Advances in Clinical Medicine
Vol. 13  No. 10 ( 2023 ), Article ID: 73277 , 12 pages
10.12677/ACM.2023.13102151

膳食纤维与人类健康的研究进展

杨岩宁1,杨正南2,吴亮3

1南方医科大学公共卫生学院,广东 广州

2南京鼓楼医院集团仪征医院,江苏 仪征

3江苏大学医学院医学检验系,江苏 镇江

收稿日期:2023年8月28日;录用日期:2023年9月21日;发布日期:2023年9月28日

摘要

全谷物食品含有膳食纤维、抗性淀粉、维生素、矿物质和抗氧化剂等生物活性成分,这些成分对人类健康有着巨大的益处,在过去几十年中受到学者们广泛关注。研究表明膳食纤维的摄入量与肥胖、糖尿病、癌症和心血管疾病等发生呈负相关。通常来说,膳食纤维是植物来源食物中可食用的部分,它们不能被人类的小肠所消化吸收。膳食纤维的种类很多,有阿拉伯木聚糖、菊粉、果胶、麸皮、纤维素、β-葡聚糖和抗性淀粉等。开展膳食纤维功能的研究将有助于我们理解膳食纤维如何降低各种代谢性疾病发生的风险。

关键词

膳食纤维,代谢性疾病,治疗

Research Progress of Dietary Fiber and Human Health

Yanning Yang1, Zhengnan Yang2, Liang Wu3

1School of Public Health, Southern Medical University, Guangzhou Guangdong

2Yizheng Hospital, Nanjing Gulou Hospital Group, Yizheng Jiangsu

3Department of Medical Laboratory, School of Medicine, Jiangsu University, Zhenjiang Jiangsu

Received: Aug. 28th, 2023; accepted: Sep. 21st, 2023; published: Sep. 28th, 2023

ABSTRACT

Whole grain foods contain bioactive ingredients such as dietary fiber, resistant starch, vitamins, minerals and antioxidants, which have enormous benefits for human health and have received much attention from scholars over the past few decades. Studies have shown that dietary fiber intake is inversely associated with obesity, diabetes, cancer, and cardiovascular disease. In general, dietary fiber is the edible part of plant-based foods that cannot be digested and absorbed by the human small intestine. There are many types of dietary fiber, including xylan, inulin, pectin, bran, cellulose, beta-glucan and resistant starch. Research on the function of dietary fiber will help us understand how dietary fiber reduces the risk of various metabolic diseases.

Keywords:Dietary Fiber, Metabolic Disease, Heal

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

全谷物食品中含有膳食纤维等多种生物活性成分,包括抗性淀粉、维生素、矿物质和抗氧化剂。研究显示,日常饮食中膳食纤维的摄入量与肥胖 [1] 、2型糖尿病 [2] 、癌症 [3] 和心血管疾病 [4] 的发生率呈负相关。FDA已经批准了两个关于膳食纤维的健康声明。第一个声明指出随着脂肪摄入量减少,增加水果、蔬菜和全谷物中的膳食纤维的摄入可能会减少某些类型癌症的发生 [5] 。有研究表明,食用富含膳食纤维的食物可使结肠癌的发病率降低16%~24% [6] ,食入更多水果蔬菜者列腺癌的风险降低了35% [7] 。第二个声明支持膳食纤维的健康益处,即低饱和脂肪和胆固醇,高水果、蔬菜和全谷物的饮食可以降低冠心病的风险。

最近的研究表明,膳食纤维与几种癌症的发生和发展呈负相关,包括结直肠癌、小肠癌、口腔癌、喉癌和乳腺癌 [3] [8] [9] 。人类的肠道无法消化膳食纤维,但当膳食纤维进入结肠后会被某些种类厌氧菌发酵产生短链脂肪酸等有益代谢产物,具有独特抗癌特性 [10] [11] 。此外,膳食纤维还可以增加粪便的膨胀和粘度,减少致癌物与黏膜细胞接触时间,增加胆汁酸和致癌物结合,提高人体内抗氧化活性物质水平,抑制肠道中雌激素的吸收 [12] [13] ,增加粪便中雌激素的排泄量。研究还发现日常饮食中每增加10克膳食纤维,冠心病的死亡风险可以降低17%~35% [4] [14] 。因为膳食纤维的摄入可以增加胆汁排泄率,降低血清总胆固醇和低密度脂蛋白胆固醇 [15] ,产生短链脂肪酸抑制胆固醇合成 [16] ,调节能量摄入促进体重减轻或维持更健康体重,降低患2型糖尿病的风险,减少促炎细胞因子并增强粥样斑块稳定性 [17] ,降低外周血循环中C反应蛋白水平 [18] ,从而降低冠心病发生的风险。膳食纤维在人体内的消化代谢过程对于预防和治疗各种代谢性疾病具有重要意义 [19] [20] [21] 。

本文回顾当前有关膳食纤维的研究,重点综述了膳食纤维对营养吸收、餐后血糖、胰岛素抵抗、餐后饱腹感的影响。

2. 膳食纤维的定义

碳水化合物可根据消化率分为两类,第一类包括淀粉、单糖和果聚糖,易被消化并在小肠吸收;第二类包括纤维素、半纤维素、木质素、果胶和–葡聚糖,在人类的小肠中无法被消化,只能在人类结肠中被某些厌氧菌发酵。这些化合物被称为复合碳水化合物、非淀粉多糖(NSP)或结构碳水化合物(ADF)。结构碳水化合物和非结构碳水化合物的概念主要用于动物营养和粗饲料的分析,并不用于人类膳食营养分析,但结构性和非结构性碳水化合物的分离为膳食纤维的理解提供了基础。人类对于膳食纤维的定义经历了一个不断变化发展的过程。

美国谷物化学家协会最新定义,膳食纤维是碳水化合物的聚合物,具有超过3度的聚合度,既不被人类消化也不被小肠吸收 [22] 。该定义还详细描述了膳食纤维的成分和组成,并对其功能还进行了详细说明 [23] 。世界卫生组织和粮食及农业组织同意美国谷物化学家协会对膳食纤维的定义,但也有所区别。最重要的区别是指出膳食纤维是一种多糖,具有10个或10个以上的单体单位,在小肠中不被内源性酶类水解 [24] 。

非淀粉多糖(NSP)可分为可溶性和不溶性两类。可溶性纤维溶于水,形成粘性凝胶,易被大肠中菌群发酵,包括果胶、树胶、菊粉型果聚糖和一些半纤维素等。不溶性多糖不溶于水,由于在水中的不溶性和发酵有限,它们不能形成凝胶,木质素、纤维素和某些半纤维素属于不溶性纤维。通常来说,大多数含纤维的食物中大约包含约1/3的可溶性纤维和2/3的不溶性纤维 [24] 。

3. 膳食纤维对健康的益处

膳食纤维和全谷物是丰富的营养来源,包括维生素、矿物质和一种缓慢消化的能量。此外,它们还含有植物化学物质,如酚类、类胡萝卜素、木酚糖、葡聚糖和菊粉。这些化学物质,由植物分泌,目前不被归类为必需营养素,但可能是维持人类健康的重要物质 [25] 。植物化学物质的协同作用,增加了食物中营养含量和消化特性,被认为是膳食纤维的重要有益作用,可以用于预防和治疗肥胖、糖尿病和酒精肝等 [26] ,减少各种心血管系统疾病的发生 [27] [28] [29] [30] [31] ,还可能降低某些肿瘤的发生率 [32] [33] 。

3.1. 肥胖症

研究显示膳食纤维的摄入量与体重呈反比关系 [34] [35] 。膳食纤维降低体重的机制在于可溶性纤维在大肠中发酵后产生胰高糖素样肽-1 (GLP-1)和肽酪氨酸(PYY),这两种肠道激素能诱导饱腹感 [36] [37] ;摄入膳食纤维所产生的强烈饱腹感可以显著降低其他食物摄入量,并且随着膳食纤维摄入量的增加,其他简单碳水化合物的摄入量也趋于减少。但仍需注意的是,膳食纤维和饮食代谢能量(ME)之间的反比关系与膳食脂肪无关。因此,无论在高脂肪和低脂饮食中,ME都会随着膳食纤维的增加而降低。然而,当膳食纤维被分解为可溶性纤维和不可溶性纤维时,结果就更加不确定了。可溶性纤维似乎可以在低脂饮食中降低ME,但在高脂饮食中可增加ME [38] [39] [40] 。也有一些研究说明导致肥胖机制还与免疫性疾病与和炎症有关 [41] 。这一领域还需要进行更多的研究。

此外,不溶性纤维的摄入似乎对于喜爱高脂肪饮食人群的减肥更有效果。由于抗性淀粉也属于膳食纤维的一种,与不溶性纤维经历了相同的消化过程,比较抗性淀粉和不溶性纤维的消化过程可以帮助我们更好地了解膳食纤维预防和治疗肥胖症的机制。有研究表明,饮食中添加抗性淀粉会稀释其ME,但不会达到不溶性纤维的程度 [39] 。

大量研究也发现膳食纤维的摄入量与体重增加量之间呈负相关 [36] [45] 。但是可溶性纤维和不可溶性纤维对减肥的作用目前并不一致。虽然增加膳食纤维总体上对体重的控制有着良好的影响,但急需要有更多的研究来确定最佳的膳食纤维配方比例。

3.2. 糖尿病

过去的一段时间内,全球的2型糖尿病患者数据几乎呈现指数级增长,饮食因素似乎起着重要作用 [40] 。2型糖尿病由胰岛素敏感度降低或分泌量相对不足所诱发,因此控制饮食中碳水化合物的摄入对于该病的治疗意义重大。

Meyer等 [41] 研究发现,饮食中总碳水化合物的摄入与糖尿病发生风险之间无明显相关性,但与饮食中碳水化合物的类型密切相关。因此了解各种食物的血糖指数显得尤为重要。结构简单的小分子碳水化合物则具有较高的血糖指数,它们的摄入会因为它们会导致较高的血糖浓度。Hu等 [42] [43] [44] [45] 发现过高的体脂率也是2型糖尿病重要诱因。不健康的饮食,如高饱和脂肪、低膳食纤维和高非结构性碳水化合物的饮食,会显著增加女性患2型糖尿病的风险。一项涉及了9万多名女护士的长期支持性研究(8年)结果表明,饮食中血糖指数与2型糖尿病的发生率呈正相关,即使在校正了年龄、体重指数(BMI)和家族史后,这种相关性仍然显著 [46] [47] 。人们提出了几种方法来理解血糖指数和糖尿病之间关系背后的生理机制,包括碳水化合物产生更高的血糖水平导致胰腺内细胞的功能障碍,从而减少胰岛素的释放,以及能量的过剩导致骨骼肌、肝脏和脂肪等组织对胰岛素产生抵抗 [48] 。

虽然目前的一些研究显示摄入血糖指数高血糖食物与2型糖尿病之间呈正相关,但仍有研究不支持上述结论。Meyer等 [46] 研究表明高血糖指数饮食对老年妇女的糖尿病患病率没有显著影响,但膳食纤维摄入量与上述人群糖尿病的发生率呈负相关。与日平均摄入26克膳食纤维的女性相比,膳食纤维日摄入量小于23克的女性患糖尿病的风险要低22%以上。Schulze等 [48] 发现,当男性和女性每天额外摄入12克膳食纤维,患糖尿病的风险会显著降低。因此预防糖尿病的发生需要关注增加膳食纤维的摄入,而不仅是食物中的血糖指数。

Meyer等 [46] 和Schulze等 [43] 研究还发现,膳食纤维与糖尿病的发生呈负相关,与年龄和体重无关。Hu等人 [47] 在校正多个影响因素后也支持上述结论,即膳食纤维的摄入可以影响2型糖尿病的发生。膳食纤维的可溶性和不可溶性成分也可能影响着膳食纤维对糖尿病的治疗效果。随着可溶性纤维的摄入可以减缓胃内排空,减少常量营养素的吸收,从而降低餐后血糖和胰岛素水平 [49] 。此外,不同粘度的可溶性纤维对营养素的吸收率有不同的影响,但仍有研究表明可溶性纤维的摄入与糖尿病发生率之间没有相关性 [46] [48] [49] 。

尽管上述研究结论目前仍存在矛盾,但大多数研究表明不溶性纤维与2型糖尿病风险之间存在着显著的负相关。此外研究表明水果和蔬菜中纤维的摄入对2型糖尿病的发生并没有显著性影响 [50] 。一项包括4.2万名男性的大型流行病学研究结果也支持上述观点,即水果或蔬菜中的膳食纤维对患糖尿病的风险没有影响,但全谷物中膳食纤维的摄入可以显著降低糖尿病发病率 [51] 。

Weicket等 [29] 发现,增加谷物纤维的摄入量可以显著降低血糖水平,提高胰岛素敏感性。实际上不溶性纤维的作用机制可能较复杂,不仅仅局限于调节营养素的吸收。在健康女性中,摄入不溶性纤维后会加速GIP的分泌,进而刺激餐后胰岛素的释放 [47] ;不溶性纤维的摄入还可以抑制食欲并减少食物摄入量 [52] [53] 。此外,不可溶性纤维素在结肠中发酵产生的短链脂肪酸还可以降低胰岛素抵抗水平 [54] [55] [56] ,而血液中短链脂肪酸的增加可以通过抑制GLUT 4转运体来抑制葡萄糖代谢 [57] [58] 。饮食中镁的摄入量也可以降低2型糖尿病的发病率 [46] [59] 。低钾血症会导致胰岛素受体上的酪氨酸激酶减少,损害胰岛素的作用,引发胰岛素抵抗 [60] 。膳食纤维可能有助于改善碳水化合物代谢,但目前仍存在一些不一致的研究结果,需要进一步研究膳食纤维是否有助于控制血糖水平 [61] 。

综上,高纤维饮食是糖尿病管理的重要组成部分,可改善血糖控制、血脂、体重和炎症的测量,并降低过早死亡率 [62] 。这些益处不仅限于任何纤维类型或任何类型的糖尿病,并且在摄入量范围内很明显,尽管观察到从低摄入量到中度或高摄入量的人血糖控制有更大的改善。基于这些发现,将每日纤维摄入量增加15克或35克可能是一个合理的目标,有望降低成人糖尿病患者过早死亡的风险。

4. 常见的膳食纤维

4.1. 阿拉伯木聚糖

阿拉伯木聚糖(AX)是半纤维素的一部分,由木糖主链和阿拉伯糖侧链组成,是全谷物中膳食纤维的主要成分。在小麦中,AX约占麸皮中NSP的64%~69%。AX约占麸皮中NSP的64%~69%,在胚乳中约占88% [62] 。在胃肠道中,AX的作用像一种可溶性纤维,被结肠微生物群快速发酵。研究表明摄入富含AX的面包可以降低餐后血糖水平,控制糖耐量。这可能是因为胃肠道腔内纤维的高粘度,减缓了葡萄糖的吸收速率。此外,用富含AX的面粉制成的面包的血糖指数相对较低,约为59。全麦面粉虽然纤维含量很高,但其血糖指数约为99。而且富含阿拉伯木聚糖的面包与全麦面包的口感和嫩度相似,没有显著差异。

4.2. 菊粉

菊粉是一种果糖单体的聚合物,存在于多种食物中,可用于改善口感和作为功能性食品成分。其营养特性使其在某些应用中受到关注。菊粉主要由-键组成,小肠内的酶水解最小。因此,它进入大肠,几乎完全被菌群代谢。发酵时,菊粉倾向于产生丙酸,降低醋酸与丙酸的比例,这可能导致总胆固醇和低密度脂蛋白的降低,从而降低冠心病的风险。

菊粉也被证明可以促进大肠健康,刺激双歧杆菌的生长,同时限制潜在的致病菌如大肠杆菌、沙门氏菌和李斯特菌的生长 [63] 。Rafter等人 [64] 同意这些发现,并认为它们是菊粉降低结肠癌相关生物化合物的潜在机制。这可能对溃疡性结肠炎和艰难梭菌感染等疾病有益。此外,菊粉可能通过增加对矿物质的吸收来发挥作用,包括增加钙吸收和增加骨密度。最后,菊粉还可以通过增加饱腹感来预防和治疗肥胖,减少总能量摄入 [65] 。

4.3. β-葡聚糖

β-葡聚糖是一种线性多糖,由葡萄糖单体以β (1→4)和β (1→3)连接组成,主要存在于大麦和燕麦的胚乳中 [66] 。β-葡聚糖的益处来自其对脂质代谢和餐后葡萄糖代谢的影响。许多研究表明,β-葡聚糖的摄入量与胆固醇水平成反比关系。最近的研究发现每天摄入5克的β-葡聚糖可以显著降低高胆固醇血症和健康受试者的血清总胆固醇和低密度脂蛋白胆固醇。此外,β-葡聚糖也被报道能降低糖尿病和健康受试者的餐后血糖和胰岛素反应 [67] 。

然而,并非所有研究都认同β-葡聚糖对脂质和葡萄糖的吸收/代谢的影响 [68] 。Keogh等人观察到,8.1~11.9克的大麦β-葡聚糖处理对轻度高脂血症成人的总胆固醇或低密度脂蛋白胆固醇没有影响。Cuent-Anceau等人不仅观察到在汤中添加3.5克燕麦β-葡聚糖不会改变血脂谱,也不会改变餐后血糖水平。

研究之间的不一致性可能是由于β-葡聚糖的分子量和溶解度 [69] 。分子量可以通过包括食品加工和β-葡聚糖的来源等几个因素来改变。苏奥蒂等人指出,加热,如挤压和烘烤,都降低了β-葡聚糖的分子量,从而降低了其在胃肠道内的黏度。Keogh等人从热水提取过程中获得了β-葡聚糖,这可能降低了MW,进而降低了肠道黏度。

不同来源的β-葡聚糖的分子量和粘度也可能不同 [70] 。燕麦是休威森和梅金斯克及诺曼等人的研究中的β-葡聚糖来源,而Keogh等人利用的是大麦。比奥克伦德等人发现,来自燕麦的5克β-葡聚糖显著降低了血清胆固醇、餐后葡萄糖和胰岛素水平,而来自大麦的相同水平的β-葡聚糖则没有产生任何影响 [71] 。

总的来说,虽然一些研究表明β-葡聚糖具有降低胆固醇和血糖的益处,但是其他研究并未得出同样的结论。这可能是由于β-葡聚糖的分子量、溶解度以及不同来源的影响 [72] 。未来还需要更多的研究来深入探讨这些因素对β-葡聚糖生理效应的影响。

4.4. 果胶

果胶是一种线性聚合物,由α (1→4)键连接的半乳糖醛酸组成。该主干被α (1→2)鼠李糖吡糖单位取代,侧链包含中性糖如半乳糖、甘露糖、葡萄糖和木糖。果胶是一种水溶性多糖,不易被小肠酶消化,但易被结肠微生物菌群降解。柑橘类水果含有0.5%到3.5%的果胶,商业提取的果胶常用于需要凝胶或增稠剂的食品应用 [73] 。

在胃肠道内,果胶具有形成凝胶或使溶液变稠的能力,这被认为对其对健康的许多有益影响起作用,包括预防倾倒综合征、改善胆固醇和脂质代谢,以及预防和控制糖尿病 [74] 。果胶还具有治疗或预防其他疾病的能力,如肠道感染、动脉粥样硬化、癌症和肥胖。

最近的临床研究表明,口服给儿童和婴儿补充果胶可以减少急性肠道感染,并显著减缓腹泻 [75] 。这被认为是由于致病菌的减少,如志贺氏菌、沙门氏菌、克雷伯氏菌、肠杆菌、变形杆菌和柠檬酸杆菌。此外,果胶在体外刺激某些双歧杆菌和乳酸菌菌株的生长,这些细菌与大肠的健康直接相关 [76] 。

果胶还能够增加高脂血症男性中的纤维蛋白通透性和降低纤维蛋白抗拉强度,这被认为与醋酸盐的生产有关。此外,果胶能够结合并降低喂食转基因柑橘果胶的大鼠的肿瘤生长和癌细胞迁移,这被认为是果胶与半乳糖凝集素-3结合并抑制其某些功能的结果 [77] 。

4.5. 糠

麸质是谷物的外层结构,由核层表皮、种皮、果皮和糊粉层组成。糊粉层主要由纤维素组成,内有难以消化的细胞。燕麦麸被定义为研磨干净的燕麦片或燕麦片产生的食品,需分离得到的燕麦面粉,且燕麦麸分数不超过原始原料的50%,总倍他鲁糖含量至少5.5% (干重基)和总膳食纤维含量至少16.0% (干重基),且总二芳纤维的至少三分之一是可溶性纤维。从各种谷物中提取的麸质对餐后血糖水平、血清胆固醇、结肠癌和体重都有影响,但具体影响因来源不同而异。

一项针对健康成年人的研究显示,31克黑麦皮能降低餐后峰值血糖水平35%。这可能是由于黑麦麸皮中AX含量较高,增加肠道黏度,减缓营养物质的吸收 [78] 。另一项研究观察到,稳定米糠能降低1型和2型糖尿病患者的空腹血糖水平。这可能是由于肠道黏度增加,也可能是由于碳水化合物/热量摄入量减少的结果。此外,麸皮摄入量每增加20 g/d,体重就会减少0.80磅,即使在调整了其他因素后,这一数据仍然显著。黑麦麸皮还增加回肠脂肪、氮和能量的排泄。此外,增加麸皮摄入量还能降低健康成年男性患冠心病的风险,这可能是由于胆固醇水平降低,而胆固醇水平的降低可能是由于胆汁酸合成的增加 [79] 。

4.6. 纤维素

纤维素是β连接的葡萄糖单体的线性链,构成绿色植物和蔬菜细胞壁。它不溶于水,对小肠消化酶惰性。但在大肠中发酵可产生SCFA。分为结晶态和非晶态。改性纤维素如粉末状、微晶纤维素和羟丙基甲基纤维素已用于食品。研究不多,大鼠实验将被讨论。纤维素药丸被认为可减少热量摄入,但缺乏人类研究支持。动物研究显示,增加膳食纤维素可减少每日能量摄入。许多模型评估纤维素对血糖和胰岛素水平影响,数据矛盾。天然纤维素可降低猫、大鼠和狗餐后血糖和胰岛素水平 [80] ,但在猪和人上无影响 [81] 。改性纤维素数据更一致,微晶纤维素可降低猪和大鼠血糖水平 [82] 。经过修饰的纤维素也影响脂质代谢,连续四周服用HV-HPMC可显著降低胆固醇 [83] 。改性纤维素可能比天然纤维素更有益,增加胃肠道黏度,延缓营养物质吸收,增加胆汁酸排泄 [84] 。

4.7. 抗性淀粉

抗性淀粉(RS)指在小肠内无法消化的淀粉,具有类似可溶性纤维的特性,不影响食用感和可食性。它结合了饮食纤维/全谷类的健康益处和精制碳水化合物的感官体验 [85] 。

抗性淀粉分为四种基本类型:RS1 (包围不可消化植物基质的淀粉颗粒)、RS2 (天然存在,如土豆和玉米)、RS3 (烹饪和冷却制成的结晶淀粉)和RS4 (化学修饰的淀粉,自然界不存在)。研究表明 [86] ,餐后血糖和胰岛素水平下降,但因抗性淀粉类型和使用差异,效果难以完全理解。补充抗性淀粉可以降低健康成人的血糖和胰岛素水平抗性淀粉作为饮食干预,可以限制糖尿病肾病的进展 [87] 。

长期摄入抗性淀粉可能降低空腹胆固醇和甘油三酯水平。研究显示高直链淀粉玉米消耗能量的男性,空腹胆固醇和甘油三酯水平显著降低。蔗糖及果糖与饱和脂肪酸的相互作用可能在促进血清甘油三酯水平方面起重要作用 [88] 。在这项研究中,Porikos和Van Itallie安排志愿者(21名男性,15名非肥胖和6名肥胖)在一个代谢病房30天,在那里他们随意接受了一种含有25至30卡路里百分比蔗糖的常规食品的基线饮食18天和含有不到10卡路里百分比蔗糖的卡路里稀释饮食12天。当受试者食用基线饮食时,血清谷丙转氨酶(SGPT)和血清谷草和谷丙转氨酶(SGOT)水平显着上升,并在卡路里稀释的阿斯巴甜饮食中恢复到原始水平。在基线饮食中,两名受试者出现了明显异常的转氨酶水平,他们不得不退出研究。饮食中各种成分与酶变化之间的相关性表明,过剩的热量和高的蔗糖摄入量在酶水平升高方面都起了一定的作用。当受试者从基线饮食转换为卡路里稀释饮食时,血清甘油三酯水平也显着降低。

抗性淀粉对血清脂质谱的影响存在矛盾 [89] 。评估表明,抗性淀粉可能增加脂肪氧化和储存,但对具体机制尚不明确。一些研究表明,RS2在进食后5小时内增加脂肪氧化,但这可能与热值和可代谢能的显著减少有关。另一些研究发现,将RS2添加到习惯性饮食中,导致皮下腹部腹膜脂肪释放的非酯化脂肪酸(NEFA)和甘油显著减少 [90] 。

5. 总结

膳食纤维是一种抵抗消化和吸收的碳水化合物,可能在大肠中进行微生物发酵。这个定义是其消费水平与可能的健康益处之间的关联的基础。膳食纤维包含许多不同的成分,如阿拉伯木聚糖、菊粉、β-葡聚糖、果胶、麸皮和抗性淀粉,这些成分已在改善人类健康方面发挥重要作用。当前的研究正在关注这些成分,尽管需要进一步研究以更好理解特定的健康声明和涉及的机制。

大量研究表明,纤维摄入量与冠状动脉心脏病和几种类型癌症的风险呈反比关系。因此,FDA采纳并公布了增加膳食纤维摄入量可降低冠状动脉心脏病和癌症发病率的说法。尽管背后的机制尚不清楚,但据认为这归因于几个因素,如增加胆汁酸排泄、减少热量摄入、增加短链脂肪酸生产、致癌物质结合效应、增加抗氧化剂以及增加维生素和矿物质。

尽管FDA尚未采用,但膳食纤维被认为在肥胖症和糖尿病等状况中发挥作用。大多数关于膳食纤维的研究报告显示,随着摄入量的增加,这两种状况有所减轻。

膳食纤维的消化和粘度特性可能是影响糖尿病和肥胖症风险的潜在作用方式。这些机制似乎会降低营养物质的吸收,从而减少可代谢能量。膳食纤维还可能由于其较低的能量密度而降低食物的总体能量。

在某些膳食纤维研究领域仍需要进一步研究。特别感兴趣的是纤维成分如β-葡聚糖、阿拉伯木聚糖、抗性淀粉等。这些亚组分可能有助于更好地理解膳食纤维的健康益处及背后的机制。

文章引用

杨岩宁,杨正南,吴 亮. 膳食纤维与人类健康的研究进展
Research Progress of Dietary Fiber and Human Health[J]. 临床医学进展, 2023, 13(10): 15372-15383. https://doi.org/10.12677/ACM.2023.13102151

参考文献

  1. 1. Abrams, S.A., Griffin, I.J., Hawthorne, K.M., Liang, L., Gunn, S.K., Darlington, G. and Ellis, K.J. (2005) A Combina-tion of Prebiotic Short- and Long-Chain Inulin-Type Fructans Enhances Calcium Absorption and Bone Mineralization in Young Adolescents. The American Journal of Clinical Nutrition, 82, 471-476. https://doi.org/10.1093/ajcn/82.2.471

  2. 2. James, D., Umekwe, N., Edeoga, C., Nyenwe, E. and Dagogo-Jack, S. (2020) Multi-Year Reproducibility of Hyperinsulinemic Euglycemic Clamp-Derived Insulin Sensitivity in Free-Living Adults: Association with Incident Prediabetes in the POP-ABC Study. Metabolism, 109. https://doi.org/10.1016/j.metabol.2020.154263

  3. 3. Cugnet-Anceau, C., Nazare, J.-A., Biorklund, M., Le Coquil, E., Sassolas, A., Sothier, M., Holm, J., Landin-Olsson, M., Önning, G., Laville, M. and Moulin, P. (2010) A Controlled Study of Consumption of β-Glucan-Enriched Soups for 2 Months by Type 2 Diabetic Free-Living Subjects. British Journal of Nutrition, 103, 422-428. https://doi.org/10.1017/S0007114509991875

  4. 4. Triplehorn, C. and Millard, P.S. (2002) A Rice-Based Diet with Green Banana or Pectin Reduced Diarrhea in Infants better than A Rice-Alone Diet. ACP Journal Club, 136, 67. https://doi.org/10.7326/ACPJC-2002-136-2-067

  5. 5. Lu, Z.X., Walker, K.Z., Muir, J.G., Mascara, T. and O’Dea, K. (2000) Arabinoxylan Fiber, a Byproduct of Wheat Flour Processing, Reduces the Postprandial Glucose Response in Normoglycemic Subjects. The American Journal of Clinical Nutrition, 71, 1123-1128. https://doi.org/10.1093/ajcn/71.5.1123

  6. 6. Boushey, C., Ard, J., Bazzano, L., Heymsfield, S., Mayer-Davis, E., Sabaté, J., Snetselaar, L., Van Horn, L., Schneeman, B., English, L.K., Bates, M., Callahan, E., Butera, G., Terry, N. and Obbagy, J. (2020) Dietary Patterns and Breast, Colorectal, Lung, and Prostate Cancer: A Systematic Review. USDA Nutrition Evidence Systematic Review, Alexandria. https://doi.org/10.52570/NESR.DGAC2020.SR0104

  7. 7. Melina, V., Craig, W. and Levin, S. (2016) Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. Journal of the Academy of Nutrition and Dietetics, 16, 1970-1980. https://doi.org/10.1016/j.jand.2016.09.025

  8. 8. Lu, Z.X., Walker, K.Z., Muir, J.G. and O’Dea, K. (2004) Arabinoxylan Fibre Improves Metabolic Control in People with Type II Diabetes. European Journal of Clinical Nutrition, 58, 621-628. https://doi.org/10.1038/sj.ejcn.1601857

  9. 9. Ma, Y.S., Griffith, J.A., Chasan-Taber, L., Olendzki, B.C., Jackson, E., Stanek, E.J., Li, W.J., Pagoto, S.L., Hafner, A.R. and Ockene, I.S. (2006) Association be-tween Dietary Fiber and Serum C-Reactive Protein. The American Journal of Clinical Nutrition, 83, 760-766. https://doi.org/10.1093/ajcn/83.4.760

  10. 10. Adlercreutz, H., Hamalainen, E., Gorbach, S.L., Goldin, B.R., Woods, M.N., Brunson, L.S. and Dwyer, J.T. (1987) Association of Diet and Sex-Hormones in Relation to Breast-Cancer. Eu-ropean Journal of Cancer and Clinical Oncology, 23, 1725-1726. https://doi.org/10.1016/0277-5379(87)90459-7

  11. 11. Li, Y., Huang, Y., Liang, H., Wang, W., Li, B., Liu, T., Huang, Y., Zhang, Z., Qin, Y., Zhou, X., Wang, R. and Huang, T. (2023) The Roles and Applications of Short-Chain Fatty Ac-ids Derived from Microbial Fermentation of Dietary Fibers in Human Cancer. Frontiers in Nutrition, 10, Article 1243390. https://doi.org/10.3389/fnut.2023.1243390

  12. 12. Östman, E.M., Liljeberg Elmstahl, H.G. and Bjorck, I.M. (2002) Barley Bread Containing Lactic Acid Improves Glucose Tolerance at a Subsequent Meal in Healthy Men and Women. The Journal of Nutrition, 132, 1173-1175. https://doi.org/10.1093/jn/132.6.1173

  13. 13. Reiser, S., Powell, A.S., Scholfield, D.J., Panda, P., Ellwood, K.C. and Canary, J.J. (1989) Blood Lipids, Lipoproteins, Apoproteins, and Uric Acid in Men Fed Diets Containing Fructose or High-Amylose Cornstarch. The American Journal of Clinical Nutrition, 49, 832-839. https://doi.org/10.1093/ajcn/49.5.832

  14. 14. Wong, J.M. and Jenkins, D.J. (2007) Carbohydrate Digestibility and Metabolic Effects. The Journal of Nutrition, 137, 2539S-2546S. https://doi.org/10.1093/jn/137.11.2539S

  15. 15. Zong, G., Liu, G., Willett, W.C., Wanders, A.J., Alssema, M., Zock, P.L., Hu, F.B. and Sun, Q. (2019) Associations between Linoleic Acid Intake and Incident Type 2 Diabetes among U.S. Men and Women. Diabetes Care, 42, 1406-1413. https://doi.org/10.2337/dc19-0412

  16. 16. Meyer, K.A., Kushi, L.H., Jacobs Jr., D.R., Slavin, J., Sellers, T.A. and Folsom, A.R. (2000) Carbohydrates, Dietary Fiber, and Incident Type 2 Diabetes in Older Women. The American Jour-nal of Clinical Nutrition, 71, 921-930. https://doi.org/10.1093/ajcn/71.4.921

  17. 17. Takahashi, R., Hirasawa, Y. and Nichinari, K. (2003) Cellulose and Its Derivatives. Foods & Food Ingredients Journal of Japan, 208, 824.

  18. 18. Biörklund, M., van Rees, A., Mensink, R.P. and Önning, G. (2005) Changes in Serum Lipids and Postprandial Glucose and Insulin Concentrations after Consump-tion of Beverages with β-Glucans from Oats or Barley: A Randomised Dose-Controlled Trial. European Journal of Clinical Nutrition, 59, 1272-1281. https://doi.org/10.1038/sj.ejcn.1602240

  19. 19. Koh-Banerjee, P., Franz, M.V., Sampson, L., Liu, S.M., Jacobs, D.R., Spiegelman, D., Willett, W. and Rimm, E. (2004) Changes in Whole-Grain, Bran, and Cereal Fiber Consumption in Relation to 8-Y Weight Gain among Men. The American Journal of Clinical Nutrition, 80, 1237-1245. https://doi.org/10.1093/ajcn/80.5.1237

  20. 20. Ferguson, L.R., Chavan, R.R. and Harris, P.J. (2001) Changing Concepts of Dietary Fiber: Implications for Carcinogenesis. Nutrition and Cancer, 39, 155-169. https://doi.org/10.1207/S15327914nc392_1

  21. 21. Kerckhoffs, D.A.J.M., Hornstra, G. and Mensink, R.P. (2003) Cholesterol-Lowering Effect of β-Glucan from Oat Bran in Mildly Hypercholesterolemic Subjects May Decrease When β-Glucan Is Incorporated into Bread and Cookies. The American Journal of Clinical Nutrition, 78, 221-227. https://doi.org/10.1093/ajcn/78.2.221

  22. 22. Brown, L., Rosner, B., Willett, W.W. and Sacks, F.M. (1999) Choles-terol-Lowering Effects of Dietary Fiber: A Meta- Analysis. The American Journal of Clinical Nutrition, 69, 30-42. https://doi.org/10.1093/ajcn/69.1.30

  23. 23. Zhang, J.X., Lundin, E., Hallmans, G., Adlercreutz, H., Andersson, H., Bosaeus, I., Aman, P., Stenling, R. and Dahlgren, S. (1994) Effect of Rye Bran on Excretion of Bile Acids, Cholesterol, Nitrogen, and Fat in Human Subjects with Ileostomies. The American Journal of Clinical Nutrition, 59, 389-394. https://doi.org/10.1093/ajcn/59.2.389

  24. 24. Rabbani, G.H., Teka, T., Zaman, B., Majid, N., Khatun, M. and Fuchs, G.J. (2001) Clinical Studies in Persistent Diarrhea: Dietary Management with Green Banana or Pectin in Bangladeshi Children. Gastroenterology, 121, 554-560. https://doi.org/10.1053/gast.2001.27178

  25. 25. Olano-Martin, E., Gibson, G.R. and Rastell, R.A. (2002) Comparison of the in Vitro Bifidogenic Properties of Pectins and Pectic-Oligosaccharides. Journal of Applied Microbiology, 93, 505-511. https://doi.org/10.1046/j.1365-2672.2002.01719.x

  26. 26. Behall, K.M., Scholfield, D.J., Hallfrisch, J.G. and Liljeberg-Elmstahl, H.G.M. (2006) Consumption of Both Resistant Starch and β-Glucan Improves Postprandial Plasma Glucose and Insulin in Women. Diabetes Care, 29, 976-981. https://doi.org/10.2337/dc05-2012

  27. 27. Al-Tamimi, E.K., Sieb, P.A., Snyder, B. and Haub, M.D. (2010) Con-sumption of Cross-Linked Resistant Starch (RS4XL) on Glucose and Insulin Responses in Humans. Journal of Nutrition and Metabolism, 2010, Article ID: 651063. https://doi.org/10.1155/2010/651063

  28. 28. Takahashi, T., Karita, S., Ogawa, N. and Goto, M. (2005) Crystalline Cellulose Reduces Plasma Glucose Concentrations and Stimulates Water Absorption by Increasing the Digesta Viscosity in Rats. The Journal of Nutrition, 135, 2405-2410. https://doi.org/10.1093/jn/135.10.2405

  29. 29. Jenkins, D.J.A., Leeds, A.R., Gassull, M.A., Cochet, B. and Alberti, K.G.M.M. (1977) Decrease in Postprandial Insulin and Glucose Concentrations by Guar and Pectin. Annals of Internal Medicine, 86, 20-23. https://doi.org/10.7326/0003-4819-86-1-20

  30. 30. Naghipour, A., Amini-Salehi, E., Orang Gorabzarmakhi, M., Shahdkar, M., Fouladi, B., Alipourfard, I. and Sanat, Z.M. (2023) Effects of Gut Microbial Therapy on Lipid Profile in Individuals with Non-Alcoholic Fatty Liver Disease: An Umbrella Meta-Analysis Study. Systematic Reviews, 12, Article No. 144. https://doi.org/10.1186/s13643-023-02299-x

  31. 31. Porikos, K.P. and Vanitallie, T.B. (1983) Diet-Induced Changes in Serum Transaminase and Triglyceride Levels in Healthy Adult Men: Role of Sucrose and Excess Calories. The American Journal of Medicine, 75, 624-630. https://doi.org/10.1016/0002-9343(83)90444-8

  32. 32. Hu, F.B., Manson, J.E., Stampfer, M.J., Colditz, G., Liu, S., Solomon, C.G. and Willett, W.C. (2001) Diet, Lifestyle, and the Risk of Type 2 Diabetes Mellitus in Women. New Eng-land Journal of Medicine, 45, 790-797. https://doi.org/10.1056/NEJMoa010492

  33. 33. Story, J.A., Furumoto, E.J. and Buhman, K.K. (1997) Dietary Fiber and Bile Acid Metabolism—An Update. In: Kritchevsky, D. and Bonfield, C., Eds., Dietary Fiber in Health and Disease. Advances in Experimental Medicine and Biology, Vol. 427, Springer, Boston, 259-66. https://doi.org/10.1007/978-1-4615-5967-2_27

  34. 34. Nomura, A.M., Hankin, J.H., Henderson, B.E., Wilkens, L.R., Murphy, S.P., Pike, M.C., Le Marchand, L., Stram, D.O., Monroe, K.R. and Kolonel, L.N. (2007) Dietary Fiber and Colorectal Cancer Risk: The Multiethnic Cohort Study. Cancer Causes & Control, 18, 753-764. https://doi.org/10.1007/s10552-007-9018-4

  35. 35. Schneeman, B.O. (1998) Dietary Fiber and Gastrointestinal Func-tion. Nutrition Research, 18, 625-632. https://doi.org/10.1016/S0271-5317(98)00049-9

  36. 36. Pereira, M.A., O’Reilly, E., Augustsson, K., Fraser, G.E., Goldbourt, U., Heitmann, B.L., Hallmans, G., Knekt, P., Liu, S.M., Pietinen, P., Spiegelman, D., Stevens, J., Virtamo, J., Willett, W.C. and Ascherio, A. (2004) Dietary Fiber and Risk of Coronary Heart Disease—A Pooled Analysis of Cohort Studies. Archives of Internal Medicine, 164, 370-376. https://doi.org/10.1001/archinte.164.4.370

  37. 37. Du, H., van der A, D.L., Boshuizen, H.C., Forouhi, N.G., Ware-ham, N.J., Halkjær, J., et al. (2010) Dietary Fiber and Subsequent Changes in Body Weight and Waist Circumference in European Men and Women. The American Journal of Clinical Nutrition, 91, 329-336. https://doi.org/10.3945/ajcn.2009.28191

  38. 38. Baer, D.J., Rumpler, W.V., Miles, C.W. and Fahey, G.C. (1997) Di-etary Fiber and Subsequent Changes in Body Weight and Waist Circumference in European Men and Women. The Journal of Nutrition, 127, 579-586. https://doi.org/10.1093/jn/127.4.579

  39. 39. Park, Y., Brinton, L.A., Subar, A.F., Hollenbeck, A. and Schatzkin, A. (2009) Dietary Fiber Intake and Risk of Breast Cancer in Postmenopausal Women: The National Institutes of Health-AARP Diet and Health Study. The American Journal of Clinical Nutrition, 90, 664-671. https://doi.org/10.3945/ajcn.2009.27758

  40. 40. Streppel, M.T., Ocke, M.C., Boshuizen, H.C., Kok, F.J. and Kro-mhout, D. (2008) Dietary Fiber Intake in Relation to Coronary Heart Disease and All-Cause Mortality over 40 y: The Zutphen Study. The American Journal of Clinical Nutrition, 88, 1119-1125. https://doi.org/10.1093/ajcn/88.4.1119

  41. 41. Schäfer, A.-L., Eichhorst, A., Hentze, C., Kraemer, A.N., Amend, A., Sprenger, D.T.L., Fluhr, C., Finzel, S., Daniel, C., Salzer, U., Rizzi, M., Voll, R.E. and Chevalier, N. (2021) Low Die-tary Fiber Intake Links Development of Obesity and Lupus Pathogenesis. Frontiers in Immunology, 12, Article 696810. https://doi.org/10.3389/fimmu.2021.696810

  42. 42. Salmerón, J., Ascherio, A., Rimm, E.B., Colditz, G.A., Spiegel-man, D., Jenkins, D.J., Stampfer, M.J., Wing, A.L. and Willett, W.C. (1997) Dietary Fiber, Glycemic Load, and Risk of NIDDM in Men. Diabetes Care, 20, 545-550. https://doi.org/10.2337/diacare.20.4.545

  43. 43. Young, G.P., Hu, Y., Le Leu, R.K. and Nyskohus, L. (2005) Dietary Fibre and Colorectal Cancer: A Model for Environment—Gene Interactions. Molecular Nutrition & Food Research, 49, 571-584. https://doi.org/10.1002/mnfr.200500026

  44. 44. Jenkins, D.J., Wolever, T.M., Leeds, A.R., Gassull, M.A., Haisman, P., Dilawari, J., Goff, D.V., Metz, G.L. and Alberti, K.G. (1978) Dietary Fibres, Fibre Analogues, and Glucose Toler-ance: Importance of Viscosity. British Medical Journal, 1, 1392-1394. https://doi.org/10.1136/bmj.1.6124.1392

  45. 45. Howe, J.C., Rumpler, W.V. and Behall, K.M. (1996) Dietary Starch Composition and Level of Energy Intake Alter Nutrient Oxidation in “Carbohydrate-Sensitive” Men. The Journal of Nu-trition, 126, 2120-2129. https://doi.org/10.1093/jn/126.9.2120

  46. 46. Rafter, J., Bennett, M., Caderni, G., Clune, Y., Hughes, R., Karlsson, P.C., Klinder, A., O’Riordan, M., O’Sullivan, G, C., Pool-Zobel, B., Rechkemmer, G., Roller, M., Rowland, I., Salva-dori, M., Thijs, H., Loo, J., Watzl, B. and Collins, J.K. (2007) Dietary Synbiotics Reduce Cancer Risk Factors in Poly-pectomized and Colon Cancer Patients. The American Journal of Clinical Nutrition, 85, 488-496. https://doi.org/10.1093/ajcn/85.2.488

  47. 47. Behall, K.M., Scholfield, D.J., Yuhaniak, I. and Canary, J. (1989) Diets Containing High Amylose vs Amylopectin Starch—Effects on Metabolic Variables in Human-Subjects. The American Journal of Clinical Nutrition, 49, 337-344. https://doi.org/10.1093/ajcn/49.2.337

  48. 48. Haub, M.D., Hubach, K.L. and Al-Tamimi, E.K. (2010) Different Types of Resistant Starch Elicit Difference Glucose Responses in Humans. Journal of Nutrition and Metabolism, 2010, Article ID: 230501. https://doi.org/10.1155/2010/230501

  49. 49. Nelson, R.W., Scott-Moncrieff, J.C., Feldman, E.C., DeVries-Concannon, S.E., Kass, P.H., Davenport, D.J., Kiernan, C.T. and Neal, L.A. (2000) Effect of Dietary Insoluble Fiber on Control of Glycemia in Cats with Naturally Acquired Diabetes Mellitus. Journal of the American Veterinary Medical Association, 216, 1082-1088. https://doi.org/10.2460/javma.2000.216.1082

  50. 50. Nelson, R.W., Duesberg, C.A., Ford, S.L., Feldman, E.C., Davenport, D.J., Kiernan, C. and Neal, L. (1998) Effect of Dietary Insoluble Fiber on Control of Glycemia in Dogs with Naturally Acquired Diabetes Mellitus. Journal of the American Veterinary Medical Association, 212, 380-386.

  51. 51. Ferrannini, E., Barrett, E.J., Bevilacqua, S. and DeFronzo, R.A. (1983) Effect of Fatty Acids on Glucose Production and Utilization in Man. Journal of Clinical Investigation, 72, 1737-1747. https://doi.org/10.1172/JCI111133

  52. 52. Żyła, E., Dziendzikowska, K., Kamola, D., Wilczak, J., Sapierzyński, R., Harasym, J. and Gromadzka-Ostrowska, J. (2021) Anti-Inflammatory Activity of Oat Beta-Glucans in a Crohn’s Disease Model: Time- and Molar Mass-Dependent Effects. International Journal of Molecular Sciences, 22, 4485. https://doi.org/10.3390/ijms22094485

  53. 53. Brighenti, F., Castellani, G., Benini, L., Casiraghi, M.C., Leopardi, E., Crovetti, R. and Testolin, G. (1995) Effect of Neutralized and Native Vinegar on Blood-Glucose and Acetate Responses to a Mixed Meal in Healthy-Subjects. European Journal of Clinical Nutrition, 49, 242-247.

  54. 54. Lawaetz, O., Black-burn, A.M., Bloom, S.R., Aritas, Y. and Ralphs, D.N.L. (1983) Effect of Pectin on Gastric-Emptying and Gut Hor-mone-Release in the Dumping Syndrome. Scandinavian Journal of Gastroenterology, 18, 327-336. https://doi.org/10.3109/00365528309181602

  55. 55. Amaral, L., Morgan, D., Stephen, A.M. and Whiting, S. (1992) Effect of Propionate on Lipid-Metabolism in Healthy- Human Subjects. The FASEB Journal, 6, 1655.

  56. 56. Renteria-Flores, J.A., Johnston, L.J., Shurson, G.C. and Gallaher, D.D. (2008) Effect of Soluble and Insol-uble Fiber on Energy Digestibility, Nitrogen Retention, and Fiber Digestibility of Diets Fed to Gestating Sows. Journal of Animal Science, 86, 2568-2575. https://doi.org/10.2527/jas.2007-0375

  57. 57. Jenkins, D.J.A., Kendall, C.W.C., Augustin, L.S.A., Martini, M.C., Axelsen, M., Faulkner, D., Vidgen, E., Parker, T., Lau, H., Connelly, P.W., Teitel, J., Singer, W., Vandenbroucke, A.C., Leiter, L.A. and Josse, R.G. (2002) Effect of Wheat Bran on Glycemic Control and Risk Factors for Cardiovascular Disease in Type 2 Diabetes. Diabetes Care, 25, 1522-1528. https://doi.org/10.2337/diacare.25.9.1522

  58. 58. Törrönen, R., Kansanen, L., Uusitupa, M., Hänninen, O., Myllymäki, O., Härkönen, H. and Mälkki, Y. (1992) Effects of an Oat Bran Concentrate on Serum Lipids in Free-Living Men with Mild to Moderate Hypercholesterolaemia. European Journal of Clinical Nutrition, 46, 621-627.

  59. 59. Schwartz, S.E. and Levine, G.D. (1980) Effects of Dietary Fiber on Intestinal Glucose Absorption and Glucose Tolerance in Rats. Gastro-enterology, 79, 833-836. https://doi.org/10.1016/0016-5085(80)90438-2

  60. 60. Nunes, C.S. and Malmlof, K. (1992) Effects of Guar Gum and Cellulose on Glucose Absorption, Hormonal Release and Hepatic Metabolism in the Pig. Brit-ish Journal of Nutrition, 68, 693-700. https://doi.org/10.1079/BJN19920126

  61. 61. Maki, K.C., Davidson, M.H., Witchger, M.S., Dicklin, M.R. and Subbaiah, P.V. (2007) Effects of High-Fiber Oat and Wheat Cereals on Postprandial Glucose and Lipid Responses in Healthy Men. International Journal for Vitamin and Nutrition Research, 77, 347-356. https://doi.org/10.1024/0300-9831.77.5.347

  62. 62. Reynolds, A.N., Akerman, A.P. and Mann, J. (2020) Dietary Fi-bre and Whole Grains in Diabetes Management: Systematic Review and Meta-Analyses. PLOS Medicine, 17, e1003053. https://doi.org/10.1371/journal.pmed.1003053

  63. 63. Isken, F., Klaus, S., Osterhoff, M., Pfeiffer, A.F.H. and Weickert, M.O. (2010) Effects of Long-Term Soluble vs. Insoluble Dietary Fiber Intake on High-Fat Diet-Induced Obe-sity in C57BL/6J Mice. The Journal of Nutritional Biochemistry, 21, 278-284. https://doi.org/10.1016/j.jnutbio.2008.12.012

  64. 64. Keenan, M.J., Zhou, J., McCutcheon, K.L., Raggio, A.M., Bateman, H.G., Todd, E., Jones, C.K., Tulley, R.T., Melton, S., Martin, R.J. and Hegsted, M. (2006) Effects of Resistant Starch, a Non-Digestible Fermentable Fiber, on Reducing Body Fat. Obesity, 14, 1523-1534. https://doi.org/10.1038/oby.2006.176

  65. 65. Qureshi, A.A., Sami, S.A. and Khan, F.A. (2002) Effects of Stabilized Rice Bran, Its Soluble and Fiber Fractions on Blood Glucose Levels and Serum Lipid Parameters in Humans with Dia-betes Mellitus Types I and II. The Journal of Nutritional Biochemistry, 13, 175-187. https://doi.org/10.1016/S0955-2863(01)00211-X

  66. 66. Griffin, I.J., Hicks, P.M.D., Heaney, R.P. and Abrams, S.A. (2003) Enriched Chicory Inulin Increases Calcium Absorption Mainly in Girls with Lower Calcium Absorption. Nutri-tion Research, 23, 901-909. https://doi.org/10.1016/S0271-5317(03)00085-X

  67. 67. Davidson, M.H. and McDonald, A. (1998) Fiber: Forms and Functions. Nutrition Research, 18, 617-624. https://doi.org/10.1016/S0271-5317(98)00048-7

  68. 68. Terry, P., Giovannucci, E., Michels, K.B., Bergkvist, L., Hansen, H., Holmberg, L. and Wolk, A. (2001) Fruit, Vegetables, Dietary Fiber, and Risk of Colorectal Cancer. Journal of the National Cancer Institute, 93, 525-533. https://doi.org/10.1093/jnci/93.7.525

  69. 69. Kelley, D.E. and Mandarino, L.J. (2000) Fuel Selection in Human Skele-tal Muscle in Insulin Resistance: A Reexamination. Diabetes, 49, 677-683. https://doi.org/10.2337/diabetes.49.5.677

  70. 70. Low, A.G., Pittman, R.J. and Elliott, R.J. (1985) Gastric Emptying of Barley-Soya-Bean Diets in the Pig: Effects of Feeding Level, Supplementary Maize Oil, Sucrose or Cellulose, and Water Intake. British Journal of Nutrition, 54, 437-447. https://doi.org/10.1079/BJN19850129

  71. 71. Reader, D.M., O’Connell, B.S., Johnson, M.L. and Franz, M. (2002) Glycemic and Insulinemic Response of Subjects with Type 2 Di-abetes after Consumption of Three Energy Bars. Journal of the Academy of Nutrition and Dietetics, 102, 1139-1142. https://doi.org/10.1016/S0002-8223(02)90253-1

  72. 72. Schulze, M.B., Liu, S., Rimm, E.B., Manson, J.E., Willett, W.C. and Hu, F.B. (2004) Glycemic Index, Glycemic Load, and Dietary Fiber Intake and Incidence of Type 2 Diabetes in Younger and Middle-Aged Women. The American Journal of Clinical Nutrition, 80, 348-356. https://doi.org/10.1093/ajcn/80.2.348

  73. 73. Lightowler, H.J. and Henry, C.J. (2009) Glycemic Response of Mashed Potato Containing High-Viscocity Hydroxypropylmethylcellulose. Nutrition Research, 29, 551-557. https://doi.org/10.1016/j.nutres.2009.06.004

  74. 74. Liu, R.H. (2003) Health Benefits of Fruit and Vegetables Are from Additive and Synergistic Combinations of Phytochemicals. The American Journal of Clinical Nutrition, 78, 517-520. https://doi.org/10.1093/ajcn/78.3.517S

  75. 75. FDA (2008) Health Claims: Fiber-Contaning Grain Products, Fruits and Vegetables and Cancer. Code of Federal Regulations; Food and Drug Administration, Silver Spring, 2.

  76. 76. FDA (2008) Health Claims: Fruits, Vegetables, and Grain Products That Contain Fiber, Particularly Soluble Fi-ber, and Risk of Coronary Heart Disease. Code of Federal Regulations; Food and Drug Administration, Silver Spring, 2.

  77. 77. Li, Z., Bowerman, S. and Heber, D. (2005) Health Ramifications of the Obesity Epidemic. Surgical Clinics of North America, 85, 681-701. https://doi.org/10.1016/j.suc.2005.04.006

  78. 78. Maki, K.C., Davidson, M.H., Torri, S., Ingram, K.A., O’Mullane, J., Daggy, B.P. and Albrecht, H.H. (2000) High- Molecular-Weight Hydroxypropylmethyl-cellulose Taken with or between Meals Is Hypocholesterolemic in Adult Men. The Journal of Nutrition, 130, 1705-1710. https://doi.org/10.1093/jn/130.7.1705

  79. 79. Paolisso, G. and Barbagallo, M. (1997) Hypertension, Diabetes Mellitus, and Insulin Resistance: The Role of Intracellular Magnesium. American Journal of Hypertension, 10, 346-355. https://doi.org/10.1016/S0895-7061(96)00342-1

  80. 80. Weickert, M.O., Mohlig, M., Koebnick, C., Holst, J.J., Namsolleck, P., Ristow, M., Osterhoff, M., Rochlitz, H., Rudovich, N., Spranger, J. and Pfeiffer, A.F. (2005) Impact of Cereal Fibre on Glucose-Regulating Factors. Diabetologia, 48, 2343-2353. https://doi.org/10.1007/s00125-005-1941-x

  81. 81. Kim, H.J. and White, P.J. (2010) In Vitro Bile-Acid Binding and Fermentation of High, Medium, and Low Molecular Weight β-Glucan. Journal of Agricultural and Food Chemistry, 58, 628-634. https://doi.org/10.1021/jf902508t

  82. 82. Kim, H.J. and White, P.J. (2009) In Vitro Fermentation of Oat Flours from Typical and High β-Glucan Oat Lines. Journal of Agricultural and Food Chemistry, 57, 7529-7536. https://doi.org/10.1021/jf900788c

  83. 83. Tucker, L.A. and Thomas, K.S. (2009) Increasing Total Fiber Intake Re-duces Risk of Weight and Fat Gains in Women. The Journal of Nutrition, 139, 576-581. https://doi.org/10.3945/jn.108.096685

  84. 84. Nangia-Makker, P., Hogan, V., Honjo, Y., Baccarini, S., Tait, L., Bre-salier, R. and Raz, A. (2002) Inhibition of Human Cancer Cell Growth and Metastasis in Nude Mice by Oral Intake of Modified Citrus Pectin. Journal of the National Cancer Institute, 94, 1854-1862. https://doi.org/10.1093/jnci/94.24.1854

  85. 85. Samra, R.A. and Anderson, G.H. (2007) Insoluble Cereal Fiber Re-duces Appetite and Short-Term Food Intake and Glycemic Response to Food Consumed 75 Min Later by Healthy Men. The American Journal of Clinical Nutrition, 86, 972-979. https://doi.org/10.1093/ajcn/86.4.972

  86. 86. Robertson, M.D., Bickerton, A.S., Dennis, A.L., Vidal, H. and Frayn, K.N. (2005) Insulin-Sensitizing Effects of Dietary Resistant Starch and Effects on Skeletal Muscle and Adipose Tissue Metabolism. American Journal of Clinical Nutrition, 82, 559-567. https://doi.org/10.1093/ajcn.82.3.559

  87. 87. Jensen, M.K., Koh-Banerjee, P., Hu, F.B., Franz, M., Sampson, L., Grønbaek, M. and Rimm, E.B. (2004) Intakes of Whole Grains, Bran, and Germ and the Risk of Coronary Heart Disease in Men. The American Journal of Clinical Nutrition, 80, 1492-1499. https://doi.org/10.1093/ajcn/80.6.1492

  88. 88. Prola, L., Dobenecker, B. and Kienzle, E. (2006) Interaction between Dietary Cellulose Content and Food Intake in Cats. The Journal of Nutrition, 136, 1988-1990. https://doi.org/10.1093/jn/136.7.1988S

  89. 89. Delorme, C.B. and Wojcik, J. (1982) Interaction of Dietary-Protein with Cellulose in the Adaptation to Caloric Dilution by Weanling Rats. The Journal of Nutrition, 112, 21-28. https://doi.org/10.1093/jn/112.1.21

  90. 90. Dobenecker, B. and Kienzle, E. (1998) Interactions of Cellulose Content and Diet Composition with Food Intake and Digestibility in Dogs. The Journal of Nutrition, 128, 2674-2675. https://doi.org/10.1093/jn/128.12.2674S

期刊菜单