Advances in Clinical Medicine
Vol. 13  No. 05 ( 2023 ), Article ID: 66243 , 7 pages
10.12677/ACM.2023.1351223

NK细胞在各种肿瘤中潜在作用的研究进展

傅勇鑫,胡值雅,王家武,姜庆*

重庆医科大学附属第二医院泌尿外科,重庆

收稿日期:2023年4月28日;录用日期:2023年5月21日;发布日期:2023年5月31日

摘要

癌症是一个难以被攻克的世界性难题。NK细胞是机体的重要免疫细胞,NK细胞免疫疗法也引起越来越多研究者的关注。研究发现,NK细胞在多种癌症中起到抗肿瘤作用。本文NK细胞的分子机制及在肿瘤肝细胞癌,胃癌,膀胱癌,肺癌中发挥的抗肿瘤作用加以综述。

关键词

NK细胞,肝细胞癌,胃癌,膀胱癌,肺癌

Research Progress on the Potential Role of NK Cells in Various Tumors

Yongxin Fu, Zhiya Hu, Jiawu Wang, Qing Jiang*

Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing

Received: Apr. 28th, 2023; accepted: May 21st, 2023; published: May 31st, 2023

ABSTRACT

Cancer is a worldwide problem that is difficult to overcome. NK cells are important immune cells in the body. More and more researchers have paid attention to NK cell immunotherapy. Studies have found that NK cells play an antitumor role in a variety of cancers. In this paper, the molecular mechanism of NK cells and their anti-tumor effects on hepatocellular carcinoma, gastric cancer, bladder cancer and lung cancer are reviewed.

Keywords:Natural Killer Cell, Hepatocellular, Gastric, Bladder, Lung Cancer

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 前言

自然杀伤(natural killer, NK)细胞是人体固有免疫的重要组成部分,是人体内抵挡病原入侵和恶性肿瘤的第一道防线,其在抗肿瘤方面发挥着至关重要的作用。近年来,随着NK细胞肿瘤免疫疗法的不断突破,NK细胞在抗肿瘤方面展现出了巨大临床潜力,癌症患者迎来了新的免疫治疗方式,生存预后也得到极大改善 [1] 。本文对NK细胞在各类肿瘤中发挥的抗肿瘤功能及其相关机制加以综述,旨在为临床上肿瘤治疗提供新的思路。

2. NK细胞杀伤细胞的主要机制

NK细胞主要通过以下机制实现其杀伤功能:1) 分泌杀伤介质:穿孔素、颗粒酶、颗粒溶素等具有细胞毒性的溶解性颗粒,诱导靶细胞凋亡。2) 释放可溶性NK细胞毒因子(NKCF):NKCF与靶细胞表面的NKCF受体结合后,可选择性杀伤和裂解靶细胞。3) 通过表达膜TNF家族分子的杀伤效应:NK细胞可以通过膜TNF家族分子(FASL、TRAIL、mTNF等)与靶细胞膜配体结合诱导靶细胞凋亡。4) 介导ADCC效应:NK细胞表面表达FcγR受体,与靶细胞表面的IgG抗体结合,产生抗体依赖的细胞介导的细胞毒作用(ADCC)。5) 分泌细胞因子,发挥免疫调节功能:合成多种小分子蛋白质,比如淋巴因子等,与其他免疫细胞相互作用形成免疫应答。

3. NK细胞在肿瘤中的作用

3.1. NK细胞与肝细胞癌

肝癌是全球第四大癌症相关死亡原因 [2] 。其中,肝细胞癌是肝癌最常见的组织学类型,约占所有患者的90% [3] 。肝细胞癌的发生往往伴随着由乙型肝炎病毒(HBV)或丙型肝炎病毒(HCV)感染、酗酒或代谢综合征等因素引发慢性炎症的背景 [4] 。因此,长期以来,肝细胞癌的炎症微环境被认为在肿瘤发生发展、转移、免疫逃逸以及耐药性发挥着重要的作用 [5] 。NK细胞是发挥肝癌细胞清除的重要效应细胞,其在肝癌抗肿瘤免疫反应中发挥着不可替代的作用 [6] 。以下是NK抑制肿瘤的两种重要机制:1) NK通过其释放的细胞毒性颗粒与肝癌细胞表面的死亡受体结合,从而诱发细胞凋亡 [7] 。2) NK细胞分泌的细胞因子,如干扰素-α (IFN-α)和肿瘤坏死因子-α (TNF-α),可以通过上调肝癌细胞上Fas的表达来抑制肝癌发展 [8] 。另一方面,IFN-α和TNF-α还可以促进微环境中其他抗肿瘤免疫细胞的增殖、分化和毒性 [9] 并抑制肿瘤微环境种微血管生成 [10] 。但在肝癌微环境中,NK细胞的抗肿瘤效应常受到抑制,最终导致肝细胞癌的免疫逃逸 [6] 。HBV、HCV感染相关的肝癌患者由于体内长期的炎症刺激和免疫系统的激活,可能导致 NK细胞衰竭表型的产生 [11] 。而免疫检查点分子在NK细胞表面的过表达也是导致NK细胞衰竭的关键机制之一,Lihua Yu等利用细胞流式技术鉴定出TIGIT+ TIM-3+ NK cells的亚群,而该亚群与NK细胞衰竭高度相关 [12] ,并显著影响肝细胞癌患者的预后,这也提示TIGIT、TIM3等免疫检查点分子在NK细胞衰竭过程中具有重要作用。肝癌肿瘤微环境中免疫调节性的细胞因子 [13] 和缺氧状态也是导致NK细胞衰竭 [11] 的重要因素。NK细胞的衰竭是导致肝癌患者免疫逃逸、临床进展甚至死亡的重要原因,因此开发靶向NK细胞的药物或治疗手段也势在必行。采用自体或异体NK细胞在IL-15等细胞因子激活后,利用抗体靶向肿瘤表面分子,从而激活肿瘤细胞的抗体依赖性细胞毒性(ADCC)反应 [14] 。此外,利用嵌合抗原受体(CAR)工程构建的CAR-NK细胞也是靶向NK细胞治疗的重要方式。其安全性和有效性甚至优于以往的CAR-T细胞治疗策略 [15] 。在体内外模型中,CAR-NK细胞和CAR-T细胞都可以有效地消灭肝癌細胞,并且CAR-NK细胞具有更好的安全性和持久性 [16] 。NK细胞是肝细胞癌的一个潜在治疗选择。然而,目前仍有许多障碍和不确定因素需要克服,如肝细胞癌患者中NK细胞的缺失及失活,肝肿瘤本身的异质性和复杂性,以及NK细胞治疗的临床管理等。

3.2. NK细胞与胃癌

胃癌是全球第5大常见癌症类型 [17] 。随着医疗技术发展,虽然早期胃癌的治愈率较前显著提升,但转移性胃癌的5年生存率仍然较低 [18] 。NK细胞作为重要的发挥抗肿瘤效应的免疫细胞,其丰度与活性与胃癌患者的临床预后具有显著的相关 [19] ,因此解析NK细胞与胃癌的生物学联系具有重要的价值。在胃癌发生早期,异性细胞上表达的少量MHC-I和压力诱导的特异性配体能被表面受体NKG2D所识别 [20] ,这一过程直接导致NK的活化,激活后的NK细胞随后通过释放穿孔素和颗粒酶来诱导胃癌细胞的凋亡 [21] 。此外NK细胞中,CD56dim亚群表面CD16表达较高,能有效识别并靶向裂解抗体包被的肿瘤细胞,发挥ADCC效应 [22] 。有趣的是,NK细胞也能通过NKG2D去识别胃癌肿瘤干细胞(CSCs)的表面蛋白CD133,从而抑制胃癌自我更新、分化、转移以及耐药性 [23] 。但在胃癌微环境中,同样存在多种机制诱导NK细胞的数量下降以及诱导其衰竭。胃癌间质干细胞可释放可溶性因子去抑制NK细胞中mTOR通路的活性,导致NK细胞内部的代谢失调,诱导了NK细胞衰竭 [24] 。此外,胃癌细胞能诱导NK细胞表面PD-l的过表达,而PD-l//PD-L1随后抑制PI3K/Akt致NK细胞失活 [25] 。此外,一种由胃癌细胞产生的代谢产物L-kynurenine可诱导NK细胞发生铁死亡,这可能会损害NK细胞的抗肿瘤免疫力并促进肿瘤的发展 [25] ,也为胃癌中NK细胞失活的机制提供了新视角。以上的研究提示靶向胃癌微环境的NK细胞可能成为有效的免疫治疗靶点。靶向NK细胞的治疗方式呈多样化,包括NK细胞移植治疗、免疫检查点抑制剂治疗、CAR-NK细胞治疗等 [21] 。目前为止,上述治疗方式部分已开展相应的临床试验。如:Takeshi Ishikawa等人开展了扩增的自然杀伤细胞与IgG1抗体联合应用于胃癌或结直肠癌患者的I期临床试验,结果提示在6名可评估的患者中,4名患者病情稳定(SD),2名患者病情进展。在4名SD患者中,有3人在联合治疗后显示出肿瘤大小的整体下降,且所有患者都显示较好的耐受性 [26] 。NK细胞是胃癌免疫治疗的重要靶点,因为它们可以直接杀死肿瘤细胞并调节适应性免疫反应。然而,目前临床和分子机制方面仍存在诸多挑战,如胃癌细胞的抵抗和逃逸机制,NK细胞输注治疗的标准流程的制定,以及与其他药物的联合策略。未来的研究应着重于提高NK细胞治疗的有效性和安全性,确定用于患者选择和反应预测的生物标志物,并探索新的方法来增强NK细胞在胃癌微环境中的功能与数量。

3.3. NK细胞与膀胱癌

膀胱癌占全球癌症诊断总数的3%,且在发达国家尤其流行 [27] 。免疫微环境作为影响肿瘤发生、发展、转移以及免疫逃逸的关键影响因素,与膀胱癌患者预后息息相关。在肿瘤微环境中,NK细胞是膀胱癌细胞发生的最早的响应细胞,其预先浸润并于成熟树突状细胞的相互作用可以诱导效应T细胞在膀胱肿瘤的浸润,从而介导抗肿瘤免疫 [28] 。膀胱癌细胞表面的杀伤细胞免疫蛋白样受体(KIR)能与NK细胞表面的激活受体—NKG2D,NKp46,NKp30,NKp44结合,从而活化酪氨酸激酶相关通路,最终使NK细胞处于激活状态 [29] 。随后,NK细胞发挥肿瘤杀伤效应,膀胱癌细胞可能受到NK细胞分泌的穿孔素和颗粒酶的作用而被诱发凋亡和坏死 [30] ;另一方面,NK细胞分泌大量细胞因子招募并激活其他抗肿瘤细胞,促进膀胱癌微环境的免疫活化,诱导肿瘤的免疫清除 [31] 。因此,膀胱肿瘤的免疫治疗与NK细胞的活化有紧密关系。在体外实验和动物模型中,NK细胞能作为卡介苗发挥作用的主要效应细胞,抑制肿瘤的生长进展 [32] ,且NK细胞与其他免疫细胞(T细胞及树突状细胞)的相互作用,能扩大卡介苗的免疫激活效果 [33] 。免疫检查点抑制剂同样能增强NK细胞的抗肿瘤能力。检查点抑制剂可通过阻断NK细胞上由PD-1、PD-L1、NKG2A或KIR介导的抑制信号或其在膀胱癌细胞上的配体来增强NK细胞的活性和功能 [34] ,还可以通过调节细胞因子、趋化因子和粘附分子的表达,增加NK细胞在膀胱癌肿瘤微环境中的浸润和分布 [35] 。由于BCG与免疫检查点抑制剂发挥作用过程中,可以很好的激活并利用NK细胞抗肿瘤的特性,因此上述两种治疗方法可在膀胱癌患者中高效发挥协同作用 [35] 。NK细胞作为膀胱癌中抗肿瘤的重要成分,在膀胱癌的治疗方面呈现出巨大的潜力,但目前依然存在诸多挑战,如:耐药性,毒性,异质性,和肿瘤微环境的影响。因此未来需要探索更多的NK细胞相关的免疫检查点分子和受体,以及它们在膀胱癌中的作用和调节机制,研究NK细胞与其他免疫细胞或治疗方式的协同作用,以及如何优化组合治疗方案。

3.4. NK细胞与肺癌

肺癌是全球癌症发病率和死亡率的首要原因,每年估计有200万例诊断和180万例死亡 [36] 。在过去二十年里,我们对肺癌疾病生物学的理解、预测性生物标志物的应用以及治疗方法的改进,取得了显著的进展,著提高许多患者的预后。但关于进展期肺癌以及恶性程度高的肺癌,预后仍不理想 [37] 。吸烟作为肺癌的重要危险因素 [38] ,与NK细胞具有密切关系。烟草能损害NK细胞的杀伤能力,这与穿孔蛋白在NK细胞的表达减少相关,这被认为是烟草促进肺癌的可能机制 [39] 。此外,烟草还可以改变NK细胞和其他免疫细胞表面上ST2受体的表达,这影响了这些免疫细胞对IL-33的反应方式,从而影响肺上的炎症状态 [40] 。NK细胞的失活与肺癌发生密切相关,另一方面,活化的NK细胞是微环境中重要的抑癌成分,而这个过程有多个机制的参与,如自然细胞毒性、抗体依赖性细胞毒性(ADCC)和细胞因子的产生等 [41] 。自然细胞毒性主要指NK细胞向靶细胞释放含有穿孔蛋白和颗粒酶的细胞毒性颗粒。穿孔素在靶细胞膜上形成孔隙,允许颗粒酶进入并触发肺癌细胞凋亡 [31] 。ADCC过程是指:NK细胞与在肺肿瘤细胞上的抗体结合,然后NK细胞释放细胞毒性分子,诱导细胞凋亡 [7] 。此外,NK细胞分泌的细胞因子,如干扰素-γ (IFN-γ)和肿瘤坏死因子-α (TNF-α),可以激活其他免疫细胞或抑制肺癌微环境中肿瘤生长和血管生成 [42] 。此外,在肺癌中,NK细胞显示出显著的功能障碍,这可能有助于肿瘤的进展和免疫逃逸。NK细胞的功能障碍可由各种因素引起,如肿瘤细胞和NK细胞之间的直接交叉对话、活化的血小板、肿瘤微环境中的免疫抑制细胞和分子,以及NK细胞中糖酵解和活力的抑制 [42] [43] [44] 。这些因素可以影响NK细胞上激活性和抑制性受体的表达和信号传递、细胞毒性颗粒的释放和活性、细胞因子的产生和分泌、以及NK细胞的归巢及分布。近年来,NK被认为是癌症免疫疗法的重要靶点,特别是肺癌。目前已开发了一些临床策略来提高NK细胞的抗肿瘤活性,如细胞因子刺激、基因工程、嵌合抗原受体(CAR)表达和ADCC。这些方法旨在改善NK细胞在肺癌组织中的扩张、激活和特异性杀伤。一些针对NK细胞治疗肺癌的疗法包括白细胞介素(IL)-151,异体NK细胞免疫疗法 [45] ,mHsp70靶向NK细胞 [41] ,和CAR-NK细胞 [45] 。这些疗法在临床前和临床研究中显示出良好的效果,与传统疗法相比,不良反应较少。然而,仍有一些挑战和限制需要克服,如肺部肿瘤的异质性和免疫抑制,NK细胞的最佳来源和剂量,基因改造的安全性和有效性,以及与其他方式的结合。

4. 展望

NK细胞在抗肿瘤中的重要作用,引起越来越多科研人员的重视,NK细胞免疫疗法的出现,也为许多癌症患者带来福音。本文着重介绍了NK细胞在肝细胞癌,胃癌,膀胱癌,肺癌中分子机制的见解,这可为各类肿瘤的治疗策略提供新的方向。相信在不久的未来,NK细胞免疫疗法将广泛应用于各类肿瘤的治疗当中,给癌症患者带来新的希望。

文章引用

傅勇鑫,胡值雅,王家武,姜 庆. NK细胞在各种肿瘤中潜在作用的研究进展
Research Progress on the Potential Role of NK Cells in Various Tumors[J]. 临床医学进展, 2023, 13(05): 8749-8755. https://doi.org/10.12677/ACM.2023.1351223

参考文献

  1. 1. Myers, J.A. and Miller, J.S. (2021) Exploring the NK Cell Platform for Cancer Immunotherapy. Nature Reviews. Clinical Oncology, 18, 85-100. https://doi.org/10.1038/s41571-020-0426-7

  2. 2. Chidambaranathan-Reghupaty, S., Fisher, P.B. and Sarkar, D. (2021) Hepatocellular Carcinoma (HCC): Epidemiology, Etiology and Molecular Classification. Ad-vances in Cancer Research, 149, 1-61. https://doi.org/10.1016/bs.acr.2020.10.001

  3. 3. Llovet, J.M., Zucman-Rossi, J., Pikarsky, E., Sangro, B., Schwartz, M., Sherman, M. and Gores, G. (2016) Hepatocellular Carcinoma. Nature Reviews. Disease Primers, 2, Article No. 16018. https://doi.org/10.1038/nrdp.2016.18

  4. 4. Sangro, B., Sarobe, P., Hervás-Stubbs, S. and Melero, I. (2021) Advances in Immunotherapy for Hepatocellular Carcinoma. Nature Reviews. Gastroenterology & Hepatology, 18, 525-543. https://doi.org/10.1038/s41575-021-00438-0

  5. 5. Sas, Z., Cendrowicz, E., Weinhäuser, I. and Rygiel, T.P. (2022) Tumor Microenvironment of Hepatocellular Carcinoma: Challenges and Opportunities for New Treatment Options. International Journal of Molecular Sciences, 23, Article No. 3778. https://doi.org/10.3390/ijms23073778

  6. 6. Liu, P., Chen, L. and Zhang, H. (2018) Natural Killer Cells in Liver Disease and Hepatocellular Carcinoma and the NK Cell-Based Immunotherapy. Journal of Immunology Research, 2018, Article ID: 1206737. https://doi.org/10.1155/2018/1206737

  7. 7. Prager, I. and Watzl, C. (2019) Mechanisms of Natural Killer Cell-Mediated Cellular Cytotoxicity. Journal of Leukocyte Biology, 105, 1319-1329. https://doi.org/10.1002/JLB.MR0718-269R

  8. 8. Jiang, W., Zhang, C., Tian, Z. and Zhang, J. (2013) hIFN-α Gene Modification Augments Human Natural Killer Cell Line Anti-Human Hepatocellular Carcinoma Function. Gene Therapy, 20, 1062-1069. https://doi.org/10.1038/gt.2013.31

  9. 9. Zhang, C., Hu, Y. and Shi, C. (2020) Targeting Natural Killer Cells for Tumor Immunotherapy. Frontiers in Immunology, 11, Article No. 60. https://doi.org/10.3389/fimmu.2020.00060

  10. 10. Bassani, B., Baci, D., Gallazzi, M., Poggi, A., Bruno, A. and Mortara, L. (2019) Natural Killer Cells as Key Players of Tumor Progression and Angiogenesis: Old and Novel Tools to Divert Their Pro-Tumor Activities into Potent Anti-Tumor Effects. Cancers, 11, Article No. 461. https://doi.org/10.3390/cancers11040461

  11. 11. Sun, C., Sun, H.Y., Xiao, W.H., Zhang, C. and Tian, Z.G. (2015) Natural Killer Cell Dysfunction in Hepatocellular Carcinoma and NK Cell-Based Immunotherapy. Acta Pharmacologica Sinica, 36, 1191-1199. https://doi.org/10.1038/aps.2015.41

  12. 12. Yu, L., Liu, X., Wang, X., Yan, F., Wang, P., Jiang, Y., Du, J. and Yang, Z. (2021) TIGIT(+) TIM-3(+) NK Cells Are Correlated with NK Cell Exhaustion and Disease Progression in Patients with Hepatitis B Virus‑Related Hepatocellular Carcinoma. Oncoimmunology, 10, Article ID: 1942673. https://doi.org/10.1080/2162402X.2021.1942673

  13. 13. Zecca, A., Barili, V., Olivani, A., Biasini, E., Boni, C., Fisicaro, P., Montali, I., Tiezzi, C., Dalla Valle, R., Ferrari, C., Cariani, E. and Missale, G. (2022) Targeting Stress Sen-sor Kinases in Hepatocellular Carcinoma-Infiltrating Human NK Cells as a Novel Immunotherapeutic Strategy for Liver Cancer. Frontiers in Immunology, 13, Article ID: 875072. https://doi.org/10.3389/fimmu.2022.875072

  14. 14. Mantovani, S., Oliviero B., Varchetta, S., Mele, D. and Mondelli, M.U. (2020) Natural Killer Cell Responses in Hepatocellular Carcinoma: Implications for Novel Immunotherapeutic Ap-proaches. Cancers, 12, Article No. 926. https://doi.org/10.3390/cancers12040926

  15. 15. Liu, D., Tian, S., Zhang, K., Xiong, W., Lubaki, N.M., Chen, Z. and Han, W. (2017) Chimeric Antigen Receptor (CAR)-Modified Natural Killer Cell-Based Immunotherapy and Immuno-logical Synapse Formation in Cancer and HIV. Protein & Cell, 8, 861-877. https://doi.org/10.1007/s13238-017-0415-5

  16. 16. Tseng, H.C., Xiong, W., Badeti, S., Yang, Y., Ma, M., Liu, T., et al. (2020) Efficacy of Anti-CD147 Chimeric Antigen Receptors Targeting Hepatocellular Carcinoma. Nature Communi-cations, 11, Article No. 4810. https://doi.org/10.1038/s41467-020-18444-2

  17. 17. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomata-ram, I., Jemal, A. and Bray, F. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660

  18. 18. Sexton, R.E., Al Hallak, M.N., Diab, M. and Azmi, A.S. (2020) Gastric Cancer: A Comprehensive Review of Current and Future Treatment Strategies. Cancer Metastasis Reviews, 39, 1179-1203. https://doi.org/10.1007/s10555-020-09925-3

  19. 19. Li, Y., He, X., Fan, L., Zhang, X., Xu, Y. and Xu, X. (2021) Identification of a Novel Immune Prognostic Model in Gastric Cancer. Clinical & Translational Oncology: Official Pub-lication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 23, 846-855. https://doi.org/10.1007/s12094-020-02478-5

  20. 20. Wang, F., Lau, J.K.C. and Yu, J. (2021) The Role of Natural Killer Cell in Gastrointestinal Cancer: Killer or Helper. Oncogene, 40, 717-730. https://doi.org/10.1038/s41388-020-01561-z

  21. 21. Mimura, K., Kamiya, T., Shiraishi, K., Kua, L.F., Shabbir, A., So, J., et al. (2014) Therapeutic Potential of Highly Cytotoxic Natural Killer Cells for Gastric Cancer. International Journal of Cancer, 135, 1390-1398. https://doi.org/10.1002/ijc.28780

  22. 22. Lanier, L.L., Yu, G. and Phillips, J.H. (1989) Co-Association of CD3 Zeta with a Receptor (CD16) for IgG Fc on Human Natural Killer Cells. Nature, 342, 803-805. https://doi.org/10.1038/342803a0

  23. 23. Xia, P. and Xu, X.Y. (2017) DKK3 Attenuates the Cytotoxic Effect of Nat-ural Killer Cells on CD133(+) Gastric Cancer Cells. Molecular Carcinogenesis, 56, 1712-1721. https://doi.org/10.1002/mc.22628

  24. 24. Guo, S., Huang, C., Han, F., Chen, B., Ding, Y., Zhao, Y., et al. (2021) Gastric Cancer Mesenchymal Stem Cells Inhibit NK Cell Function through mTOR Signalling to Promote Tumour Growth. Stem Cells International, 2021, Article ID: 9989790. https://doi.org/10.1155/2021/9989790

  25. 25. Liu, Y., Cheng, Y., Xu, Y., Wang, Z., Du, X., Li, C., et al. (2017) Increased Expression of Programmed Cell Death Protein 1 on NK Cells Inhibits NK-Cell-Mediated Anti-Tumor Function and Indicates Poor Prognosis in Digestive Cancers. Onco-gene, 36, 6143-6153. https://doi.org/10.1038/onc.2017.209

  26. 26. Ishikawa, T., Okayama, T., Sakamoto, N., Ideno, M., Oka, K., Enoki, T., et al. (2018) Phase I Clinical Trial of Adoptive Transfer of Expanded Natural Killer Cells in Combination with IgG1 Antibody in Patients with Gastric or Colorectal Cancer. International Journal of Cancer, 142, 2599-2609. https://doi.org/10.1002/ijc.31285

  27. 27. Saginala, K., Barsouk, A., Aluru, J.S., Rawla, P., Padala, S.A. and Barsouk, A. (2020) Epidemiology of Bladder Cancer. Medical Sciences (Basel, Switzerland), 8, 11-25. https://doi.org/10.3390/medsci8010015

  28. 28. Ranti, D., Bieber, C., Wang, Y.S., Sfakianos, J.P. and Horowitz, A. (2022) Natural Killer Cells: Unlocking New Treatments for Bladder Cancer. Trends in Cancer, 8, 698-710. https://doi.org/10.1016/j.trecan.2022.03.007

  29. 29. Yoon, S.R., Kim, T.D. and Choi, I. (2015) Understanding of Molecular Mechanisms in Natural Killer Cell Therapy. Experimental & Molecular Medicine, 47, e141. https://doi.org/10.1038/emm.2014.114

  30. 30. Cao, X., Cai, S.F., Fehniger, T.A., Song, J., Collins, L.I., Piwni-ca-Worms, D.R. and Ley, T.J. (2007) Granzyme B and Perforin Are Important for Regulatory T Cell-Mediated Suppres-sion of Tumor Clearance. Immunity, 27, 635-646. https://doi.org/10.1016/j.immuni.2007.08.014

  31. 31. Mitchison, T.J. (2021) So Many Ways to Naturally Kill a Can-cer Cell. BMC Biology, 19, Article No. 149. https://doi.org/10.1186/s12915-021-01092-3

  32. 32. Brandau, S., Riemensberger, J., Jacobsen, M., Kemp, D., Zhao, W., Zhao, X., Jocham, D., Ratliff, T.L. and Böhle, A. (2001) NK Cells Are Essential for Effective BCG Immunotherapy. International Journal of Cancer, 92, 697-702. https://doi.org/10.1002/1097-0215(20010601)92:5<697::AID-IJC1245>3.0.CO;2-Z

  33. 33. Pettenati, C. and Inger-soll, M.A. (2018) Mechanisms of BCG Immunotherapy and Its Outlook for Bladder Cancer. Nature Reviews. Urology, 15, 615-625. https://doi.org/10.1038/s41585-018-0055-4

  34. 34. Cao, Y., Wang, X., Jin, T., Tian, Y., Dai, C., Widarma, C., Song, R. and Xu, F. (2020) Immune Checkpoint Molecules in Natural Killer Cells as Potential Targets for Cancer Immunotherapy. Signal Transduction and Targeted Therapy, 5, Article No. 250. https://doi.org/10.1038/s41392-020-00348-8

  35. 35. Khan, M., Arooj, S. and Wang, H. (2020) NK Cell-Based Im-mune Checkpoint Inhibition. Frontiers in Immunology, 11, Article No. 167. https://doi.org/10.3389/fimmu.2020.00167

  36. 36. Fitzmaurice, C., Abate, D., Abbasi, N., Abbastabar, H., Abd-Allah, F., Abdel-Rahman, O., et al. (2019) Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncology, 5, 1749-1768. https://doi.org/10.1001/jamaoncol.2019.2996

  37. 37. Thai, A.A., Solomon, B.J., Sequist, L.V., Gainor, J.F. and Heist, R.S. (2021) Lung Cancer. The Lancet (London, England), 398, 535-554. https://doi.org/10.1016/S0140-6736(21)00312-3

  38. 38. Kim, J., Lee, H. and Huang, B.W. (2022) Lung Cancer: Di-agnosis, Treatment Principles, and Screening. American Family Physician, 105, 487-494.

  39. 39. Mian, M.F., Lauzon, N.M., Stämpfli, M.R., Mossman, K.L. and Ashkar, A.A. (2008) Impairment of Human NK Cell Cytotoxic Activity and Cytokine Release by Cigarette Smoke. Journal of Leukocyte Biology, 83, 774-784. https://doi.org/10.1189/jlb.0707481

  40. 40. Kearley, J., Silver, J.S., Sanden, C., Liu, Z., Berlin, A.A., et al. (2015) Cigarette Smoke Silences Innate Lymphoid Cell Function and Facilitates an Exacerbated Type I Interleukin-33-Dependent Response to Infection. Immunity, 42, 566-579. https://doi.org/10.1016/j.immuni.2015.02.011

  41. 41. Ran, G.H., Lin, Y.Q., Tian, L., Zhang, T., Yan, D.M., Yu, J.H. and Deng, Y.C. (2022) Natural Killer Cell Homing and Trafficking in Tissues and Tumors: From Biology to Application. Signal Transduction and Targeted Therapy, 7, Article No. 205. https://doi.org/10.1038/s41392-022-01058-z

  42. 42. Wu, S.Y., Fu, T., Jiang, Y.Z. and Shao, Z.M. (2020) Natural Killer Cells in Cancer Biology and Therapy. Molecular Cancer, 19, Article No. 120. https://doi.org/10.1186/s12943-020-01238-x

  43. 43. Russell, É., Conroy, M.J. and Barr, M.P. (2022) Harnessing Natural Killer Cells in Non-Small Cell Lung Cancer. Cells, 11, Article No. 605. https://doi.org/10.3390/cells11040605

  44. 44. Cong, J., Wang, X., Zheng, X., Wang, D., Fu, B., Sun, R., Tian, Z. and Wei, H. (2018) Dysfunction of Natural Killer Cells by FBP1-Induced Inhibition of Glycolysis during Lung Cancer Pro-gression. Cell Metabolism, 28, 243-255.e5. https://doi.org/10.1016/j.cmet.2018.06.021

  45. 45. Aktaş, O.N., Öztürk, A.B., Erman, B., Erus, S., Tanju, S. and Di-lege, Ş. (2018) Role of Natural Killer Cells in Lung Cancer. Journal of Cancer Research and Clinical Oncology, 144, 997-1003. https://doi.org/10.1007/s00432-018-2635-3

  46. NOTES

    *通讯作者。

期刊菜单