Advances in Clinical Medicine
Vol. 13  No. 12 ( 2023 ), Article ID: 78267 , 7 pages
10.12677/ACM.2023.13122846

ALS患者延髓功能障碍的临床评估方法

陈高峰1,2,魏钧2*

1三峡大学基础医学院,湖北 宜昌

2三峡大学第一临床医学院神经内科,湖北 宜昌

收稿日期:2023年11月27日;录用日期:2023年12月21日;发布日期:2023年12月28日

摘要

肌萎缩侧索硬化症(Amyotrophic lateral sclerosis, ALS)是一种累及上、下运动神经元的神经系统变性疾病,患者多数表现为进行性四肢无力和萎缩、延髓功能麻痹和锥体束征。95%的病人通常会在发病5年之内死亡,病程进展迅速。肌萎缩侧索硬化症的患者除了躯体运动功能活动受限外,延髓功能障碍是肌萎缩侧索硬化症的一个显著特征,它影响着患者的生存和生活质量。因此,早期诊断识别出患者存在球部功能障碍,从而及早改善患者球部功能障碍所导致的生活质量下降是目前研究迫切需要解决的问题。

关键词

肌萎缩侧索硬化症,延髓功能障碍,临床评估

Clinical Assessment of Medullary Dysfunction in Amyotrophic Lateral Sclerosis Patients

Gaofeng Chen1,2, Jun Wei2*

1College of Basic Medical Science, China Three Gorges University, Yichang Hubei

2Department of Neurology, The First Clinical Medical College of China Three Gorges University, Yichang Hubei

Received: Nov. 27th, 2023; accepted: Dec. 21st, 2023; published: Dec. 28th, 2023

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a degenerative neurological disease involving upper and lower motor neurons. Most patients present with progressive limb weakness and atrophy, bulbar paralysis, and pyramidal tract sign. 95% of patients usually die within five years of onset, and the disease progresses rapidly. In addition to physical motor function limitation in ALS patients, bulbar dysfunction is a prominent feature of ALS, which affects the survival and quality of life of patients. Therefore, early diagnosis and identification of patients with bulb dysfunction, so as to improve the quality of life of patients with bulb dysfunction as soon as possible is an urgent problem to be solved in current research.

Keywords:Amyotrophic Lateral Sclerosis, Bulbar Dysfunction, Clinical Evaluation

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

肌萎缩性侧索硬化症(ALS)是一种神经系统疾病,其特征是由于中枢神经系统的运动神经元退行性病变而导致骨骼肌进行性瘫痪和延髓功能损害(如吞咽困难、呼吸不畅、流涎症等)。目前ALS致病机制尚未明确,因此缺乏有效管理手段。全球ALS发病率的升高不仅给患者带来巨大痛苦,而且给患者家庭及社会造成了沉重负担 [1] [2] 。据统计,以肢体症状发病约占70%,延髓功能障碍为起始约占25%。而随着疾病进展,约80%~95%患者在晚期可出现延髓功能障碍的表现(如言语、吞咽困难等) [3] ,所导致的并发症如能量摄入不足、营养不良及呼吸功能不全是目前ALS患者主要的死因 [4] 。对患者的延髓功能损害进行评估,有助于ALS的诊断分型、预后判断以及科学管理。现就与ALS延髓功能障碍相关的评估方法的进展进行综述。

2. ALS的发病机制

开发早期诊断评估方法和提出新的治疗模式,依赖于对ALS发病机制的认识,已知该疾病与基因突变密切相关,致病基因可分为27种亚型,其病理生理学机制复杂,主要包括蛋白质的异常折叠聚集、线粒体结构和功能异常、轴突结构受损或转运功能缺陷等,目前尚无证据支持单一机制可介导ALS的发病 [5] 。编码超氧化物歧化酶(SOD)的基因发生突变会导致肌萎缩侧索硬化症的发病 [6] ,SOD1基因的显性突变可介导毒性羟自由基聚集,破坏蛋白质折叠影响运动神经元轴突运输。CHCHD10基因在维持线粒体基因组稳定性及线粒体融合中发挥重要作用,它的突变可导致线粒体网路破碎,ATP生成减少,神经元能量供应障碍,加速神经元的变性坏死 [7] 。除CHCHD10基因外,还有OPTNFUSC9orf72等基因参与细胞能量代谢 [8] 。轴突动力学的改变可影响神经元轴突物质转运,如KIF5A基因突变可导致肌萎缩侧索硬化症25型。动物实验发现KIF5A基因敲除小鼠出现明显的轴突转运障碍、轴突生长减少及神经元的坏死 [9] 。可见,ALS是个多基因相互作用的结果,对致病机制的了解可能有利于临床医生对ALS临床表型的分析,为早期诊断提供理论基础。

3. ALS球部功能的恶化

肌萎缩侧索硬化症(ALS)最严重的临床症状之一为其延髓功能受损,相关研究表明延髓症状与较短的生存期 [10] [11] 、身体功能较快的衰退 [12] 、生活质量的不佳 [13] 及所需综合学科支持增加 [14] 密切相关。其中ALS患者吞咽困难是多阶段的。在评估这些患者时,详细的临床吞咽检查至关重要,有助于为临床医生提供有关吞咽功能的有用信息,而且有助于了解缺陷背后的机制 [15] 。若吞咽功能恶化,患者每日摄食量下降,会导致体重的降低,从而影响自身疾病进展 [16] 。ALS患者球部功能障碍不仅仅表现在吞咽方面,随着疾病的进展,构音障碍及流涎症可能会相继出现。构音障碍是一种以言语发音和清晰度异常为特征的言语运动障碍,失去沟通能力与患者情绪的低落、社会活动参与的减少有关 [17] ,同时也降低了患者的生活质量 [13] 。更为重要的是以延髓型ALS患者更容易出现诊断延迟 [18] ,并且年龄越大,起病方式以延髓起始的患者预后越差 [10] 。目前关于ALS患者延髓损伤的研究文献相对较少 [19] 。由于ALS患者的吞咽困难是典型的进行性的,症状不同,在最初诊断时评估吞咽功能对于ALS患者的长期生存至关重要 [20] 。这些因素强调了ALS患者延髓功能障碍早期发现及准确检测的迫切需要,以确保最佳的营养摄入、沟通能力、肺功能的维持 [21] [22] 。

4. ALS球部功能损伤的临床评估方法

4.1. 颅神经检查(CNE)

ALS患者的延髓功能障碍是由上运动神经元(UMN)及下运动神经元(LMN)变性损伤共同作用的结果。随着疾病的进展,个体失去了对骨骼肌的控制,临床UMN体征包括病理性反射(例如,下颌的不自主抽搐、呕吐和其他面部反射) [23] 。LMN体征表现为肌肉功能的下降(如下颌、面部、舌头和鄂部的肌无力、萎缩) [24] 。目前临床神经病学体格检查仍然是在体内定位神经系统疾病的最佳方法,CNE检查的可靠性已经在不同的神经人群中进行了评估 [25] [26] ,但CNE在ALS疾病中应用的敏感性、特异性和反应性到目前为止尚未进行系统评估,这将是未来CNE评估ALS标准化的一个研究重点。

4.2. 针极肌电图

肌电图(EMG)可确认ALS的急性和慢性失神经电位。在放松时,前者可见自发电位如正锐波及纤颤电位,大力收缩时,在无力肌肉上会出现正常形态运动单位电位募集相减少和束状电位来识别,大约数周至数月后运动单位电位就会变的比正常要大,导致其时程加宽、波幅增高、位相增多。在患者舌头上检测时,人们常常难以完全放松,因此不易检测到 [27] ,后者由于出现了神经重新支配现象,导致一个运动单位内肌纤维数量增加,使得在肌电图检查时,出现时程加宽、波幅增高的运动单位电位,即巨大电位(MUP)。而此时,由于肌纤维得到了再生神经纤维的支配,所以,自发电位会明显减少或消失,在大力收缩时,会出现这种巨大异常运动单位电位募集相减少。不同地区所需评估的部位不同,颏舌肌是最常见的评估肌肉 [28] ,但也有人建议对胸锁乳突肌、咬肌、颞肌、额肌、颏肌和斜方肌进行评估,以解决诊断不确定性。运动单位测定(MUNE)技术,如MUNIX已被广泛用于定量估计支配同一肌肉的下运动神经元数量的存活情况,最近研究也表明其可作为新诊断的ALS患者的预后工具 [29] ,但它们只是最近才被用于评估舌头的去神经支配,可能需要进一步验证才能被临床实践中所应用。

4.3. 临床神经影像学

ALS的临床诊断是基于一系列体检、肌电图,并通过影像学和实验室检查排除其他神经疾病完成的。对于延髓受损患者,仔细评估脑干内结构的异常、是否存在肿瘤或炎症浸润尤为重要。若脱髓鞘、神经血管综合征、神经鞘瘤病、白质营养不良、恶性肿瘤和神经退行性疾病等累及运动皮质的皮质延髓束或延髓段,也可能表现出延髓症状。许多锥体外系和小脑疾病也可能出现局限性构音障碍(共济失调、运动减退、运动亢进),而影像学检查有助于排除其他疾病导致延髓损伤。许多放射学线索与ALS有关,部分患者T2WI、FLAIR序列可以发现脑内锥体束部位的对称性高信号,少数患者磁敏感加权成像序列可见沿运动皮质走行的含铁血黄素沉积,但这些定性的视觉线索并不是ALS特有的,对于诊断或监测目的也不敏感 [30] [31] 。另一方面,有研究者指出在磁共振弥散张量成像技术研究中,四肢发病的ALS和延髓发病的ALS之间没有显著差异,但两者在其体素分析研究中皮质脊髓束尾有着显著差异 [32] 。随着神经成像技术的不断进步,球功能障碍的解剖学基础可能会得到更详细的评估。

4.4. 延髓功能的评估

最近一项美国ALS护理临床实践调查显示,经修订的ALS功能评定量表(ALSFRS-R)中的延髓子量表是临床环境中用于评估延髓功能障碍的唯一常规指标 [33] 。它只包含3个问题,以解决言语、吞咽和流涎的变化,其子量表亚评分相对总评分而言更具有临床意义,为患者提供更精确的预后信息 [34] 。神经研究中心的延髓功能量表(CNS-BFS)最近已根据ALSFRS-R和“定时”言语和吞咽任务进行验证,并已成功用于临床试验 [35] [36] ,但该调查问卷仍需针对视频荧光吞咽评估(VFSE)进行验证。Appel量表是追踪ALS相关损害和功能衰退的最佳工具之一 [37] 。其他评估量表如Norris量表,它们最初的开发、优化和验证研究很难获得,因此它们的性能也相对难以判断,在其追踪进行性延髓损伤的潜力在很大程度上尚不清楚。在已经开发的一些ALS分期工具中,ALS严重程度量表(ALSSS)被设计用于指导ALS患者的康复工作,其对两种延髓功能(言语和吞咽)使用了10分量表。值得注意的是在进行正式的心理测量评估之前,它可能会被证明特别有用 [38] 。

4.5. 吞咽困难的诊断和筛查

大多数神经系统疾病吞咽困难评估的金标准仍然是VFSE,其可直接显示吞咽安全性和效率,即吸入和残余物的存在。然而,VFSE方法在评估ALS患者吞咽困难问题上未得到充分利用。为早期识别ALS患者吞咽困难的风险,许多研究者开发出各种筛查工具解决目前存在的问题,如ALSFRS-R量表、Norris量表、Eat-10量表和NdSSS量表等。在缺乏使用VFSE进行详细吞咽评估的情况下,Norris和ALSFRS-R球部亚评分,足以诊断和跟踪临床显著的吞咽困难,并可作为一个吞咽困难治疗开始的指标 [39] 。Cara Donohue团队研究显示,与VFSE相比,EAT-10量表用于评估ALS患者,是一种易于实行的吞咽困难筛查工具,在识别ALS患者吞咽功能方面良好的敏感性和特异性,可纳入吞咽困难筛查方案,以识别早期吞咽功能障碍 [40] 。神经肌肉疾病临床状态量表(NdSSS)着重关注于吞咽困难,其接受了严格的心理测量评估,表现出良好的评分员内部可靠性。而洼田饮水试验也被广泛用于评估吞咽困难,但其在ALS中的测量特性仍然未知。可见,相关吞咽筛查工具的应用不仅可以辅助吞咽困难的诊断,而且具有良好的安全性及依从性,可用于疾病的早期监测和跟踪。

4.6. 流涎症的筛查与评估

流涎症是肌萎缩性脊髓侧索硬化症患者延髓受累常见的致残问题。流涎可导致社交尴尬,加重ALS患者的情感孤立状态,唾液过多也可能增加误吸的风险。流涎症的主观评估最好在日常生活中、无意中进行,包括由Thomas-Stonell和Greenberg学者研发的流涎严重程度和频率量表(Drooling Severity and Frequnency Scale, DSFS)是德国流涎管理指南推荐的标准化流涎评估量表之一。其次还有口腔分泌量表(oral secretion scale, OSS)和流涎评分量表(sialorrhea scoring scale, SSS),Abdelnour-Mallet团队已评估了其在ALS流涎症中的应用,结果显示两种量表是评估ALS患者流涎症的可靠方法 [41] ,但这些工具也需要全面的心理测量评估和验证。运动神经元临床唾液量表(CSS-MND)是患者自身情况的评估工具,可显示流涎对患者所造成的各种影响,有研究指出CSS-MND需要进一步完善其内部问题。

4.7. 构音障碍的评估

ALS患者的构音障碍可表现为语言清晰度、鼻音、语速及韵律的异常。尤其“语言清晰度”和“语速”,二者缺一则表现为言语受损,“语音清晰度”指的是听者对说话者的理解程度,是构音障碍严重程度的一个通用指标,在疾病过程中相对较晚地下降。而“语速”指的是说话速度乃至流畅度。虽然两个指标都可用利克特量表进行评估 [42] 。但句子可懂度测试(SIT)被一些语言病理学家更为喜欢,因为它提供了对语音可懂度(即正确转录的单词百分比)和说话速度(即每分钟产生的单词数)的精确估计。当语音清晰度低于97%或者每分钟单词数(WPM)在160以下时,被视为异常 [43] 。在语音清晰度发生显著变化之前,说话速度通常会下降。因此,在纵向监测延髓损伤时,语速尤其有用 [44] 。此外像Frenchay构音障碍评估(FDA)这样的工具特别适合于用于诊断,因为它们可以通过CNE项目和听觉–知觉构音障碍评估的组合来全面评估球肌组织的结构和功能。然而,FDA并不是专门针对ALS开发的,缺乏在ALS人群中测量性能的评估。DDK (口腔发音障碍)被包括在CNE和FDA评估中,通常用于跟踪疾病进展,并且在检测延髓受损的ALS前期方面显示出高灵敏度但低特异性 [45] [46] 。若未来有学者将此进一步优化,DDK可能具有更高的评估潜力。

综上所述,神经影像学的进展、ALS疾病分期系统的发展以及延髓评估工具的出现,为早期评估ALS延髓功能障碍提供了更为准确的诊断效能以及临床预后。现有些方法已作为生物标志物应用于临床判断或大型临床实验监测疗效的指标。但是由于ALS发病机制的复杂性和表型异质性,仍需大样本多中心研究来不断验证和完善这些评估方法。

基金项目

湖北省重点研发项目,项目编号2022BCE046。

文章引用

陈高峰,魏 钧. ALS患者延髓功能障碍的临床评估方法
Clinical Assessment of Medullary Dysfunction in Amyotrophic Lateral Sclerosis Patients[J]. 临床医学进展, 2023, 13(12): 20220-20226. https://doi.org/10.12677/ACM.2023.13122846

参考文献

  1. 1. Maksymowicz-Sliwinska, A., Lule, D., Nieporecki, K., et al. (2023) The Quality of Life and Depression in Primary Caregivers of Patients with Amyotrophic Lateral Sclerosis Is Affected by Patient-Related and Culture-Specific Conditions. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 24, 317-326. https://doi.org/10.1080/21678421.2022.2126322

  2. 2. Galvin, M., Gavin, T., Mays, I., et al. (2020) Individual Quality of Life in Spousal ALS Patient-Caregiver Dyads. Health and Quality of Life Outcomes, 18, Article No. 371. https://doi.org/10.1186/s12955-020-01551-5

  3. 3. Makkonen, T., Ruottinen, H., Puhto, R., et al. (2018) Speech Deterioration in Amyotrophic Lateral Sclerosis (ALS) after Manifestation of Bulbar Symptoms. International Journal of Language & Communication Disorders, 53, 385- 392. https://doi.org/10.1111/1460-6984.12357

  4. 4. Thomas, K. (2020) Percutaneous Endoscopic Gastrostomy Tube Placement in Amyotrophic Lateral Sclerosis: A Case Series with a Multidisciplinary, Team-Based Approach. Annals of Gastroenterology, 33, 1-5. https://doi.org/10.20524/aog.2020.0517

  5. 5. Hardiman, O., Al-Chalabi, A., Chio, A., et al. (2017) Amyotrophic Lateral Sclerosis. Nature Reviews Disease Primers, 3, Article No. 17071. https://doi.org/10.1038/nrdp.2017.71

  6. 6. Peggion, C., Scalcon, V., Massimino, M.L., et al. (2022) SOD1 in ALS: Taking Stock in Pathogenic Mechanisms and the Role of Glial and Muscle Cells. Antioxidants, 11, Article 614. https://doi.org/10.3390/antiox11040614

  7. 7. Liu, T., Woo, J.A., Bukhari, M.Z., et al. (2020) CHCHD10-Regulated OPA1-Mitofilin Complex Mediates TDP-43- Induced Mitochondrial Phenotypes Associated with Frontotemporal Dementia. FASEB Journal, 34, 8493-8509. https://doi.org/10.1096/fj.201903133RR

  8. 8. Candelise, N., Salvatori, I., Scaricamazza, S., et al. (2022) Mechanis-tic Insights of Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis: An Update on a Lasting Relationship. Me-tabolites, 12, Article 233. https://doi.org/10.3390/metabo12030233

  9. 9. Castellanos-Montiel, M.J., Chaineau, M. and Durcan, T.M. (2020) The Neglected Genes of ALS: Cytoskeletal Dynamics Impact Synaptic Degeneration in ALS. Frontiers in Cellular Neu-roscience, 14, Article 594975. https://doi.org/10.3389/fncel.2020.594975

  10. 10. Chio, A., Logroscino, G., Hardiman, O., et al. (2009) Prognostic Factors in ALS: A Critical Review. Amyotrophic Lateral Sclerosis, 10, 310-323. https://doi.org/10.3109/17482960802566824

  11. 11. Elamin, M., Bede, P., Montuschi, A., et al. (2015) Predicting Prognosis in Amyotrophic Lateral Sclerosis: A Simple Algorithm. Journal of Neurology, 262, 1447-1454. ttps://doi.org/10.1007/s00415-015-7731-6

  12. 12. Daghlas, I., Lever, T.E. and Leary, E. (2018) A Retrospective Investiga-tion of the Relationship between Baseline Covariates and Rate of ALSFRS-R Decline in ALS Clinical Trials. Amyo-trophic Lateral Sclerosis and Frontotemporal Degeneration, 19, 206-211. https://doi.org/10.1080/21678421.2017.1418001

  13. 13. Lee, J., Madhavan, A., Krajewski, E., et al. (2021) Assess-ment of Dysarthria and Dysphagia in Patients with Amyotrophic Lateral Sclerosis: Review of the Current Evidence. Muscle & Nerve, 64, 520-531. https://doi.org/10.1002/mus.27361

  14. 14. Rooney, J., Byrne, S., Heverin, M., et al. (2015) A Multidisciplinary Clinic Approach Improves Survival in ALS: A Comparative Study of ALS in Ireland and Northern Ireland. Journal of Neurol-ogy, Neurosurgery & Psychiatry, 86, 496-501. https://doi.org/10.1136/jnnp-2014-309601

  15. 15. Jani, M.P. and Gore, G.B. (2016) Swallowing Characteristics in Amyotrophic Lateral Sclerosis. NeuroRehabilitation, 39, 273-276. https://doi.org/10.3233/NRE-161357

  16. 16. Ngo, S.T., Wang, H., Henderson, R.D., et al. (2021) Ghrelin as a Treatment for Amyotrophic Lateral Sclerosis. Journal of Neuroendocrinology, 33, e12938. https://doi.org/10.1111/jne.12938

  17. 17. Tomik, B. and Guiloff, R.J. (2010) Dysarthria in Amyotrophic Lateral Scle-rosis: A Review. Amyotrophic Lateral Sclerosis, 11, 4-15. https://doi.org/10.3109/17482960802379004

  18. 18. Makkonen, T., Korpijaakko-Huuhka, A., Ruottinen, H., et al. (2016) Oral Motor Functions, Speech and Communication before a Definitive Diagnosis of Amyotrophic Lateral Sclero-sis. Journal of Communication Disorders, 61, 97-105. https://doi.org/10.1016/j.jcomdis.2016.04.002

  19. 19. Waito, A.A., Valenzano, T.J., Peladeau-Pigeon, M., et al. (2017) Trends in Research Literature Describing Dysphagia in Motor Neuron Diseases (MND): A Scoping Review. Dysphagia, 32, 734-747. https://doi.org/10.1007/s00455-017-9819-x

  20. 20. Murono, S., Hamaguchi, T., Yoshida, H., et al. (2015) Evaluation of Dysphagia at the Initial Diagnosis of Amyotrophic Lateral Sclerosis. Auris Nasus Larynx, 42, 213-217. https://doi.org/10.1016/j.anl.2014.10.012

  21. 21. Plowman, E.K., Tabor, L.C., Robison, R., et al. (2016) Discriminant Ability of the Eating Assessment Tool-10 to Detect Aspiration in Individuals with Amyotrophic Lateral Sclerosis. Neu-rogastroenterology & Motility, 28, 85-90. https://doi.org/10.1111/nmo.12700

  22. 22. Plowman, E.K., Watts, S.A., Robison, R., et al. (2016) Voluntary Cough Airflow Differentiates Safe versus Unsafe Swallowing in Amyotrophic Lateral Sclerosis. Dysphagia, 31, 383-390. https://doi.org/10.1007/s00455-015-9687-1

  23. 23. Tremolizzo, L., Susani, E., Lunetta, C., et al. (2014) Primitive Re-flexes in Amyotrophic Lateral Sclerosis: Prevalence and Correlates. Journal of Neurology, 261, 1196-1202. https://doi.org/10.1007/s00415-014-7342-7

  24. 24. Couratier, P., Lautrette, G., Luna, J.A., et al. (2021) Phenotypic Variability in Amyotrophic Lateral Sclerosis. Revue Neurologique, 177, 536-543. https://doi.org/10.1016/j.neurol.2021.03.001

  25. 25. Marin-Medina, D.S., Gaspar-Toro, J.M. and Munoz-Rosero, A.M. (2023) Clinical Examination of the Cranial Nerves. The New England Journal of Medicine, 389, 1057-1058. https://doi.org/10.1056/NEJMc2309338

  26. 26. Reese, V., Das, J.M. and Al Khalili, Y. (2023) Cranial Nerve Testing. StatPearls, Treasure Island.

  27. 27. Sonoo, M., Kuwabara, S., Shimizu, T., et al. (2009) Utility of Trapezius EMG for Di-agnosis of Amyotrophic Lateral Sclerosis. Muscle & Nerve, 39, 63-70. https://doi.org/10.1002/mus.21196

  28. 28. Tankisi, H., Otto, M., Pugdahl, K., et al. (2013) Spontaneous Electromyo-graphic Activity of the Tongue in Amyotrophic Lateral Sclerosis. Muscle Nerve, 48, 296-298. https://doi.org/10.1002/mus.23781

  29. 29. Risi, B., Cotti Piccinelli, S., Gazzina, S., et al. (2023) Prognostic Useful-ness of Motor Unit Number Index (MUNIX) in Patients Newly Diagnosed with Amyotrophic Lateral Sclerosis. Journal of Clinical Medicine, 12, Article 5036. https://doi.org/10.3390/jcm12155036

  30. 30. Bede, P. and Hardiman, O. (2014) Lessons of ALS Imaging: Pitfalls and Future Directions—A Critical Review. NeuroImage: Clinical, 4, 436-443. https://doi.org/10.1016/j.nicl.2014.02.011

  31. 31. Rajagopalan, V., Chaitanya, K.G. and Pioro, E.P. (2023) Quantita-tive Brain MRI Metrics Distinguish Four Different ALS Phenotypes: A Machine Learning Based Study. Diagnostics, 13, Article 1521. https://doi.org/10.3390/diagnostics13091521

  32. 32. van der Graaff, M.M., Sage, C.A., Caan, M.W.A., et al. (2011) Upper and Extra-Motoneuron Involvement in Early Motoneuron Disease: A Diffusion Tensor Imaging Study. Brain, 134, 1211-1228. https://doi.org/10.1093/brain/awr016

  33. 33. Plowman, E.K., Tabor, L.C., Wyme, J. and Pattee, G. (2017) The Evaluation of Bulbar Dysfunction in Amyotrophic Lateral Sclerosis: Survey of Clinical Practice Patterns in the Unit-ed States. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 18, 351-357. https://doi.org/10.1080/21678421.2017.1313868

  34. 34. Rooney, J., Burke, T., Vajda, A., et al. (2017) What Does the ALSFRS-R Really Measure? A Longitudinal and Survival Analysis of Functional Dimension Subscores in Amyo-trophic Lateral Sclerosis. Journal of Neurology, Neurosurgery & Psychiatry, 88, 381-385. https://doi.org/10.1136/jnnp-2016-314661

  35. 35. Smith, R.A., Macklin, E.A., Myers, K.J., et al. (2018) Assessment of Bulbar Function in Amyotrophic Lateral Sclerosis: Validation of a Self-Report Scale (Center for Neurologic Study Bulbar Function Scale). European Journal of Neurology, 25, 907-e66. https://doi.org/10.1111/ene.13638

  36. 36. Smith, R., Pioro, E., Myers, K., et al. (2017) Enhanced Bulbar Function in Amyotrophic Lateral Sclerosis: The Nuedexta Treatment Trial. Neurotherapeutics, 14, 762-772. https://doi.org/10.1007/s13311-016-0508-5

  37. 37. Appel, V., Stewart, S.S., Smith, G. and Appel, S.H. (1987) A Rating Scale for Amyotrophic Lateral Sclerosis: Description and Preliminary Experience. Annals of Neurology, 22, 328-333. https://doi.org/10.1002/ana.410220308

  38. 38. Hillel, A.D., Miller, R.M., Yorkston, K., et al. (1989) Amy-otrophic Lateral Sclerosis Severity Scale. Neuroepidemiology, 8, 142-150. https://doi.org/10.1159/000110176

  39. 39. Kidney, D., Alexander, M., Corr, B., et al. (2009) Oropharyngeal Dyspha-gia in Amyotrophic Lateral Sclerosis: Neurological and Dysphagia Specific Rating Scales. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 5, 150-153. https://doi.org/10.1080/14660820410019675

  40. 40. Donohue, C., Tabor Gray, L., Anderson, A., et al. (2022) Discriminant Ability of the Eating Assessment Tool-10 to Detect Swallowing Safety and Efficiency Impairments. The Laryngoscope, 132, 2319-2326. https://doi.org/10.1002/lary.30043

  41. 41. Abdelnour-Mallet, M., Tezenas Du Montcel, S., Cazzolli, P.A., et al. (2012) Validation of Robust Tools to Measure Sialorrhea in Amyotrophic Lateral Sclerosis: A Study in a Large French Cohort. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 14, 302-307. https://doi.org/10.3109/21678421.2012.735238

  42. 42. Bede, P., Bokde, A., Elamin, M., et al. (2013) Grey Matter Correlates of Clinical Variables in Amyotrophic Lateral Sclerosis (ALS): A Neuroimaging Study of ALS Motor Pheno-type Heterogeneity and Cortical Focality. Journal of Neurology, Neurosurgery & Psychiatry, 84, 766-773. https://doi.org/10.1136/jnnp-2012-302674

  43. 43. Beukelman, D., Fager, S. and Nordness, A. (2011) Communication Support for People with ALS. Neurology Research International, 2011, Article ID: 714693. https://doi.org/10.1155/2011/714693

  44. 44. Rong, P., Yunusova, Y., Wang, J., et al. (2015) Predicting Early Bulbar Decline in Amyotrophic Lateral Sclerosis: A Speech Subsystem Approach. Behavioural Neurology, 2015, Article ID: 183027. https://doi.org/10.1155/2015/183027

  45. 45. Allison, K.M., Yunusova, Y., Campbell, T.F., et al. (2017) The Diagnostic Utility of Patient-Report and Speech-Lan- guage Pathologists’ Ratings for Detecting the Early Onset of Bulbar Symptoms Due to ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 18, 358-366. https://doi.org/10.1080/21678421.2017.1303515

  46. 46. Rong, P., Yunusova, Y., Richburg, B. and Green, J.R. (2018) Automatic Extraction of Abnormal Lip Movement Features from the Alternating Motion Rate Task in Amyotrophic Lat-eral Sclerosis. International Journal of Speech-Lan- guage Pathology, 20, 610-623. https://doi.org/10.1080/17549507.2018.1485739

期刊菜单