Advances in Clinical Medicine
Vol. 10  No. 05 ( 2020 ), Article ID: 35790 , 7 pages
10.12677/ACM.2020.105130

Progress in the Treatment of Dry Age-Related Macular Degeneration

Zhinan Liu, Guohua Deng, Hao Wang, Xi Zou*

The Third People’s Hospital of Changzhou, Changzhou Jiangsu

Received: May 3rd, 2020; accepted: May 20th, 2020; published: May 27th, 2020

ABSTRACT

Atrophic age-related macular degeneration does not show obvious loss of visual function in the early stage, so it is not easy to be taken seriously. In the advanced stage, most of the patients suffered from macular area retinal map atrophy, which affected night vision and central vision. At present, the main treatment methods include improving the antioxidative stress injury, decreasing the accumulation of harmful substances, decreasing the formation of vitreous verruca, regulating inflammation and immune response, improving choroidal perfusion, as well as neuroprotective agents, regulating lipid metabolism and traditional Chinese medicine treatment. At present, many studies have found that mutations in multiple gene loci are related to dry AMD. Stem cell transplantation is the most promising treatment for atrophic AMD.

Keywords:AMD (Age-Related Macular Degeneration), RPE (Retinal Pigment Epithelium)

干性老年性黄斑变性治疗的研究进展

刘志南,邓国华,王浩,邹茜*

常州市第三人民医院,江苏 常州

收稿日期:2020年5月3日;录用日期:2020年5月20日;发布日期:2020年5月27日

摘 要

干性老年性黄斑变性早期可不表现出明显的视觉功能丧失,因而不易被重视,进展至晚期患者多因黄斑区视网膜地图样萎缩影响夜视力及中心视力而就医。目前主要治疗方法包括改善抗氧化应激损伤、减少有害物质蓄积、减少玻璃体疣形成、调节炎症及免疫反应、改善脉络膜灌注、以及神经保护剂、调节脂质代谢及中医中药治疗等。目前已有多项研究发现多个基因位点的突变与干性AMD有关,干细胞移植治疗萎缩型AMD是目前最有前景的治疗手段。

关键词 :老年性黄斑变性,视网膜色素上皮细胞

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

年龄相关性黄斑变性(Age-related macular degeneration, AMD)是在世界范围内造成视力损害的主要原因之一,许多国家中,其患病率随着年龄的增长大大增加 [1]。根据临床表现和病理改变将之分为干性AMD (萎缩型AMD)与湿性AMD (渗出型AMD)两型 [2],干性AMD约占AMD的30% [3]。AMD多发生在50岁以上的中老年人群,其视力丧失的主要原凶是脉络膜新生血管 [3]。目前湿性AMD可以通过抗VEGF治疗取得显著疗效 [4] [5] [6],并且抗VEGF治疗已于2020年进入医保被更加广泛使用。而目前干性AMD尚无明确有效治疗办法,主要其发病原因尚不明确。干性AMD早期可不表现出明显的视觉功能丧失,进展至晚期,患者多因影响夜视力及中心视力而就医。目前普遍认为它是多因素疾病,包括遗传多态性和外部多种危险因素,包括氧化应激、视网膜光感受器和色素上皮代谢紊乱等 [7] [8] [9]。有许多临床治疗方法对干性AMD也取得一定的疗效,本文进行综述。

2. 干性AMD的治疗现状

2.1. 抗氧化应激损伤

研究表明干性AMD与氧化应激密切相关,由于黄斑区接收可见光,因此对氧化应激非常敏感,加上黄斑区含有的大量光敏剂可增加ROS产生,加速氧化应激反应,使视网膜中原本的氧化损伤与氧化修复系统平衡打破,导致活性氧化堆积,无法及时消除,干由此引发一系列脂质过氧化反应损伤光感受器细胞外节,促使脂褐质积聚于视网膜色素上皮层(retinal pigment epithelium, RPE)与脉络膜之间,最终导致RPE细胞的变性坏死 [10]。

研究发现食用抗氧化食物对干性AMD有相应的治疗作用,它可以降低干性AMD患者早期病情的发生发展 [11] [12]。锌是抗氧化酶的组成成分,锌的浓度视网膜脉络膜复合体中很高,锌含量最高的是视网膜色素上皮(RPE),其次是视网膜(123 ± 62.2 μg−1干组织) [13]。但是口服锌是否可以治疗干性AMD的发展尚未得到证实 [12]。另有研究发现维生素C、E,胡萝卜素,锌,铜联合治疗可以减缓28% AMD的发生发展 [11],但是此方案无法确定最佳的治疗剂量且长期安全性尚无法得知。后续研究通过随机对照,双盲试验发现50 mg维生素B6、2.5 mg维生素B9、1 mg B12可以降低AMD的发生,其机制也是通过减少氧化应激 [13]。此外一些植物提取物也具有抗氧化治疗作用,藏红花酸主要存在与藏红花中,具有很好的抗氧化效果,可以减少视网膜暴露于光照中受到的伤害 [14]。姜黄主要存在姜科植物中,具有抗脂质过氧化,同时提供抗氧化物质,保护RPE细胞抗氧化应激 [15]。另外增加叶黄素、玉米黄质、白藜芦醇的于日常饮食中,可以减少同时有吸烟史的干性AMD患者发病的风险 [16] [17]。综上,服用维生素和其他植物提取的抗氧化物对于抑制干性AMD有一定的效果。

2.2. 减少视网膜有害物质堆积

A2E可以多重损伤RPE,包括诱导氧化产物形成,损害溶酶体,激活凋亡蛋白和补体系统等 [18]。Fenretinide是维生素A的衍生物,可竞争性拮抗维生素A,减少RPE对维生素A摄取,并从尿中排出,抑制A2E的生成和脂褐素在RPE细胞的蓄积,从而保护RPE细胞及光感受器 [19]。Fenretinide的安全性和有效性已得到证实,服用Fenretinide可减轻延缓干性AMD疾病的损害,但服用副作用目前尚不明确 [20]。ACU-4429是RPE65酶的抑制剂,它可以通过抑制全反式维甲酸向11-顺视黄醛转换从而减少RPE细胞中A2E堆积,从而抑制视杆细胞的敏感性,引起色觉障碍及暗适应延迟 [21]。

2.3. 调控炎症和免疫反应

研究表明RPE、Bruch膜和脉络膜的慢性炎症与干性AMD的发病密切相关 [22] [23]。因此炎症因子的调节是治疗干性AMD 的靶点之一。有研究发现,衰老可减少补体抑制剂在玻璃膜的沉积,激活局部的补体,补体激活可引起玻璃膜疣形成,释放促炎症反应的过敏毒素,驱使组织破坏,加速萎缩型AMD的发展 [24] [25]。研究表明干性AMD与补体及炎症反应与其有密切联系,因此调控补体及炎症系统对于延缓干性AMD的进程有重要作用。

雷帕霉素是一种大环内酯类免疫抑制剂,具有抗炎、抗新生血管形成和抗纤维化的作用。研究发现雷帕霉素在在动物模型中可以保护光感受器细胞,抑制氧化代谢,但是在临床试验中,通过结膜下注射雷帕霉素却无明显作用 [26],物种不同,治疗效果也不相同。依库丽单抗(eculizumab)是人源化IgG抗体,能抑制补体C5激活,减少末端补体活性形成,机体对依库丽单抗可较好的耐受,但并不能显著延缓AMD的发展 [27]。综上,视网膜慢性炎症以及免疫系统异常反应与干性AMD发生密切相关,因此控制视网膜炎症及调控免疫反应是治疗干性AMD的控制关键所在。

2.4. 减少玻璃膜疣的形成

所有的AMD均可见玻璃膜疣,且玻璃膜疣随着疾病的发展会逐渐严重 [28] [29],其包含蛋白质、脂褐质、脂质、晚期糖基化产物,β淀粉样蛋白是主要成分。玻璃膜疣的形成与体内的免疫相关,相关的免疫细胞共同参与脉络膜炎症,β淀粉样蛋白在细胞基质中沉淀积聚后具有很强的毒性 [30],并最终导致视网膜变性。研究表明淀粉体β淀粉样蛋白抗体可以减少补体系统的激活,保护RPE细胞 [31]。目前抗β淀粉样蛋白抗体主要包括RN6G和GSK933776,这两种不同的人源化单克隆抗体都可通过静脉给药达到作用部位 [32]。RN6G对β淀粉样蛋白肽类具有高亲和力,在小鼠全身应用RN6G可减少β淀粉样蛋白在视网膜的沉积,保护RPE细胞的结构和功能 [31]。但这些研究都需要进一步行临床试验进行进一步验证。

2.5. 改善脉络膜的灌注

脉络膜可以为视网膜外核层及RPE细胞提供营养物质及氧气,并且可以转运代谢废物。随着年龄的增加,脉络膜血流量会逐渐减少,脉络膜新生血管形成的风险会逐渐增加 [33] [34]。莫沙维林是磷酸二酯酶抑制剂,有人发现静脉滴注莫沙维林可以增加脉络膜的血液灌注 [35],但是又有人发现口服莫沙维林却并不增加脉络膜的血液灌注 [36]。给药途径不同会产生不同的疗效,因此造成两者结果不一致,目前莫沙维林对干性AMD的治疗效果尚无法确定。曲美他嗪因为有增加外周循环血流量和降低血管阻力而心绞痛的治疗,研究发现它无利于干性AMD的治疗 [37]。西地那非可以增加眼部血流量,扩张视网膜血管 [38],但尚未有结果表明是否能够增加脉络膜血流量。前列地尔可扩张血管,改善血流动力学。研究发现,视网膜地图状萎缩患者静脉滴注前列地尔治疗3个月后矫正视力可提高 [39]。

2.6. 营养神经治疗

睫状神经营养因子(ciliary neurotrophic factor, CNTF)是一种促神经元细胞生长因子。CNTF可以保护视网膜退行性病变动物模型中光感受器 [40],还可以分泌细胞因子保护光感受器提高视杆、视锥细胞生存能力 [41],但对视功能无明确作用。α-肾上腺素受体对视网膜神经节细胞、双极细胞和光感受器细胞具有保护作用,常用于青光眼患者 [42]。已有研究证明α-肾上腺素受体作为新的治疗靶点,提供光感受器保护,其中多沙唑嗪和胍那苄两种FDA批准的药物,可以进一步探索治疗视网膜疾病 [43]。

2.7. 基因与干细胞治疗

已有许多研究表明干AMD与基因遗传变异有关,包括线粒体,基因拷贝数、表观遗传学等改变 [44] [45]。对基因突变的研究可以增加对AMD发生易感人群风险的认识,同时新的特定靶细胞的载体形成技术正在发展和改进,在未来可以针对易感人群作AMD的最有效的治疗方法。

干细胞具有多分化潜能,可以分化为人体任何的细胞,经诱导可分化为光感受器细胞和RPE细胞。有人曾将分化成熟后的干细胞注入干性AMD视网膜内来替代凋亡的RPE细胞和光感受器细胞 [46] [47] [48]。研究发现将视杆细胞前体移植至缺少视杆细胞的小鼠视网膜下,小鼠的视力可以得到一定的改善 [49]。已有研究报道胚胎干细胞分化的RPE细胞移植在AMD患者眼中的有一定疗效 [48]。采用人类干细胞分化来源的视网膜光感受器细胞及RPE细胞替代治疗萎缩型AMD理论上是可行的。但现今尚有许多问题待解决:如怎样提高定向诱导分化效率,如何保证存活率,如何使细胞产生预计功能,如何降低干细胞移植成瘤风险等等。研究表明干细胞疗法和光遗传学相结合可以实现视网膜结构和功能的修复 [50]。

2.8. 其他治疗

有人认为长期服用他汀类药物可降低中风心脏病患者AMD的发生率 [51],但又有人认为他汀类药物不能抑制或延缓AMD的发展 [52]。仍不能确定他汀类药物是否能治疗AMD,需要进一步验证与治疗。中医方面的研究对于干性AMD也取得了一定进展。AMD的中医病名“视瞻昏渺”首见于《证治准绳》,临床多采用辨证论治、专方治疗或针刺治疗。中医认为本病主要责之于年老体衰,脏腑精气不能上达于目,而致目失所养,与肝、脾、肾三脏关系密切。治疗方法当因人而,异辩证分析 [53]。研究表明,二至明目汤(丹参、川芎、墨旱莲、白芍、五昧子、枸杞子、楮实子、女贞子等)临证加减,启明丸(黄芪、党参、熟地黄、山药、枸杞子、山茱萸、菊花、党参、泽泻、丹皮、茯苓、石决明、木贼草等组成),杞黄颗粒,六味地黄软胶囊联合七叶洋地黄双苷滴眼液等治疗的干性AMD患者,中医证候及临床疗效均得到改善 [54] [55] [56] [57]。除此之外,针灸治疗及中西医结合治疗对干性AMD亦具有较好效果 [58] [59]。近年来的研究对运用中医药治疗干性AMD积累了一定临床经验,但由于缺乏统一的治疗标准,其准确性与科学性还需进一步证实。

3. 总结与展望

目前对于干性AMD虽无确切有效的治疗办法,目前主要通过减少视网膜的损伤,保护现有功能良好的视网膜光感受器细胞及RPE细胞,延缓病情发展。治疗以修复、替代、再生为主,主要治疗方法包括抗细胞氧化,减少毒素堆积,抑制补体激活,减少玻璃膜疣的形成等。新型药物逐步进入临床研究阶段,基因分析可以找出疾病易感人群并且制定个性化的治疗方案。干细胞治疗具有极大的前景,可为以后的治疗方案提供新思路。

基金项目

常州市科技项目(CJ20190012)。

文章引用

刘志南,邓国华,王 浩,邹 茜. 干性老年性黄斑变性治疗的研究进展
Progress in the Treatment of Dry Age-Related Macular Degeneration[J]. 临床医学进展, 2020, 10(05): 849-855. https://doi.org/10.12677/ACM.2020.105130

参考文献

  1. 1. Lins, L.S., Mitchell, P., Seddon, J.M., et al. (2012) Age-Related Macular Degeneration. The Lancet, 379, 1728-1738. https://doi.org/10.1016/S0140-6736(12)60282-7

  2. 2. 葛坚, 王宁利. 眼科学[M]. 北京: 人民卫生出版社, 2015: 340-341.

  3. 3. Ong, B.B. and Ah-Fat, F.G. (2016) Age-Related Macular Degeneration. British Journal of Hospital Medicine (Lond), 77, C18-C21. https://doi.org/10.12968/hmed.2016.77.2.C18

  4. 4. 刘志南, 管怀进. 雷珠单抗和阿柏西普对年龄相关性黄斑变性患者外层视网膜管状结构的影响[J]. 眼科新进展, 2019, 39(10): 952-955.

  5. 5. Nunes, R.P., Hirai, F.E., Rodrigues, E.B. and Farah, M.E. (2020) Cost-Effectiveness of Anti-VEGF Treatments for Age-Related Macular Degeneration: A Brazilian Perspective. Arquivos Brasileiros de Oftalmologia, 83, 48-54. https://doi.org/10.5935/0004-2749.20200020

  6. 6. Saini, J.S., Corneo, B., Miller, J.D., et al. (2017) Nicotinamide Ameliorates Disease Phenotypes in a Human iPSC Model of Age-Related Macular Degeneration. Cell Stem Cell, 20, 635-647.e7. https://doi.org/10.1016/j.stem.2016.12.015

  7. 7. Lee, S.C., Tran, S., Amin, A., et al. (2019) Retinal Vessel Density in Exudative and Non-Exudative Age-Related Macular Degeneration on Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 9, 30596-30603.

  8. 8. 王菲, 郝晓琳, 张仲臣. 老年性黄斑变性危险因素研究进展[J]. 国际眼科杂志, 2014, 11(14): 1991-1994.

  9. 9. Uchida, A., Srivastava, S.K., Manjunath, D., et al. (2019) Impact of Drusen Burden on Incidence of Subclinical CNV with OCTA. Ophthalmic Surgery, Lasers and Imaging Retina, 51, 22-30. https://doi.org/10.3928/23258160-20191211-03

  10. 10. Hanus, J., Zhang, H., Wang, Z., et al. (2013) Induction of Necrotic Cell Death by Oxdatives Stress in Retinal Pigment Epithelial Cells. Cell Death & Disease, 4, 965. https://doi.org/10.1038/cddis.2013.478

  11. 11. Chew, E.Y., Clemons, T.E., Agron, E., et al. (2013) Long-Term Effects of Vitamins C and E, β-Carotene, and Zinc on Age-Related Macular Degeneration: AREDS Report No. 35. Ophthalmology, 120, 1604-1611. https://doi.org/10.1016/j.ophtha.2013.01.021

  12. 12. Shvanathan, R., Chung, M. and Johnson, E.J. (2013) A Systematic Review on Zinc for the Prevention and Treatment of Age-Related Macular Degeneration. Investigative Ophthalmology & Visual Science, 54, 3985-3998. https://doi.org/10.1167/iovs.12-11552

  13. 13. Gilbert, R., Peto, T., Lengyel, I., et al. (2019) Zinc Nutrition and Inflammation in the Aging Retina. Molecular Nutrition & Food Research, 63, e1801049. https://doi.org/10.1002/mnfr.201801049

  14. 14. Mukhtar, S. and Ambati, B.K. (2019) The Value of Nutritional Supplements in Treating Age-Related Macular Degeneration: A Review of the Literature. International Ophthalmology, 39, 2975-2983. https://doi.org/10.1007/s10792-019-01140-6

  15. 15. Zhu, W., Wu, Y., Meng, Y.F., et al. (2015) Effect of Curcumin on Aging Retinal Pigment Epithelial Cells. Drug Design, Development and Therapy, 9, 5337-5344. https://doi.org/10.2147/DDDT.S84979

  16. 16. Schmidl, D., Garhofer, G. and Schmetterer, L. (2015) Nutritional Supplements in Age-Related Macular Degeneration. Acta Ophthalmologica, 93, 105-121. https://doi.org/10.1111/aos.12650

  17. 17. Nagineni, C.N., Raju, R., Nagineni, K.K., et al. (2014) Resveratrol Suppresses Expression of VEGF by Human Retinal Pigment Epithelial Cells: Potential Nutraceutical for Age-Related Macular Degeneration. Aging and Disease, 5, 88-100. https://doi.org/10.14336/AD.2014.050088

  18. 18. Zhang, J., Bai, Y., Huang, L., et al. (2015) Protective Effect of Autophagy on Human Retinal Pigment Epithelial Cells against Lipofuscin Fluorophore A2E: Implications for Age-Related Macular Degeneration. Cell Death & Disease, 6, e1972. https://doi.org/10.1038/cddis.2015.330

  19. 19. Radu, R.A., Han, Y., Bui, T.V., et al. (2005) Reductions in Serum Vitamin A Arrest Accumulation of Toxic Retinal Fluorophores: A Potential Therapy for Treatment of Lipofuscin-Based Retinal Diseases. Investigative Ophthalmology & Visual Science, 46, 4393-4401. https://doi.org/10.1167/iovs.05-0820

  20. 20. Mata, N.L., Lichter, J.B., Vogel, R., et al. (2013) Investigation of Oral Fenretinide for Treatment of Geographic Atrophy in Age-Related Macular Degeneration. Retina, 33, 498-507. https://doi.org/10.1097/IAE.0b013e318265801d

  21. 21. Kubota, R., Boman, N.L., David, R., et al. (2012) Safety and Effect on Rod Function of ACU-4429, a Novel Small-Molecule Visual Cycle Modulator. Retina, 32, 183-188. https://doi.org/10.1097/IAE.0b013e318217369e

  22. 22. Gehrs, K.M., Jackson, J.R., Brown, E.N., et al. (2010) Complement, Age-Related Macular Degeneration and a Vision of the Future. Archives of Ophthalmology, 128, 349-358. https://doi.org/10.1001/archophthalmol.2010.18

  23. 23. Cherepanoff, S., McMenamin, P., Gillies, M.C., et al. (2010) Bruch’s Membrane and Choroidal Macrophages in Early and Advanced Age-Related Macular Degeneration. British Journal of Ophthalmology, 94, 918-925. https://doi.org/10.1136/bjo.2009.165563

  24. 24. Danis, R.P., Lavine, J.A. and Domalpally, A. (2015) Geographic Atrophy in Patients with Advanced Dry Age-Related Macular Degeneration: Current Challenges and Future Prospects. Clinical Ophthalmology, 9, 2159-2174. https://doi.org/10.2147/OPTH.S92359

  25. 25. Molins, B., Romero-Vázquez, S., Fuentes-Prior, P., et al. (2018) C-Reactive Protein as a Therapeutic Target in Age-Related Macular Degeneration. Frontiers in Immunology, 19, 808. https://doi.org/10.3389/fimmu.2018.00808

  26. 26. Wong, W.T., Dresner, S., Forooghian, F., et al. (2013) Treatment of Geographic Atrophy with Subconjunctival Sirolimus: Results of a Phase I/II Clinical Trial. Investigative Ophthalmology & Visual Science, 54, 2941-2950. https://doi.org/10.1167/iovs.13-11650

  27. 27. Yehoshua, Z., de Amorim Garcia Filho, C.A., Nunes, R.P., et al. (2014) Systemic Complement Inhibition with Eculizumab for Geographic Atrophy in Age-Related Macular Degeneration: The Complete Study. Ophthalmology, 121, 693-701. https://doi.org/10.1016/j.ophtha.2013.09.044

  28. 28. Algvere, P.V., Kvanta, A. and Seregard, S. (2016) Drusen Maculopathy: A Risk Factor for Visual Deterioration. Acta Ophthalmologica, 94, 427-433. https://doi.org/10.1111/aos.13011

  29. 29. 黎铧, 李娟娟. 16例基底膜层状玻璃膜疣患者影像特征[J]. 中华眼底病杂志, 2014, 30(3): 308-309.

  30. 30. Taskintuna, I., Elsayed, M.E. and Schatz, P. (2016) Update on Clinical Trials in Dry Age-Related Macular Degeneration. Middle East African Journal of Ophthalmology, 23, 13-26. https://doi.org/10.4103/0974-9233.173134

  31. 31. Ding, J.D., Johnson, L.V., Herrmann, R., et al. (2011) Anti-Amyloid Therapy Protects against Retinal Pigmented Epithelium Damage and Vision Loss in a Model of Age-Related Macular Degeneration. Proceedings of the National Academy of Sciences of the United States of America, 8, E279-E287. https://doi.org/10.1073/pnas.1100901108

  32. 32. Leung, E. and Landa, G. (2013) Update on Current and Future Novel Therapies for Dry Age-Related Macular Degeneration. Expert Review of Clinical Pharmacology, 6, 565-579. https://doi.org/10.1586/17512433.2013.829645

  33. 33. Waheed, N.K., Moult, E.M., Fujimoto, J.G., et al. (2016) Optical Coherence Tomography Angiography of Dry Age-Related Macular Degeneration. Developments in Ophthalmology, 56, 91-100. https://doi.org/10.1159/000442784

  34. 34. Arya, M., Sabrosa, A.S., Duker, et al. (2018) Choriocapillaris Changes in Dry Age-Related Macular Degeneration and Geographic Atrophy: A Review. Eye and Vision (Lond), 5, 22. https://doi.org/10.1186/s40662-018-0118-x

  35. 35. Pemp, B., Garhofer, G., Lasta, M., et al. (2012) The Effects of Moxaverine on Ocular Blood Flow in Patients with Age-Related Macular Degeneration or Primary Open Angle Glaucoma and in Healthy Control Subjects. Acta Ophthalmologica, 90, 139-145. https://doi.org/10.1111/j.1755-3768.2010.01878.x

  36. 36. Schmidl, D., Pemp, B., Lasta, M., et al. (2013) Effects of Orally Administered Moxaverine on Ocular Blood Flow in Healthy Subjects. Graefe’s Archive for Clinical and Experimental Ophthalmology, 251, 515-520. https://doi.org/10.1007/s00417-012-2207-1

  37. 37. Cohen, S.Y., Bourgeois, H., Corbe, C., et al. (2012) Randomized Clinical Trial France DMLA2: Effect of Trimetazidine on Exudative and Nonexudative Age-Related Macular Degeneration. Retina, 32, 834-843. https://doi.org/10.1097/IAE.0b013e31822058a3

  38. 38. Alvarez, L.J., Zamudio, A.C. and Candia, O.A. (2013) Sildenafil Stimulates Aqueous Humor Turnover in Rabbits. Experimental Eye Research, 111, 67-70. https://doi.org/10.1016/j.exer.2013.03.016

  39. 39. Augustin, A.J., Diehm, C., Grieger, F., et al. (2013) Alprostadil Infusion in Patients with Dry Age-Related Macular Degeneration: A Randomized Controlled Clinical Trial. Expert Opinion on Investigational Drugs, 22, 803-812. https://doi.org/10.1517/13543784.2013.794782

  40. 40. Li, Y., Tao, W., Luo, L., et al. (2010) CNTF Induces Regeneration of Cone Outer Segments in a Rat Model of Retinal Degeneration. PLoS ONE, 5, e9495. https://doi.org/10.1371/journal.pone.0009495

  41. 41. Rhee, K.D., Nusinowitz, S., Chao, K., et al. (2013) CNTF-Mediated Protection of Photoreceptors Requires Initial Activation of the Cytokine Receptor gp130 in Müller glial Cells. Proceedings of the National Academy of Sciences of the United States of America, 110, E4520-E4529. https://doi.org/10.1073/pnas.1303604110

  42. 42. Nocentini, A. and Supuran, C.T. (2019) Adrenergic Agonists and Antagonists as Antiglaucoma Agents: A Literature and Patent Review (2013-2019). Expert Opinion on Therapeutic Patents, 29, 805-815. https://doi.org/10.1080/13543776.2019.1665023

  43. 43. Li, T., Yang, S., She, X., et al. (2019) Modulation of α-Adrenoceptorsignalling Protects Photoreceptors after Retinal Detachment by Inhibiting Oxidative Stress and Inflammation. British Journal of Pharmacology, 176, 801-813. https://doi.org/10.1111/bph.14565

  44. 44. Liu, X.C., Guo, X.H., Chen, X., Yao, Y., et al. (2020) Toll-Like Receptor 4 Gene Polymorphisms rs4986790 and rs4986791 and Age-Related Macular Degeneration Susceptibility: A Meta-Analysis. Ophthalmic Genetics, 27, 1-5. https://doi.org/10.1080/13816810.2020.1723117

  45. 45. Nishiguchi, K.M., Kunikata, H., Fujita, K., et al. (2020) Association of CRX Genotypes and Retinal Phenotypes Confounded by Variable Expressivity and Electronegative Electroretinogram. Clinical & Experimental Ophthalmology. https://doi.org/10.1111/ceo.13743

  46. 46. Sachdeva, M.M. and Eliott, D. (2016) Stem Cell-Based Therapy for Diseases of the Retinal Pigment Epithelium: From Bench to Bedside. Seminars in Ophthalmology, 31, 25-29. https://doi.org/10.3109/08820538.2015.1115253

  47. 47. Schwartz, S.D., Regillo, C.D., Lam, B.L., et al. (2015) Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium in Patients with Age-Related Macular Degeneration and Stargardt’s Macular Dystrophy: Follow-Up of Two Open-Label Phase 1/2 Studies. The Lancet, 385, 509-516. https://doi.org/10.1016/S0140-6736(14)61376-3

  48. 48. Hu, J., He, T.C. and Li, F. (2015) For Your Eyes Only: Harnessing Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells to Improve Impaired Vision. Genes and Diseases, 2, 293-294. https://doi.org/10.1016/j.gendis.2015.07.002

  49. 49. Pearson, R.A., Barber, A.C., Rizzi, M., et al. (2012) Restoration of Vision after Transplantation of Photoreceptors. Nature, 485, 99-103. https://doi.org/10.1038/nature10997

  50. 50. Garita-Hernandez, M., Lampič, M., Chaffiol, A., et al. (2019) Restoration of Visual Function by Transplantation of Optogenetically Engineered Photoreceptors. Nature Communications, 10, 4524. https://doi.org/10.1038/s41467-019-12330-2

  51. 51. Barbosa, D.T., Mendes, T.S., Cíntron-Colon, H.R., et al. (2014) Age-Related Macular Degeneration and Protective Effect of HMG Co-A Reductase Inhibitors (Statins, Results from the National Health and Nutrition Examination Survey 2005-2008). Eye (London), 28, 472-480. https://doi.org/10.1038/eye.2014.8

  52. 52. Lee, H., Jeon, H.L., Park, S.J., et al. (2019) Effect of Statins, Metformin, Angiotensin-Converting Enzyme Inhibitors, and Angiotensin II Receptor Blockers on Age-Related Macular Degeneration. Yonsei Medical Journal, 60, 679-686. https://doi.org/10.3349/ymj.2019.60.7.679

  53. 53. 张红, 庄增渊. 分期辨证治疗老年性黄斑变性经验[J]. 中国中医眼科杂志, 2011, 21(2): 104-105.

  54. 54. 王德淳, 魏伟, 周欣. 六味地黄软胶囊联合七叶洋地黄双苷滴眼液治疗早中期及干性进展期AMD21例临床研究[J]. 江苏中医药, 2016, 48(11): 35-37.

  55. 55. 钟情. 杞黄颗粒治疗肝肾阴虚型AMD(干性)的疗效及对血清c5b.9水平的影响[D]: [硕士学位论文]. 广州: 广州中医药大学, 2015.

  56. 56. 江伟, 唐由之, 梁丽娜, 等. 二至明目汤治疗非渗出性年龄相关性黄斑变性临床分析[J]. 中国中医眼科杂志, 2013, 23(3): 201-203.

  57. 57. 卓耀, 彭廷云. 启明丸治疗年龄相关性黄斑变性的临床疗效及对血清HcY水平的影响[J]. 中国中医眼科杂志, 2013, 23(1): 36-38.

  58. 58. 夏勇, 刘睿, 孙劲劲, 等. 深刺眶区穴位为主治疗年龄相关性黄斑变性的临床研究[J]. 上海针灸杂志, 2014, 33(5): 421-423.

  59. 59. 江丹, 刘新泉, 张殷建, 等. 耳穴贴敷联合怡开片治疗干性黄斑变性的临床研究[J]. 世界中医西结合杂志, 2015, 10(10): 1409-1411.

  60. NOTES

    *通讯作者。

期刊菜单