Advances in Clinical Medicine
Vol. 13  No. 06 ( 2023 ), Article ID: 68258 , 8 pages
10.12677/ACM.2023.1361482

孤儿核受体Nur77在凋亡和炎症中的研究进展

孟娜,王鹏程*

青岛大学医学部,山东 青岛

收稿日期:2023年5月28日;录用日期:2023年6月23日;发布日期:2023年6月30日

摘要

孤儿核受体Nur77作为核受体的一类,参与机体生理和病理状态下的多个过程。Nur77可以参与细胞分化、凋亡、代谢和炎症等诸多反应,在动脉粥样硬化、骨质疏松、心肌梗死、哮喘、急性肺损伤等诸多疾病的发生发展中都起到了重要的作用。但是对于Nur77的研究较少,本篇文章就Nur77分子参与的凋亡以及炎症反应过程以及相关机制进行综述,有助于Nur77在疾病中的进一步研究。

关键词

Nur77,凋亡,炎症,NLRP3,综述

Research Progress of Orphan Nuclear Receptor Nur77 in Apoptosis and Inflammation

Na Meng, Pengcheng Wang*

Medical Department, Qingdao University, Qingdao Shandong

Received: May 28th, 2023; accepted: Jun. 23rd, 2023; published: Jun. 30th, 2023

ABSTRACT

Orphan nuclear receptor Nur77, as a class of nuclear receptors, is involved in several processes in the physiological and pathological state of the body. Nur77 can participate in many reactions, such as cell differentiation, apoptosis, metabolism and inflammation. And it plays an important role in the occurrence and development of many diseases, such as atherosclerosis, osteoporosis, myocardial infarction, asthma, acute lung injury and so on. However, there are few studies on Nur77, and this article reviews the apoptosis and inflammatory response processes and related mechanisms involved in Nur77 molecules, which is helpful for further research on Nur77 in diseases.

Keywords:Nur77, Apoptosis, Inflammation, NLRP3, Review

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

在个体的生长发育过程中,细胞信号转导发挥着不可代替的重要作用。无论是在生理状态还是在疾病状态下,细胞信号转导过程均涉及多种分子及其受体,其受体包括细胞膜受体、胞浆受体和胞核受体。核受体在许多生物过程中起着重要作用,包括细胞增殖、分化、凋亡、代谢和发育等过程 [1] [2] 。Nur77作为核受体中的一种,当配体与其结合时,会调节转录基因以及转录因子的活性,进而在各种生物过程之中发挥作用 [3] 。已经有诸多文献证明Nur77在细胞凋亡、炎症反应、线粒体分裂、细胞增殖分化等多方面均具有较为重要的作用,可以感知微环境的变化,并通过基因组和非基因组作用控制生理和病理过程,包括细胞增殖、血管生成和细胞死亡等 [4] 。本文章就Nur77通过线粒体应激、内质网应激等过程参与凋亡和通过各种炎症细胞以及NF-κB通路调节炎症反应进行综述,为接下来Nur77在疾病中的研究提供新思路和新见解。

2. Nur77分子

孤儿核受体是一类尚未发现天然配体的核受体,是体现核受体结构特征的基因产物,这些核受体在没有任何假设配体关联知识的情况下被鉴定,即使在后续鉴定出特定配体后仍属于这一类别 [1] 。其中核受体的NR4A1-NR4A3 (Nur77, Nurr1和Nor-1)亚家族是由多种刺激诱导的一组早期基因表达产物 [4] 。绝大多数孤儿核受体都具有经典核受体的所有功能域,Nur77 (NR4A1)是属于核受体NR4A亚家族的转录因子,与其他核受体一样,其氨基端结构域包含激活功能域1 (AF-1)、DNA结合结构域(DBD),羧基端结构域包括配体结合结构域(LBD)和配体依赖性转录激活结构域(AF-2) [5] 。NR4A受体可直接结合含有NBRE应答元件(AAAGGTCA)的目标基因的启动子区域,被认为是慢性炎症、免疫细胞反应改变和癌症发展之间的重要分子联系 [4] 。

3. Nur77与凋亡

核受体Nur77可以通过调节平滑肌细胞的线粒体裂变和线粒体自噬来维持线粒体稳态,从而预防氧化应激 [6] 。在这个过程中,Nur77可以易位到线粒体,从而促进Parkin/PINK1介导的线粒体自噬,增加线粒体吞噬受损部位的能力,也可以与FIS1、DRP1启动子结合(该启动子区域含有NBRE结合位点)来抑制FIS1、DRP1的转录表达,最终抑制线粒体分裂和氧化应激 [6] 。内质网应激是指在各种刺激下,细胞内质网的蛋白质合成修饰功能障碍,引起未折叠的蛋白质或者是错误折叠的蛋白质不能按照正常途径由内质网转出,从而在内质网中堆积,最终引起的内质网功能紊乱,如果内质网微器和细胞内环境不能调整至正常状态修复紊乱,则将会导致细胞死亡。在一项关于针对Nur77的抗癌药物的研究中发现,Nur77参与内质网应激过程,并且导致细胞凋亡 [7] 。Nur77在细胞核中的作用主要是促进细胞生长和增殖,而细胞质中Nur77的作用主要是促凋亡,抗癌作用。Nur77参与小细胞肺癌的发生发展,对其两者关系的研究中发现小细胞肺癌中TIAM1和RAC的表达增高,而TIAM1-RAC1信号通路可以抑制Nur77从细胞核向细胞质的转位,细胞质中Nur77减少,降低了胞质Nur77促凋亡和抗癌的功能,引起小细胞肺癌细胞存活 [8] 。Bcl-2基因(即B细胞淋巴瘤/白血病-2基因)是一种癌基因,它具有明显抑制细胞凋亡的作用,而Beclin-1则会促进细胞自噬,Bcl-2和Beclin-1在细胞内相互结合的相对数量在一定程度上决定了细胞的自噬水平,当Beclin-1与Bcl-2结合增加时,会抑制细胞自噬,相反,如果两者结合减少,则会激活细胞自噬。此外Nur77在香烟烟雾诱导的情况下与Bcl-2相互作用,促进Bcl2与Beclin-1的解离,从而发挥促进自噬的功能,引起自噬失调,导致气道上皮损伤,例如纤毛缩短和粘液过度产生 [9] 。

4. Nur77与炎症

4.1. Nur77与炎症细胞

iNKT细胞是自我反应性淋巴细胞,活化的iNKT细胞分泌多种促炎细胞因子和趋化因子,通过这些细胞因子和趋化因子引导对微生物抗原、自身抗原和同种异体抗原的先天性和适应性免疫应答,以促进健康或疾病。Nur77在T细胞代谢中发挥很复杂的作用,可以限制自身免疫 [10] 。在关于Nur77和iNKT细胞的研究中发现iNKT细胞中Nur77高表达,且Nur77也会影响外周T细胞的分化发育 [11] ,例如可导致外周T细胞衰竭和诱导常规Treg细胞凋亡,但是也会与Foxp3基因促进子结合诱导Foxp3表达而导致产生Treg细胞,这种调节和影响极其复杂。若胸腺中Nur77高表达,那么会损害iNKT细胞存活,导致iNKT细胞减少,进而影响免疫反应和应答。而且在此项研究中还发现Nur77家族中nr4a1,nr4a2,nr4a3均缺乏的TKO小鼠会死于自身免疫性疾病,这提示我们Nur77在机体的免疫反应和应答中发挥重要作用 [12] 。另外在关节炎的研究中发现,Nur77敲除小鼠的关节炎程度更重,主要是因为NR4A1依赖性Ly6Clow单核细胞可通过Treg细胞减轻小鼠关节炎的严重性。在本实验中,使用了Nur77激动剂csnb,发现CsnB可以增加Treg细胞但是不会增加单核细胞,进一步的研究发现,CsnB增加Treg细胞需要Ly6Clow单核细胞的存在 [13] 。

B细胞属于淋巴细胞中的一种,参与后天免疫中的体液免疫,主要作用为提呈抗原和分泌抗体,BCR为B细胞表面的抗原受体,当其受到刺激时可将活化信号传导至细胞核中进而调控B细胞的基因转录,如使Nur77表达增加。随着年龄的增长,机体会产生不同的自我反应性B细胞,而Nur77有助于去除高度自我反应的B细胞,在此过程中Nur77上调以响应慢性抗原的刺激,介导抗原诱导的细胞死亡,通过限制自我反应性细胞的存活来维持耐受性 [14] 。

4.2. Nur77与炎症因子

在一项巨噬细胞和凋亡细胞作用的研究中发现,Nr4a1的缺失干扰了巨噬细胞对凋亡细胞的抗炎作用,并恢复了NF-kB信号和IL-12的表达 [15] 。对老龄化小鼠进行研究发现,Nur77缺乏时TNF-α和IL-6易增高,血清IgG和IgE也增高,而且Nur77参与调节Treg细胞,也调节巨噬细胞向M1极化,产生TNF-α、IL-6、IL-12 [16] 。除了Treg细胞,树突状细胞受刺激后Nur77上调,而在Nur77缺乏的树突状细胞中IL-6/12和TNF-a上调更加明显 [17] 。在脑缺血诱导的脑损伤研究中同样也发现了NR4A1的缺失会缓解小胶质细胞的M1极化和中性粒细胞招募,抑制NR4A1可以通过NF-κB和P65的相互作用来抑制神经炎症 [18] 。Nur77是幼稚巨噬细胞正常线粒体活性所必需的,Nur77缺乏的巨噬细胞在炎症过程中无法下调IDH表达并积累更高水平的琥珀酸,此类细胞表现出更强的TCA循环活性、SDH活性、ROS产生增多,导致促炎效应增加 [19] 。

小鼠在LPS的诱导下可产生脓毒症,一项研究显示Nur77缺乏的小鼠脓毒症更加的严重,IL-6、IL-12、TNF-α等炎症因子浸润更加明显,Nur77参与的此过程主要涉及TRAF6和NF-κB分子 [20] [21] 。TAF6是肿瘤坏死因子受体相关因子6,可以和多种TNFR和IL-1R/TLR家族成员结合,参与调节NF-κB信号转导通路的激活。此项研究中显示Nur77与TRAF6相互作用,抑制TRAF6的自动泛素化降解过程,从而抑制了NF-κB的活化而发挥抗炎作用 [21] 。NF-κB信号通路的激活十分复杂,其过程主要涉及IKK复合物活化导致NF-κB抑制剂蛋白IκBα的磷酸化,导致其蛋白酶体降解,并使NF-κB二聚体释放并易位至细胞核驱动靶基因的转录。在关于帕金森和骨质疏松的研究中发现Nur77可以抑制IKB-α磷酸化和抑制IKK-β来减少NF-κB的活化,进而降促炎因子如TNF-α、IL-6、MCP-1的表达 [21] [22] [23] [24] 。在骨质疏松的研究中发现,Nur77基因敲除小鼠股骨中NF-κB、IL-6、TNF-α和破骨因子的表达水平显著升高,主要是通过诱导IκB-α和抑制IKK-β来抑制破骨细胞分化,在RAW264.7细胞中,Nur77的过表达减轻了siIκB-α诱导的炎症 [23] 。在动脉粥样硬化中,Nur77缺乏还会导致IL-1β、TNF-α、CCL2和IL-6的mRNA表达增加,也引起MMP9的表达增加 [25] 。诸多研究证明,Nur77可以显著降低促炎因子尤其是IL-1β的表达,CsnB作为Nur77的激动剂,可以提高Nur77的各种生物学效应,如CsnB可减少LPS引起的GM-MDMs中的NF-κB核易位,减少LPS诱导的IκBα降解从而抑制NF-κB信号通路的活化 [26] 。心肌梗死后,冠状动脉内皮细胞中Nurr77通过上调IKBa来抑制P65核转位从而抑制NF-κB信号通路的激活,进而抑制IL-1β和转化因子介导的内皮间质转化,发现人类冠状动脉内皮细胞中过表达的Nur77显著抑制了IL-1β和转化生长因子β2诱导的内皮间质转化,表现为减少了向成纤维细胞样表型的转变,并保留了血管生成潜力 [27] ,Nur77也会通过招募单核细胞到心肌梗死部位来限制炎症 [28] 。在臭氧诱导的人/猴上皮细胞损伤中发挥促进损伤的作用,但是在一项过敏性气道疾病小鼠模型(OVA诱导)中Nur77可对抗肺上皮细胞的NF-KB信号通路而发挥抗炎作用 [29] 。Nur77在哮喘研究中的作用存在差异,用敲除的小鼠在OVA激发之后,炎症浸润更明显、平滑肌增厚更明显,主要是嗜酸性粒细胞和淋巴细胞,且Th2细胞因子增加,如IL-5/13/6,TNF-a,IFN-g,MCP-1,NF-κB信号激活 [30] [31] 。

急性肺损伤中,类黄酮物质B7可以调节Nur77在线粒体上的共定位,并通过以Nur77依赖性方式阻断NF-κB激活来抑制LPS诱导的炎症,由此可知Nur77在LPS诱导的急性肺损伤小鼠模型中可降低IL-1、IL-6和p-IKKa/β的水平,从而表现出体内抗炎活性,这表明靶向Nur77的治疗思路对于进一步治疗ALI等炎性疾病将有重要作用 [32] ,从线粒体融合和裂解的角度来看Nur77,发现其存在促进LPS诱导肺损伤的作用,主要是通过抑制opa1介导的线粒体融合和激活pgam5相关的坏死来产生的 [33] 。但是,也有其他的研究中显示,Nur77抑制NF-κB和内皮素-1发挥抗损伤作用,且此作用可被csnB促进 [34] [35] 。在研究Nur77对肺血管内皮细胞的作用时发现,Nur77缺乏的小鼠肺血管内皮细胞在LPS的刺激下表现出更明显的炎症 [36] 。Nur77也参与肺动脉高压的发生发展,抑制血管重塑 [37] 。在一项关于慢性阻塞性肺疾病患者的临床报告中发现,COPD急性加重期组患者和稳定期组患者血清Nur77水平均与FEV1、FEV1%pred、FEV1/FVC、PEF呈正相关,并与CRP、IL-6、mMRC评分、CAT评分呈负相关,这表明在临床工作中已经有相关证据显示肺部的慢性炎症和Nur77密切相关 [38] 。除了肺部疾病以外,消化系统疾病的研究中显示GPA肽在结肠炎中作为Nur77调节剂上调Nur77产生了保护作用,涉及到的机制也是诱导IKBα表达来阻断NF-κB的激活,减轻炎症反应,另一方面也促进Nur77转入线粒体诱导自噬而发挥了抗炎和抗氧化作用 [39] [40] 。Nur77缺失的巨噬细胞NF-κB活性增加,这会使实验小鼠的结肠炎加重,使用CsnB会缓解炎症,但是Nur77缺乏并不影响结肠中巨噬细胞的数量,推测炎症增加可能与增加T细胞和炎性单核细胞的招募有关 [41] [42] 。

4.3. Nur77与NLRP3炎性小体

NLRP3炎症小体是一种介导强效炎症介质激活的胞质信号复合物,与许多常见疾病的发病机制相关,是NLR家族的三重蛋白,包含一个氨基末端PYRIN (PYD)结构域、一个核苷酸结合NACHT结构域和一个羧基末端富含亮氨酸重复序列(LRR)结构域。NLRP3炎症小体的激活通常需要两个独立的信号,即启动和激活,关键的启动事件是通过NF-κB信号传导对NLRP3进行转录上调 [43] 。有研究显示PKR通过调节牙龈卟啉单胞菌感染的成骨细胞NF-κB通路诱导NLRP3的表达 [44] 。而在一项巨噬细胞的研究中同样也发现,咖啡因通过抑制LPS诱导的巨噬细胞中MAPK/NF-κB信号转导抑制NLRP3炎症小体激活 [45] 。在溃疡性结肠炎、糖尿病骨代谢、先兆子痫、神经系统的研究中发现,NF-κB也参与NLRP3炎性小体的激活 [46] [47] [48] [49] 。Nur77可通过抑制肺血管内皮细胞中的半胱天冬酶-1表达来减弱炎症小体活化,但是在此研究中NLRP3的表达和衔接蛋白ASC的表达在Nur77缺陷的肺EC中没有显着改变,在此实验中Nur77缺乏加剧LPS诱导的IL-1β分泌和ALI [50] [51] 。在动脉粥样硬化中Nur77可以与NLRP3的启动子结合抑制NLRP3启动子转录和NLRP3炎症小体活化,并且在ox-LDL刺激后,这种结合可能会增强 [43] 。NR4A1通过转录抑制NLRP3和IL-1β并与反式高尔基体中的NLRP3共定位来抑制焦亡,以减轻致病菌诱导的结肠炎 [52] 。

5. 总结与展望

在疾病的发生发展中,氧化应激和凋亡发挥重要的作用,凋亡失调可以导致肿瘤、自身免疫性疾病、心肌缺血、缺血再灌注损伤等疾病。Nur77可以通过线粒体应激、内质网应激、核转位以及调节Bcl-2基因等多个机制参与凋亡过程,这提示Nur77或可能成为肿瘤等其他疾病的治疗靶点。此外,炎症反应在疾病的发生发展中也具有相当重要的作用,如脓毒症、帕金森、急性肺损伤、哮喘、结肠炎等疾病。Nur77可以通过NF-κB信号通路调节IL-6、IL-12、TNF-α等炎症因子和NLRP3炎性小体的表达,也可以调节炎症细胞的分化和迁移,这提示我们Nur77或可能是炎症性疾病的治疗靶点。综上所述,Nur77分子在凋亡、炎症以及其他病理状态下发挥了较为重要的作用,可指导我们对疾病诊治的深入研究。

文章引用

孟 娜,王鹏程. 孤儿核受体Nur77在凋亡和炎症中的研究进展
Research Progress of Orphan Nuclear Receptor Nur77 in Apoptosis and Inflammation[J]. 临床医学进展, 2023, 13(06): 10609-10616. https://doi.org/10.12677/ACM.2023.1361482

参考文献

  1. 1. Zhao, W., Ma, L., Cai, C. and Gong, X. (2019) Caffeine Inhibits NLRP3 Inflammasome Activation by Suppressing MAPK/NF-κB and A2aR Signaling in LPS-Induced THP-1 Macro-phages. International Journal of Biological Sciences, 15, 1571-1581. https://doi.org/10.7150/ijbs.34211

  2. 2. Wei, Y.Y., Fan, Y.M., Ga, Y., et al. (2021) Shaoyao Decoction Attenuates DSS-Induced Ulcerative Colitis, Macrophage and NLRP3 Inflammasome Activation through the MKP1/NF-κB Pathway. Phytomedicine, 92, Article ID: 153743. https://doi.org/10.1016/j.phymed.2021.153743

  3. 3. An, Y., Zhang, H., Wang, C., et al. (2019) Activation of ROS/MAPKs/NF-κB/NLRP3 and Inhibition of Efferocytosis in Osteoclast-Mediated Diabetic Osteoporosis. FASEB Journal, 33, 12515-12527. https://doi.org/10.1096/fj.201802805RR

  4. 4. Zhang, Y., Liu, W., Zhong, Y., et al. (2021) Metformin Corrects Glucose Metabolism Reprogramming and NLRP3 Inflammasome-Induced Pyroptosis via Inhibiting the TLR4/NF-κB/PFKFB3 Signaling in Trophoblasts: Implication for a Potential Therapy of Preeclampsia. Oxidative Medi-cine and Cellular Longevity, 2021, Article ID: 1806344. https://doi.org/10.1155/2021/1806344

  5. 5. Liu, Z., Yao, X., Jiang, W., et al. (2020) Advanced Oxidation Protein Products Induce Microglia-Mediated Neuroinflammation via MAPKs-NF-κB Signaling Pathway and Pyroptosis after Secondary Spinal Cord Injury. Journal of Neuroinflammation, 17, Article No. 90. https://doi.org/10.1186/s12974-020-01751-2

  6. 6. Ding, R., Sun, X., Yi, B., et al. (2021) Nur77 Attenuates In-flammasome Activation by Inhibiting Caspase-1 Expression in Pulmonary Vascular Endothelial Cells. American Journal of Respiratory Cell and Molecular Biology, 65, 288-299. https://doi.org/10.1165/rcmb.2020-0524OC

  7. 7. Sommer, N., Pak, O. and Hecker, M. (2021) New Avenues for Antiinflammatory Signaling of Nur77 in Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biol-ogy, 65, 236-237. https://doi.org/10.1165/rcmb.2021-0210ED

  8. 8. Giguère, V. (1999) Orphan Nuclear Receptors: From Gene to Function. Endocrine Reviews, 20, 689-725. https://doi.org/10.1210/er.20.5.689

  9. 9. Winoto, A. and Littman, D.R. (2002) Nuclear Hormone Receptors in T Lymphocytes. Cell, 109, S57-S66. https://doi.org/10.1016/S0092-8674(02)00710-9

  10. 10. 张文歆, 等. 孤核受体Nur77在肿瘤治疗中的研究进展[J]. 上海医药, 2021, 42(23): 3-7.

  11. 11. Crean, D. and Murphy, E.P. (2021) Targeting NR4A Nuclear Receptors to Control Stromal Cell Inflammation, Metabolism, Angiogenesis, and Tumorigenesis. Frontiers in Cell and Developmental Biology, 9, Article ID: 589770. https://doi.org/10.3389/fcell.2021.589770

  12. 12. Zhan, Y., Du, X., Chen, H., et al. (2008) Cytosporone B Is an Ag-onist for Nuclear Orphan Receptor Nur77. Nature Chemical Biology, 4, 548-556. https://doi.org/10.1038/nchembio.106

  13. 13. Geng, N., Chen, T., Chen, L., et al. (2022) Nuclear Receptor Nur77 Protects against Oxidative Stress by Maintaining Mitochondrial Homeostasis via Regulating Mitochondrial Fission and Mitophagy in Smooth Muscle Cell. The Journal of Molecular and Cellular Cardiology, 170, 22-33. https://doi.org/10.1016/j.yjmcc.2022.05.007

  14. 14. Qin, J., Chen, X., Liu, W., et al. (2022) Discovery of 5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-indole-2-carboxamide Derivatives as Novel Anti-Cancer Agents Targeting Nur77. European Journal of Medicinal Chemistry, 244, Article ID: 114849. https://doi.org/10.1016/j.ejmech.2022.114849

  15. 15. Payapilly, A., Guilbert, R., Descamps, T., et al. (2021) TIAM1-RAC1 Promote Small-Cell Lung Cancer Cell Survival through Antagonizing Nur77-Induced BCL2 Conforma-tional Change. Cell Reports, 37, Article ID: 109979. https://doi.org/10.1016/j.celrep.2021.109979

  16. 16. Qin, H., Gao, F., Wang, Y., et al. (2019) Nur77 Promotes Ciga-rette Smoke-Induced Autophagic Cell Death by Increasing the Dissociation of Bcl2 from Beclin-1. International Journal of Molecular Medicine, 44, 25-36. https://doi.org/10.3892/ijmm.2019.4184

  17. 17. Liebmann, M., Hucke, S., Koch, K., et al. (2018) Nur77 Serves as a Molecular Brake of the Metabolic Switch during T Cell Activation to Restrict Autoimmunity. Proceedings of the Na-tional Academy of Sciences of the United States of America, 115, E8017-E8026. https://doi.org/10.1073/pnas.1721049115

  18. 18. Sekiya, T., Kasahara, H., Takemura, R., et al. (2022) Essential Roles of the Transcription Factor NR4A1 in Regulatory T Cell Differentiation under the Influence of Immunosuppressants. The Journal of Immunology, 208, 2122-2130. https://doi.org/10.4049/jimmunol.2100808

  19. 19. Kumar, A., Hill, T., Gordy, L., et al. (2020) Nur77 Controls Tol-erance Induction, Terminal Differentiation, and Effector Functions in Semi-Invariant Natural Killer T Cells. Proceedings of the National Academy of Sciences of the United States of America, 117, 17156-17165. https://doi.org/10.1073/pnas.2001665117

  20. 20. Brunet, A., LeBel, M., Egarnes, B., et al. (2016) NR4A1-Dependent Ly6C(low) Monocytes Contribute to Reducing Joint Inflammation in Arthritic Mice through Treg Cells. European Jour-nal of Immunology, 46, 2789-2800. https://doi.org/10.1002/eji.201646406

  21. 21. Tan, C., Mueller, J., Noviski, M., et al. (2019) Nur77 Links Chronic Antigen Stimulation to B Cell Tolerance by Restricting the Survival of Self-Reactive B Cells in the Periphery. The Jour-nal of Immunology, 202, 2907-2923. https://doi.org/10.4049/jimmunol.1801565

  22. 22. Ipseiz, N., Uderhardt, S., Scholtysek, C., et al. (2014) The Nuclear Receptor Nr4a1 Mediates Anti-Inflammatory Effects of Apoptotic Cells. The Journal of Immunology, 192, 4852-4858. https://doi.org/10.4049/jimmunol.1303377

  23. 23. Li, X., Liu, X., Xu, Q.M., et al. (2015) Nur77 Deficiency Leads to Systemic Inflammation in Elderly Mice. Journal of Inflammation (London), 12, Article No. 40. https://doi.org/10.1186/s12950-015-0085-0

  24. 24. Tel-Karthaus., Kers-Rebel, E., Looman, M., et al. (2018) Nuclear Receptor Nur77 Deficiency Alters Dendritic Cell Function. Frontiers in Immunology, 9, Article No. 1797. https://doi.org/10.3389/fimmu.2018.01797

  25. 25. Zhang, Y.-J., Song, J.-R. and Zhao, M.-J. (2019) NR4A1 Regu-lates Cerebral Ischemia-Induced Brain Injury by Regulating Neuroinflammation through Interaction with NF-κB/p65. Bi-ochemical and Biophysical Research Communications, 518, 59-65. https://doi.org/10.1016/j.bbrc.2019.08.008

  26. 26. Koenis, D.S., Medzikovic, L., Loenen, P.S., et al. (2018) Nuclear Receptor Nur77 Limits the Macrophage Inflammatory Response through Transcriptional Reprogramming of Mitochon-drial Metabolism. Cell Reports, 24, 2127-2140.e2127. https://doi.org/10.1016/j.celrep.2018.07.065

  27. 27. Li, L., Liu, Y., Chen, H., et al. (2015) Impeding the Interaction between Nur77 and p38 Reduces LPS-Induced Inflammation. Nature Chemical Biology, 11, 339-346. https://doi.org/10.1038/nchembio.1788

  28. 28. Li, X.M., Zhang, S., He, X.S., et al. (2016) Nur77-Mediated TRAF6 Signalling Protects against LPS-Induced Sepsis in Mice. Journal of Inflammation (London), 13, Article No. 4. https://doi.org/10.1186/s12950-016-0112-9

  29. 29. Yan, J., et al. (2020) Nur77 Attenuates Inflammatory Responses and Oxidative Stress by Inhibiting Phosphorylated IκB-α in Parkinson’s Disease Cell Model. Aging (Albany NY), 12, 8107-8119. https://doi.org/10.18632/aging.103128

  30. 30. Tian, H., Huang, J., Wu, J., et al. (2022) Nur77 Prevents Osteoporosis by Inhibiting the NF-κB Signalling Pathway and Osteoclast Differentiation. Journal of Cellular and Mo-lecular Medicine, 26, 2163-2176. https://doi.org/10.1111/jcmm.17238

  31. 31. Popichak, K.A., Hammond, S.L., Moreno, J.A., et al. (2018) Compensa-tory Expression of Nur77 and Nurr1 Regulates NF-κB-Dependent Inflammatory Signaling in Astrocytes. Molecular Pharmacology, 94, 1174-1186. https://doi.org/10.1124/mol.118.112631

  32. 32. Zhang, H., Geng, N., Sun, L., et al. (2021) Nuclear Receptor Nur77 Protects against Abdominal Aortic Aneurysm by Ameliorating Inflammation Via Suppressing LOX-1. Journal of the American Heart Association, 10, e021707. https://doi.org/10.1161/JAHA.121.021707

  33. 33. Patino-Martinez, E., Solís-Barbosa, M.A., Santana, E., et al. (2022) The Nurr7 Agonist Cytosporone B Differentially Regulates Inflammatory Responses in Human Polarized Macrophages. Immunobiology, 227, Article ID: 152299. https://doi.org/10.1016/j.imbio.2022.152299

  34. 34. Chen, J., Jia, J., Ma, L., et al. (2021) Nur77 Deficiency Exacer-bates Cardiac Fibrosis after Myocardial Infarction by Promoting Endothelial-to-Mesenchymal Transition. Journal of Cel-lular Physiology, 236, 495-506. https://doi.org/10.1002/jcp.29877

  35. 35. Hilgendorf, I., Gerhardt, L.M.S., Tan, T.C., et al. (2014) Ly-6Chigh Mon-ocytes Depend on Nr4a1 to Balance both Inflammatory and Reparative Phases in the Infarcted Myocardium. Circulation Research, 114, 1611-1622. https://doi.org/10.1161/CIRCRESAHA.114.303204

  36. 36. Banno, A., Lakshmi, S.P., Reddy, A.T., Kim, S.C. and Reddy, R.C. (2019) Key Functions and Therapeutic Prospects of Nur77 in Inflammation Related Lung Diseases. The American Journal of Pathology, 189, 482-491. https://doi.org/10.1016/j.ajpath.2018.10.002

  37. 37. Kurakula, K., Vos, M., Logiantara, A., et al. (2015) Nuclear Re-ceptor Nur77 Attenuates Airway Inflammation in Mice by Suppressing NF-kappaB Activity in Lung Epithelial Cells. The Journal of Immunology, 195, 1388-1398. https://doi.org/10.4049/jimmunol.1401714

  38. 38. 冯丹, 霍炎. 孤儿核受体Nur77对哮喘小鼠气道重构的作用研究[J]. 中国临床药理学杂志, 2019, 35(15): 1621-1624.

  39. 39. Ao, M., Zhang, J., Qian, Y., et al. (2022) Design and Synthesis of Adamantyl-Substituted Flavonoid Derivatives as Anti-Inflammatory Nur77 Modulators: Compound B7 Targets Nur77 and Improves LPS-Induced Inflammation in Vitro and in Vivo. Bioorganic Chemistry, 120, Article ID: 105645. https://doi.org/10.1016/j.bioorg.2022.105645

  40. 40. Zhu, P., Wang, J., Du, W., et al. (2022) NR4A1 Pro-motes LPS-Induced Acute Lung Injury through Inhibition of Opa1-Mediated Mitochondrial Fusion and Activation of PGAM5-Related Necroptosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 6638244. https://doi.org/10.1155/2022/6638244

  41. 41. Jiang, Y., Zeng, Y., Huang, X., et al. (2016) Nur77 Attenuates Endo-thelin-1 Expression via Downregulation of NF-κB and p38 MAPK in A549 Cells and in an ARDS Rat Model. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 311, L1023-L1035. https://doi.org/10.1152/ajplung.00043.2016

  42. 42. Fang, H., Zhang, J., Ao, M., et al. (2020) Synthesis and Discov-ery of ω-3 Polyunsaturated Fatty Acid-Alkanolamine (PUFA-AA) Derivatives as Anti-Inflammatory Agents Targeting Nur77. Bioorganic Chemistry, 105, Article ID: 104456. https://doi.org/10.1016/j.bioorg.2020.104456

  43. 43. Zhu, N., Zhang, J., Yi, B., et al. (2019) Nur77 Limits Endotheli-al Barrier Disruption to LPS in the Mouse Lung. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 317, L615-L624. https://doi.org/10.1152/ajplung.00425.2018

  44. 44. Kurakula, K., Sun, X., Happé, C., et al. (2019) Prevention of Pro-gression of Pulmonary Hypertension by the Nur77 Agonist 6-Mercaptopurine: Role of BMP Signalling. European Res-piratory Journal, 54, Article ID: 1802400. https://doi.org/10.1183/13993003.02400-2018

  45. 45. 邓俊华, 王志波, 黄表华. 慢性阻塞性肺疾病患者血清NR4 A1表达及临床意义[J]. 临床肺科杂志, 2021, 26(7): 1034-1037.

  46. 46. Deng, Z., Liu, Q., Wang, M., Wei, H.K. and Peng, J. (2020) GPA Peptide-Induced Nur77 Localization at Mitochondria Inhibits Inflammation and Oxidative Stress through Activating Autophagy in the Intestine. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 4964202. https://doi.org/10.1155/2020/4964202

  47. 47. Deng, Z., Zheng, L., Xie, X., Wei, H. and Peng, J. (2020) GPA Peptide Enhances Nur77 Expression in Intestinal Epithelial Cells to Exert a Protective Effect against DSS-Induced Colitis. FASEB Journal, 34, 15364-15378. https://doi.org/10.1096/fj.202000391RR

  48. 48. Hamers, A.A., Dam, L.V., Duarte, J.T., et al. (2015) Deficiency of Nuclear Receptor Nur77 Aggravates Mouse Experimental Colitis by Increased NFkappaB Activity in Macrophages. PLOS ONE, 10, e0133598. https://doi.org/10.1371/journal.pone.0133598

  49. 49. Wu, H., Li, X., Wang, J., et al. (2016) NUR77 Exerts a Protec-tive Effect against Inflammatory Bowel Disease by Negatively Regulating the TRAF6/TLR-IL-1R Signalling Axis. The Journal of Pathology, 238, 457-469. https://doi.org/10.1002/path.4670

  50. 50. Yuan, R., Zhang, W., Nie, P., et al. (2022) Nur77 Deficiency Exacerbates Macrophage NLRP3 Inflammasome-Mediated Inflammation and Accelerates Atherosclerosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 2017815. https://doi.org/10.1155/2022/2017815

  51. 51. Deng, Z., Yang, Z., Cui, C., et al. (2021) NR4A1 Suppresses Pyroptosis by Transcriptionally Inhibiting NLRP3 and IL-1β and Co-Localizing with NLRP3 in Trans-Golgi to Alleviate Pathogenic Bacteria-Induced Colitis. Clinical and Translational Medicine, 11, e639. https://doi.org/10.1002/ctm2.639

  52. 52. Yoshida, K., Okamura, H., Hiroshima, Y., et al. (2017) PKR Induces the Expression of NLRP3 by Regulating the NF-κB Pathway in Porphyromonas gingivalis-Infected Osteoblasts. Ex-perimental Cell Research, 354, 57-64. https://doi.org/10.1016/j.yexcr.2017.03.028

  53. NOTES

    *通讯作者。

期刊菜单