的潜力,虽然目前调控的机制不太清楚,也为以后的研究提供了方向。

3.4. 宫颈癌

宫颈癌是全世界妇女中第四大常见癌症,约有6.5%的妇女在75岁之前患宫颈癌。中国和印度共占全球宫颈癌的三分之一以上,中国有10.6万个病例和4.8万人死亡,印度有9.7万个病例和6万人死亡 [38] ,人乳头瘤病毒(HPV)感染仍然是宫颈癌的一个主要因素,其他遗传和表观遗传因素也参与了宫颈癌的潜在发病机制 [39] ,Arunava Das等研究发现,丁香中最主要的成分就是丁香酚,丁香酚在作用于Hela细胞后,可以明显发现抑制宫颈癌细胞的生长,并随着药物浓度的增加细胞形态也随着出现了改变,并出现了凋亡的细胞解体同时也伴有促凋亡BAX基因蛋白的表达上升 [40] 。Arif Hussain研究也发现,丁香酚以浓度依赖的方式抑制Hela细胞的生存,然而有趣的是,丁香酚与GEM联合使用出现了协同作用,从而增强了化疗药的敏感性,降低了化疗药对正常细胞带来的副作用,也通过诱导HeLa细胞中caspase 3介导的凋亡。丁香酚作用后抗凋亡基因Bcl-2表达明显降低,COX-2基因表达降低,IL-1b作为促炎因子表达也降低 [41] ,Moustafa Fathy等证明了丁香酚有着明显降低了Hela细胞的增值率,并以浓度时间的依赖增加了乳酸脱氢酶的释放,更有趣的是丁香酚与顺铂和X射线的联合可以增强协同作用。丁香酚增加了caspase-3和Bax、Cyt-c、caspase-3和caspase-9的表达,降低了Bcl-2、Cox-2和IL-1β的表达 [42] ,Debolina Pal等发现丁香酚可以通过LIMD1、RBSP3和p16的表达下调来抑制细胞增殖通过细胞周期G1S期阻滞,并且通过下调DNMT1的DNA低甲基化来提高化疗的效果 [43] 。因此可以发现丁香酚主要通过细胞周期的阻滞和线粒体凋亡的途径诱导细胞死亡。

3.5. 胃癌

胃癌是全世界最常见的癌症之一,也是癌症相关死亡第三大原因 [44] ,具有高度侵袭性的恶性肿瘤,胃癌是一种多因素的疾病,环境和遗传因素都会对其发生和发展产生影响,胃癌的发病率也随着年龄的增长而增长 [45] ,然而丁香活性成分的基础研究中均提到了丁香具有抗胃癌的作用,Arnab Sarkar等发现丁香酚通过靶向TGF-β信号传导来抑制胃癌的转移,丁香酚还能降低MMP-2和MMP-9的表达来抑制胃癌细胞的转移和侵袭并可以通过降低E-cadherin和间质基因如vimentin、snail和slug的表达来证明丁香酚可以抑制细胞的转移和侵袭 [46] 。Palrasu Manikandan通过N-甲基-N'-硝基-N-亚硝基胍(MNNG)诱导大鼠胃癌模型,来检测丁香酚对大鼠胃癌的预防作用,然而丁香酚作用后,降低了MMP-2、MMP-9、VEGF和VEGFR1、Bcl-2和Bcl-xL的表达并增加了TIMP-2和RECK、Bax、Bid、Bad、Apaf-1、cytochrome C和caspase-9的表达,表明丁香酚通过线粒体途径诱导细胞凋亡。其机制包括抑制Bcl-2,同时刺激促凋亡的Bax、Bid和Bad的表达,导致cytochrome C从线粒体释放,并激活caspases。因此丁香酚可以通过线粒体凋亡途径诱导细胞凋亡并抑制胃癌转移、侵袭和血管生成 [47] 。

3.6. 肺癌

数据显示 [48] 肺癌是全球过去几十年来最常见的诊断癌症,2018年,估计有210万例新的肺癌诊断占全球癌症负担的12%,吸烟是占所有肺癌诊断的最主要危险因素,Sarmistha Banerjee等 [49] 发现丁香水溶剂可以预防苯并(a)芘诱导的小鼠早期肺部的病变,从而抑制肺部病变中细胞增殖,同时也诱发细胞的凋亡,上调促凋亡蛋白P53和Bax的表达,下调抗凋亡蛋白Bcl2的表达。当丁香水溶剂作用后Caspase3蛋白的表达上调,丁香水溶剂还能下调COX-2、cMyc、HRAs促生长蛋白的表达。Li Fangjun等 [50] 发现丁香酚具有抑制肺癌A549细胞的生长和促进细胞的凋亡,其机制可能是通过抑制PI3K/Akt途径和MMP的活性来抑制肺癌细胞的生长转移和侵袭能力。环氧化酶-2(COX-2)的表达与细胞增殖和程序性细胞死亡的有关,可以推测丁香具有化学预防的潜力。Zhilei Cui [51] 等研究发现丁香酚能抑制非小细胞肺癌异种移植肿瘤的生长和体外H1975细胞系的生长,其机制P65是TRIM59的上游转录因子,TRIM59是p65的直接靶点,丁香酚抑制了p65的表达,随后下调了TRIM59的表达,导致丁香酚可以抑制异种移植肿瘤中NF-κB调控TRIM59的表达来抑制肿瘤的生长。Pritha Choudhury [52] 研究发现丁香酚可以抑制A549细胞系的生长和迁移,有趣的是,丁香酚对NDEA诱导的小鼠肺癌模型具有明显的化学预防作用,可以保护系统免受致癌物的有害影响,从而延长小鼠的存活时间,其机制是丁香酚有效地下调了β-catenin来调控的CSC标志物的表达从而达到了化学预防的作用。

3.7. 白血病

白血病作为一种广泛疾病的液体的肿瘤,与实体肿瘤不同的是白血病具有独特的先天转移和侵袭的能力,往往攻击力很强,因此治疗起来是具有挑战性的疾病之一 [53] 。Chae-Bin Yoo [54] 发现丁香酚可以抑制HL-60细胞生长,当细胞用40 mM丁香酚处理后,通过细胞内硫醇的迅速耗竭产生大量的ROS诱导HL-60细胞的凋亡。降低抗凋亡蛋白bcl2的水平,诱导细胞色素c释放到胞浆,从而导致细胞死亡,也发现丁香酚处理的HL-60细胞在琼脂糖凝胶电泳法中出现DNA片段化和DNA梯带形成等细胞凋亡特征。还有学者研究发现,丁香酚通过线粒体途径诱导RBL-2H3细胞凋亡并表现出核浓缩和碎裂,细胞核的形态和死亡的细胞随着时间的增加而增加,丁香酚也会导致细胞色素c从线粒体释放到胞浆中,从而导致线粒体中的P53在SER15上被磷酸化从而诱导细胞的凋亡 [55] 。

3.8. 其他肿瘤

Hyang Nam [56] 等研究发现具有抗氧化活性的丁香酚可抑制与人类纤维肉瘤细胞转移,通过抑制PMA刺激的HT1080细胞中的MMP-9活性,丁香酚也可通过灭活ERK对MMP-9发挥抑制作用。丁香酚处理也可明显抑制DNA的氧化损伤,丁香酚可以作为预防与氧化应激有关的转移的优良药剂。有学者 [57] 研究表明丁香酚通过线粒体途径参与人胶质母细胞瘤的凋亡,通过增加活性氧(ROS)的产生、降低线粒体膜电位、释放细胞色素c和激活caspase-9/caspase-3诱导细胞凋亡。丁香酚在DBTRG-05MG细胞中,通过诱导PLC依赖性地从内质网释放Ca2+而诱发[Ca2+]i上升,并可能通过TRPM8或PKC敏感通道引起Ca2+流入。有趣的是,Xiaopeng Sun [58] 研究发现丁香酚和胡椒碱与聚羟基丁酸/聚乙二醇纳米复合材料(Eu-Pi/PHB-PEG-NC)混合在一起,可以通过抑制PI3K/AKT/mTOR信号通路来抑制鼻咽癌(C666-1)细胞生长,然而引起鼻咽癌细胞凋亡的机制是通过caspase3、caspase8和caspase9的表达上升和bcl-2表达的下降有关。Rita Ghosh [59] 等发现丁香酚和2-甲氧基雌二醇(2-ME2)联合使用,可以导致细胞形态发生改变,并诱导不依赖雄性激素的前列腺癌细胞的生长,并在较低的浓度下诱导了前列腺细胞的细胞凋亡,有着很强的协同作用,联合使用也可使细胞周期阻滞在G2M期和线粒体膜电位的丧失,最终导致抗凋亡蛋白Bcl-2的表达明显减少,而促凋亡蛋白Bax的表达增强。Syed S. Islam研究发现丁香酚和顺铂连用治疗卵巢癌有着意想不到的效果,丁香酚和顺铂的顺序组合通过Notch-Hes1信号通路对卵巢癌干细胞起到了抑制体内肿瘤的生长,也对卵巢癌SKOV3和OV2774细胞系生长抑制,作用是时间和浓度依赖的,有趣的是先加入顺铂后再加入丁香酚则显示出强烈的协同作用,联合治疗可防止卵巢癌细胞的自我更新和侵袭行为,降低了癌症干细胞的比例和自我更新能力,从而显著提高了肿瘤动物的无病生存率 [60] 。丁香酚对纤维肉瘤、胶质母细胞瘤、鼻咽癌,前列腺癌及卵巢癌的研究尚不多见。

4. 小结与展望

近年来,丁香作为一种厨房中常见的香料,具有无毒性和无副作用的有益效果,得到了很多学者的研究,丁香的抗肿瘤机制也被越来越多的学者所发现,丁香具有良好的抗肿瘤作用,其机制是通过抑制多种癌细胞的增殖、细胞周期的阻滞、线粒体凋亡途径、抑制细胞迁移侵袭和导致细胞自噬等多种途径促进细胞凋亡。课题组与其他团队合作也分析了丁香酒精提取物的各主要有效成分,但发现没有任何单一成分的疗效像粗提物那样有疗效,尽管都有一定效果,提示粗提物的效果是多种成分的复合作用。然而我们实验也发现丁香酒精粗提物对胰腺癌细胞系在体外培养条件下有着很好的抑制作用,抑制细胞的克隆形成,抑制细胞的迁移和侵袭,导致细胞周期阻滞和诱导细胞的凋亡,丁香在各种肿瘤中有着不同的作用,具体的分子机制还有待进一步的研究。

文章引用

秦振伟,廖德仲. 丁香有效成分在抗肿瘤方面的研究进展
Research Progress on Antitumor Effects of Active Components of Clove[J]. 临床医学进展, 2023, 13(04): 6826-6834. https://doi.org/10.12677/ACM.2023.134955

参考文献

  1. 1. Cao, W., Chen, H.D., Yu, Y.W., et al. (2021) Changing Profiles of Cancer Burden Worldwide and in China: A Second-ary Analysis of the Global Cancer Statistics 2020. Chinese Medical Journal (England), 134, 783-791. https://doi.org/10.1097/CM9.0000000000001474

  2. 2. Xia, C., Dong, X., Li, H., et al. (2022) Cancer Statistics in China and United States, 2022: Profiles, Trends, and Determinants. Chinese Medical Journal (England), 135, 584-590. https://doi.org/10.1097/CM9.0000000000002108

  3. 3. 金斗镇. 中医对胰腺癌的认识和治疗方法[J]. 黑龙江中医药, 2006(5): 57-59.

  4. 4. Hsiao, W.L. and Liu, L. (2010) The Role of Traditional Chinese Herbal Medicines in Cancer Therapy—From TCM Theory to Mechanistic Insights. Planta Medica, 76, 1118-1131. https://doi.org/10.1055/s-0030-1250186

  5. 5. Qi, F., Zhao, L., Zhou, A., et al. (2015) The Advantages of Using Traditional Chinese Medicine as an Adjunctive Therapy in the Whole Course of Cancer Treatment Instead of Only Ter-minal Stage of Cancer. BioScience Trends, 9, 16-34. https://doi.org/10.5582/bst.2015.01019

  6. 6. Hui, Q., Ammeter, E., Liu, S., et al. (2020) Eugenol Attenuates Inflammatory Response and Enhances Barrier Function during Lipopoly-saccharide-Induced Inflammation in the Porcine Intestinal Epithelial Cells. Journal of Animal Science, 98, skaa245. https://doi.org/10.1093/jas/skaa245

  7. 7. De Oliveira, A.S., Gazolla, P.A.R., Oliveira, A., et al. (2019) Discovery of Novel West Nile Virus Protease Inhibitor Based on Isobenzonafuranone and Triazolic Derivatives of Eugenol and In-dan-1,3-Dione Scaffolds. PLOS ONE, 14, e0223017. https://doi.org/10.1371/journal.pone.0223017

  8. 8. Hu, Q., Zhou, M. and Wei, S. (2018) Progress on the Antimicrobial Activity Research of Clove Oil and Eugenol in the Food An-tisepsis Field. Journal of Food Science, 83, 1476-1483. https://doi.org/10.1111/1750-3841.14180

  9. 9. Osanloo, M., Sedaghat, M.M., Esmaeili, F., et al. (2018) Larvicidal Activity of Essential Oil of Syzygium aromaticum (Clove) in Comparison with Its Major Constituent, Eugenol, against Anopheles stephensi. Journal of Arthropod-Borne Diseases, 12, 361-369. https://doi.org/10.18502/jad.v12i4.354

  10. 10. Barboza, J.N., Silva, R.O., et al. (2018) An Overview on the Anti-Inflammatory Potential and Antioxidant Profile of Eugenol. Oxidative Medicine and Cellular Longevity, 2018, Arti-cle ID: 3957262. https://doi.org/10.1155/2018/3957262

  11. 11. Taher, Y.A., Samud, A.M., El-Taher, F.E., et al. (2015) Experimental Evaluation of Anti-Inflammatory, Antinociceptive and Antipyretic Activities of Clove Oil in Mice. Libyan Journal of Medicine, 10, Article No. 28685. https://doi.org/10.3402/ljm.v10.28685

  12. 12. Liu, H., Schmitz, J.C., Wei, J., et al. (2014) Clove Extract Inhibits Tu-mor Growth and Promotes Cell Cycle Arrest and Apoptosis. Oncology Research, 21, 247-259. https://doi.org/10.3727/096504014X13946388748910

  13. 13. Cortés-Rojas, D.F., De Souza, C.R.F. and Oliveira, W.P. (2014) Clove (Syzygium aromaticum): A Precious Spice. Asian Pacific Journal of Tropical Biomedicine, 4, 90-96. https://doi.org/10.1016/S2221-1691(14)60215-X

  14. 14. Bezerra, D.P., Militao, G.C.G., De Morais, M.C., et al. (2017) The Dual Antioxidant/Prooxidant Effect of Eugenol and Its Action in Cancer Development and Treatment. Nutri-ents, 9, 1367. https://doi.org/10.3390/nu9121367

  15. 15. Kammath, A.J., Nair, B., et al. (2021) Curry versus Cancer: Potential of Some Selected Culinary Spices against Cancer with in Vitro, in Vivo, and Human Trials Evidences. Journal of Food Biochemistry, 45, e13285. https://doi.org/10.1111/jfbc.13285

  16. 16. Zari, A.T., Zari, T.A. and Hakeem, K.R. (2021) Anticancer Properties of Eugenol: A Review. Molecules, 26, 7407. https://doi.org/10.3390/molecules26237407

  17. 17. Global Burden of Disease Cancer C, Fitzmaurice, C., Abate, D., et al. (2019) Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncology, 5, 1749- 1768. https://doi.org/10.1001/jamaoncol.2019.2996

  18. 18. Winters, S., Martin, C., Murphy, D., et al. (2017) Breast Cancer Epidemiology, Prevention, and Screening. Progress in Molecular Biology and Translational Science, 151, 1-32. https://doi.org/10.1016/bs.pmbts.2017.07.002

  19. 19. Kumar, P.S., Febriyanti, R.M., Sofyan, F.F., et al. (2014) Anticancer Potential of Syzygium aromaticum L. in MCF-7 Human Breast Cancer Cell Lines. Pharmacognosy Research, 6, 350-354. https://doi.org/10.4103/0974-8490.138291

  20. 20. Kello, M., Takac, P., Kubatka, P., et al. (2020) Oxidative Stress-Induced DNA Damage and Apoptosis in Clove Buds- Treated MCF-7 Cells. Biomolecules, 10, 139. https://doi.org/10.3390/biom10010139

  21. 21. Ma, M., Ma, Y., Zhang, G.-J., et al. (2017) Eugenol Alleviated Breast Precancerous Lesions through HER2/PI3K-AKT Pathway-Induced Cell Apoptosis and S-Phase Arrest. Oncotarget, 8, 56296-56310. https://doi.org/10.18632/oncotarget.17626

  22. 22. Kubatka, P., Uramova, S., Kello, M., et al. (2017) Antineoplastic Effects of Clove Buds (Syzygium aromaticum L.) in the Model of Breast Carcinoma. Journal of Cellular and Molecular Medicine, 21, 2837-2851. https://doi.org/10.1111/jcmm.13197

  23. 23. Al-Sharif, I., Remmal, A. and Aboussekhra, A. (2013) Eugenol Triggers Apoptosis In Breast Cancer Cells through E2F1/ Survivin Down-Regulation. BMC Cancer, 13, Article No. 600. https://doi.org/10.1186/1471-2407-13-600

  24. 24. Abdullah, M.L., Al-Shabanah, O., Hassan, Z.K., et al. (2021) Eu-genol-Induced Autophagy and Apoptosis in Breast Cancer Cells via PI3K/AKT/FOXO3a Pathway Inhibition. Interna-tional Journal of Molecular Sciences, 22, 9243. https://doi.org/10.3390/ijms22179243

  25. 25. Abdullah, M.L., Hafez, M.M., Al-Hoshani, A., et al. (2018) An-ti-Metastatic and Anti-Proliferative Activity of Eugenol against Triple Negative and HER2 Positive Breast Cancer Cells. BMC Complementary and Alternative Medicine, 18, 321. https://doi.org/10.1186/s12906-018-2392-5

  26. 26. Khan, F.A., Akhtar, S., Almohazey, D., et al. (2018) Extracts of Clove (Syzygium aromaticum) Potentiate FMSP-Nano- parti-cles Induced Cell Death in MCF-7 Cells. International Journal of Biomaterials, 2018, Article ID: 8479439. https://doi.org/10.1155/2018/8479439

  27. 27. Li, J., Ma, X., Chakravarti, D., et al. (2021) Genetic and Biological Hallmarks of Colorectal Cancer. Genes & Development, 35, 787-820. https://doi.org/10.1101/gad.348226.120

  28. 28. Dekker, E., Tanis, P.J., Vleugels, J., et al. (2019) Colorectal Cancer. The Lancet, 394, 1467-1480. https://doi.org/10.1016/S0140-6736(19)32319-0

  29. 29. Slamenova, D., Horvathova, E., Wsolova, L., et al. (2009) Investigation of Anti-Oxidative, Cytotoxic, DNA-Damaging and DNA-Protective Effects of Plant Volatiles Eugenol and Borneol in Human-Derived HepG2, Caco-2 and VH10 Cell Lines. Mutation Research, 677, 46-52. https://doi.org/10.1016/j.mrgentox.2009.05.016

  30. 30. Li, C., Xu, H., Chen, X., et al. (2019) Aqueous Extract of Clove Inhibits Tumor Growth by Inducing Autophagy through AMPK/ULK Pathway. Phytotherapy Research, 33, 1794-1804. https://doi.org/10.1002/ptr.6367

  31. 31. El-Garawani, I.M., El-Nabi, S.H., Dawoud, G.T., et al. (2019) Triggering of Apoptosis and Cell Cycle Arrest by Fennel and Clove Oils in Caco-2 Cells: The Role of Combination. Toxicology Mechanisms and Methods, 29, 710-722. https://doi.org/10.1080/15376516.2019.1650149

  32. 32. Jaganathan, S.K., Mazumdar, A., Mondhe, D., et al. (2011) Apoptotic Effect of Eugenol in Human Colon Cancer Cell Lines. Cell Biology International, 35, 607-615. https://doi.org/10.1042/CBI20100118

  33. 33. Liu, M., Zhao, G., Zhang, D., et al. (2018) Active Fraction of Clove Induces Apoptosis via PI3K/Akt/mTOR-Mediated Autophagy in Human Colorectal Cancer HCT-116 Cells. Internation-al Journal of Oncology, 53, 1363-1373. https://doi.org/10.3892/ijo.2018.4465

  34. 34. Ribeiro Moura Brasil Arnaut, J., Dos Santos Guimaraes, I., Evangelista Dos Santos, A.C., et al. (2021) Molecular Landscape of Hereditary Melanoma. Critical Reviews in Oncolo-gy/Hematology, 164, Article ID: 103425. https://doi.org/10.1016/j.critrevonc.2021.103425

  35. 35. Ghosh, R., Nadiminty, N., Fitzpatrick, J.E., et al. (2005) Eu-genol Causes Melanoma Growth Suppression through Inhibition of E2F1 Transcriptional Activity. Journal of Biological Chemistry, 280, 5812-5819. https://doi.org/10.1074/jbc.M411429200

  36. 36. Junior, P.L., Camara, D.A., Costa, A.S., et al. (2016) Apoptotic Ef-fect of Eugenol Envolves G2/M Phase Abrogation Accompanied by Mitochondrial Damage and Clastogenic Effect on Cancer Cell in Vitro. Phytomedicine, 23, 725-735. https://doi.org/10.1016/j.phymed.2016.03.014

  37. 37. Pisano, M., Pagnan, G., Loi, M., et al. (2007) Antiproliferative and Pro-Apoptotic Activity of Eugenol-Related Biphenyls on Malignant Melanoma Cells. Molecular Cancer, 6, 8. https://doi.org/10.1186/1476-4598-6-8

  38. 38. Buskwofie, A., David-West, G. and Clare, C.A. (2020) A Review of Cervical Cancer: Incidence and Disparities. Journal of the National Medical Association, 112, 229-232. https://doi.org/10.1016/j.jnma.2020.03.002

  39. 39. Revathidevi, S., Murugan, A.K., Nakaoka, H., et al. (2021) APOBEC: A Molecular Driver in Cervical Cancer Pathogenesis. Cancer Letters, 496, 104-116. https://doi.org/10.1016/j.canlet.2020.10.004

  40. 40. Das, A., et al. (2018) Evaluation of Therapeutic Potential of Eu-genol-A Natural Derivative of Syzygium aromaticum on Cervical Cancer. Asian Pacific Journal of Cancer Prevention, 19, 1977-1985.

  41. 41. Hussain, A., Brahmbhatt, K., Priyani, A., et al. (2011) Eugenol Enhances the Chemotherapeutic Poten-tial of Gemcitabine and Induces Anticarcinogenic and Anti-Inflammatory Activity in Human Cervical Cancer Cells. Can-cer Biotherapy and Radiopharmaceuticals, 26, 519-527. https://doi.org/10.1089/cbr.2010.0925

  42. 42. Fathy, M., Fawzy, M.A., Hintzsche, H., et al. (2019) Eugenol Exerts Apoptotic Effect and Modulates the Sensitivity of HeLa Cells to Cisplatin and Radiation. Molecules, 24, 3979. https://doi.org/10.3390/molecules24213979

  43. 43. Pal, D., Sur, S., Roy, R., et al. (2019) Epigallocatechin Gallate in Combination with Eugenol or Amarogentin Shows Synergistic Chemo-therapeutic Potential in Cervical Cancer Cell Line. Journal of Cellular Physiology, 234, 825-836. https://doi.org/10.1002/jcp.26900

  44. 44. Smyth, E.C., Nilsson, M., Grabsch, H.I., et al. (2020) Gastric Cancer. The Lancet, 396, 635-648. https://doi.org/10.1016/S0140-6736(20)31288-5

  45. 45. Machlowska, J., Baj, J., Sitarz, M., et al. (2020) Gastric Cancer: Epidemiology, Risk Factors, Classification, Genomic Characteristics and Treatment Strategies. International Journal of Molecular Sciences, 21, 4012. https://doi.org/10.3390/ijms21114012

  46. 46. Sarkar, A., Das, S., Rahaman, A., et al. (2020) Eugenol and Capsaicin Exhibit Anti-Metastatic Activity via Modulating TGF-Beta Signaling in Gastric Carcinoma. Food and Function, 11, 9020-9034. https://doi.org/10.1039/D0FO00887G

  47. 47. Manikandan, P., Murugan, R.S., Priyadarsini, R.V., et al. (2010) Eugenol Induces Apoptosis and Inhibits Invasion and Angiogenesis in a Rat Model of Gastric Carcinogenesis Induced by MNNG. Life Sciences, 86, 936-941. https://doi.org/10.1016/j.lfs.2010.04.010

  48. 48. Schabath, M.B. and Cote, M.L. (2019) Cancer Progress and Priori-ties: Lung Cancer. Cancer Epidemiology, Biomarkers & Prevention, 28, 1563-1579. https://doi.org/10.1158/1055-9965.EPI-19-0221

  49. 49. Banerjee, S., Panda, C.K. and Das, S. (2006) Clove (Syzygi-um aromaticum L.), a Potential Chemopreventive Agent for Lung Cancer. Carcinogenesis, 27, 1645-1654. https://doi.org/10.1093/carcin/bgi372

  50. 50. Li, F.J. and Yang, Z.J. (2018) Tumor Suppressive Roles of Eugenol in Human Lung Cancer Cells. Thoracic Cancer, 9, 25-29. https://doi.org/10.1111/1759-7714.12508

  51. 51. Cui, Z., Liu, Z., Zeng, J., et al. (2019) Eugenol Inhibits Non-Small Cell Lung Cancer by Repressing Expression of NF-kappaB-Regulated TRIM59. Phytotherapy Research, 33, 1562-1569. https://doi.org/10.1002/ptr.6352

  52. 52. Choudhury, P., Barua, A., Roy, A., et al. (2021) Eugenol Emerges as an Elixir by Targeting Beta-Catenin, the Central Cancer Stem Cell Regulator in Lung Carcinogenesis: An in Vivo and in Vitro Rationale. Food and Function, 12, 1063- 1078. https://doi.org/10.1039/D0FO02105A

  53. 53. Whiteley, A.E., Price, T.T., Cantelli, G., et al. (2021) Leukaemia: A Model Metastatic Disease. Nature Reviews Cancer, 21, 461-475. https://doi.org/10.1038/s41568-021-00355-z

  54. 54. Yoo, C.B., Han, K.T., Cho, K.S., et al. (2005) Eugenol Isolated from the Essential Oil of Eugenia caryophyllata Induces a Reactive Oxygen Species-Mediated Apoptosis in HL-60 Hu-man Promyelocytic Leukemia Cells. Cancer Letters, 225, 41-52. https://doi.org/10.1016/j.canlet.2004.11.018

  55. 55. Park, B., Song, Y., Yee, S.-B., et al. (2005) Phospho-ser 15-p53 Translocates into Mitochondria and Interacts with Bcl-2 and Bcl-xL in Eugenol-Induced Apoptosis. Apoptosis, 10, 193-200. https://doi.org/10.1007/s10495-005-6074-7

  56. 56. Nam, H. and Kim, M.M. (2013) Eugenol with Antioxi-dant Activity Inhibits MMP-9 Related to Metastasis in Human Fibrosarcoma Cells. Food and Chemical Toxicology, 55, 106-112. https://doi.org/10.1016/j.fct.2012.12.050

  57. 57. Liang, W.Z., Chou, C.T., Hsu, S.S., et al. (2015) The In-volvement of Mitochondrial Apoptotic Pathway in Eugenol-Induced Cell Death in Human Glioblastoma Cells. Toxicolo-gy Letters, 232, 122-132. https://doi.org/10.1016/j.toxlet.2014.10.023

  58. 58. Sun, X., Veeraraghavan, V.P., Surapaneni, K.M., et al. (2021) Eugenol-Piperine Loaded Polyhydroxy Butyrate/Poly- ethylene Glycol Nanocomposite-Induced Apoptosis and Cell Death in Nasopharyngeal Cancer (C666-1) Cells through the Inhibition of the PI3K/AKT/mTOR Signaling Pathway. Journal of Biochemical and Molecular Toxicology, 35, e22700. https://doi.org/10.1002/jbt.22700

  59. 59. Ghosh, R., Ganapathy, M., Alworth, W.L., et al. (2009) Combination of 2-Methoxyestradiol (2-ME2) and Eugenol for Apoptosis Induction Synergistically in Androgen Independent Prostate Cancer Cells. The Journal of Steroid Biochemistry and Molecular Biology, 113, 25-35. https://doi.org/10.1016/j.jsbmb.2008.11.002

  60. 60. Islam, S.S. and Aboussekhra, A. (2019) Sequential Combination of Cisplatin with Eugenol Targets Ovarian Cancer Stem Cells through the Notch-Hes1 Signalling Pathway. Journal of Experimental & Clinical Cancer Research, 38, 382. https://doi.org/10.1186/s13046-019-1360-3

  61. NOTES

    *通讯作者。

期刊菜单