Advances in Clinical Medicine
Vol. 14  No. 03 ( 2024 ), Article ID: 82373 , 6 pages
10.12677/ACM.2024.143681

自主呼吸试验在早产儿拔管中的应用

成淑琪,薛江*

山东大学第二医院儿童医学中心,山东 济南

收稿日期:2024年2月8日;录用日期:2024年3月2日;发布日期:2024年3月11日

摘要

自主呼吸试验(Spontaneous Breathing Trial, SBT)是一种兼具实用性、可行性及安全性的拔管前评估自主呼吸能力的工具,可提高拔管成功率、减少机械通气时间。在成年人群中是一种成熟的、常用的撤机前评估方法,但目前在新生儿特别是早产儿中研究较少。持续气管导管内正压通气(Endotracheal Continuous Positive Airway Pressure, ET-CPAP)法SBT是早产儿中研究最多的方法,具有较好的敏感性,但特异性较低。适合于早产儿的自主呼吸试验模式仍需进一步探索。本文主要从定义、分类、实施方法及安全性方面对SBT既往研究进行分析及总结。

关键词

自主呼吸试验,早产儿,机械通气,拔管

Application of Spontaneous Breathing Trials in Extubation of Preterm Infants

Shuqi Cheng, Jiang Xue*

Children’s Medical Center, The Second Hospital of Shandong University, Jinan Shandong

Received: Feb. 8th, 2024; accepted: Mar. 2nd, 2024; published: Mar. 11th, 2024

ABSTRACT

The spontaneous breathing trial is an assessment tool used to assess the ability of spontaneous breathing before extubation. It can improve the success rate of extubation and reduce the time of mechanical ventilation. It is a well-established and commonly used assessment method in adults, but has been less studied in neonates, especially preterm infants. Continuous Positive Airway Pressure (ET-CPAP) is the most extensively studied method in premature infants, with good sensitivity but low specificity. The model of spontaneous breathing trial suitable for premature infants still needs to be further explored. This paper mainly analyzes and summarizes the previous researches on SBT, from the aspects of definition, classification, implementation methods and security.

Keywords:Spontaneous Breathing Trials, Preterm Infants, Mechanical Ventilation, Extubation

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

由于早产儿肺表面活性物质分泌不足、呼吸肌薄弱、呼吸中枢驱动不协调及血流动力学不稳定等因素,有创机械通气是挽救早产儿生命的一种至关重要的措施。不幸的是,随着气管插管时间的延长呼吸机相关性肺炎、败血症等感染风险明显增加,延迟撤机还会导致支气管肺发育不良、肺动脉高压、早产儿视网膜病变、脑室周围白质软化等不良预后的发生,甚至增加死亡率 [1] [2] [3] [4] 。一项多中心的前瞻性队列研究对3508例极低出生体重儿有创机械通气时长及住院期间的结局进行统计,研究发现在调整了混杂因素后与机械通气<7天的早产儿相比的机械通气15~28天的早产儿死亡率升高了2.85倍(HR 2.85,95% CI 1.94~4.21),机械通气超过6周的早产儿死亡率甚至升高了8.33倍(HR 8.33,95% CI 5.61~12.39) [2] 。尽早拔除气管插管已在临床中达成共识 [1] [5] ,但如何确定最佳拔管时机至今仍处在探索阶段。中华医学会儿科学分会新生儿学组于2015年发表的《新生儿机械通气常规》 [6] 提供了关于撤机的建议:1) 当患儿原发病好转,感染基本控制,一般状况较好,血气分析正常时应逐渐降低呼吸机参数,锻炼和增强自主呼吸。一般先降低吸入氧浓度和吸气峰压,然后再降低呼吸频率,同时应观察胸廓起伏、监测动脉血氧饱和度及动脉血气结果;2) 当吸气峰压 ≤ 18 cm H2O,呼气末正压2~4 cm H2O,频率 ≤ 10次/min,吸入氧浓度 ≤ 0.4时,动脉血气结果正常,可考虑撤机。虽然指南提供了撤机的实施方向,但是在临床实践中即使是经验丰富的新生儿科医生也难以规避拔管失败的风险 [7] 。有5.6%~22.7%的早产儿会经历拔管失败 [8] ,在极低出生体重儿中拔管失败率甚至高达60%~70% [9] 。短时间内再插管可显著增加气道损伤、肺不张、感染及颅内出血等不良事件的发生 [10] [11] [12] ,极易导致呼吸机依赖增加而陷入恶性循环。因此,在早产儿准备拔管前,对患儿的病情及自主呼吸能力进行细致的评估是至关重要的。自主呼吸试验是评估成人拔管准备情况的有效手段,但尚未广泛应用于早产儿拔管前评估 [13] 。由于早产儿呼吸系统、神经系统发育不成熟及其独特的病理生理机制,照搬成人的评价标准显然是不恰当的。本文将总结近年来自主呼吸试验(Spontaneous Breathing Trials, SBT)在早产儿中的研究进展。

2. 自主呼吸试验的定义及分类

自主呼吸试验(Spontaneous Breathing Trials, SBT)也称为准备测试(a readiness test),是当患儿仍处于气管插管呼吸机辅助通气时给予最低限度或不给予呼吸支持,模拟拔管后的呼吸状态,以评估机械通气患儿自主呼吸能力的工具 [14] 。目前主要有4种实施SBT的方法:T管法、持续气管导管内正压通气(Endotracheal Continuous Positive Airway Pressure, ET-CPAP)法、低水平压力支持(Pressure Support Ventilation, PSV)法、自动导管补偿(Automatic Tube Compensation, ATC)法 [15] 。

2.1. T管法

使用T形管路与呼吸机管路相连,一端连接加温加湿装置及氧源,另一端与呼吸机断开暴露于空气中。此方法由于与呼吸机断开,不能提供任何压力支持及呼吸功能监测,需完全依赖患儿自主呼吸克服人工管道造成的格外阻力。在成人研究中显示T管法与其他方法未见明显差异 [16] ,但早产儿呼吸肌薄弱,呼吸阻力可能增加SBT失败几率,故不推荐在早产儿人群中使用。

2.2. ET-CPAP法

ET-CPAP法即在气管插管状态下将呼吸机模式调整至CPAP模式,给予5 cm H2O左右低水平的压力支持。此方法在早产儿SBT研究中应用最广泛,有meta分析总结了多项研究结果发现此方法对拔管结局的预测有较高的敏感性(95%;97%),但特异性差(62%;40%) [17] [18] 。由此可见,在早产儿中呼吸管路造成的气道阻力仅凭低水平的持续气道内正压是不足以抵消的。

2.3. PSV法

PSV法即将里呼吸机模式调整为PSV模式,给予低水平的吸气及呼气末压力支持,一般将呼气末正压(Positive Ent-Expiratoty Pressure, PEEP)设置为5 cm H2O,压力支持(Pressure Support, PS)设为5~10 cm H2O。低水平的PS可在一定程度上克服人工管路的阻力,理论上可弥补ET-CPAP法的不足,减少假阴性的发生。但在早产儿中研究较少。

2.4. ATC法

某些呼吸机可通过监测呼吸过程中导管两端的压力差及时调整压力补偿,即ATC法。由于呼吸过程中流速高度可变,使得气管导管内呼吸阻力并不恒定 [19] 。PSV模式仅提供一个恒定的补偿,可导致吸气早期补偿不足而吸气末补偿过度的现象。理论上ATC法弥补了PSV法的不足,但在成人的研究中发现ATC法有较高的拔管成功率,但SBT成功率低于PSV法 [20] 。

3. 自主呼吸试验的实施

3.1. SBT实施时机

与最小呼吸机参数作为拔管标准相比,以SBT作为拔管标准的早产儿拔管时的呼吸机参数更高。澳大利亚的一项SBT发现,与对照组相比SBT组患儿可在更高的呼吸频率(42 vs 27次/分,P < 0.01)及平均气道压(7.2 vs 6.5 cm H2O,P < 0.01)下安全撤机 [21] 。因此在患儿临床病情稳定、呼吸机参数较低时,尽早行SBT可及时发现已达到撤机能力的患儿,减少呼吸机辅助通气时间。SBT实施过早成功率低、可造成呼吸机疲劳,甚至加重病情。成年患者在实施SBT前会对患者的原发疾病、呼吸功能、血流动力学及心理状态等进行细致评估 [22] 。但在早产儿中尚未有研究探索何种条件为实施SBT的最佳时机。

3.2. SBT实施时长

成人及儿童SBT持续30分钟至2小时不等,在早产儿中尚未有研究探索适宜的试验时长。Khan等人 [23] 、Shalish等人 [24] 及Williams等人 [25] 分别进行了3分钟、5分钟、10分钟的ET-CPAP法SBT,其敏感性分别为81.25%、93%、73.3%,特异性分别为54.5%、39%、33.3%。这些试验均为单中心的诊断性试验,存在样本量小、纳入人群及评估标准等不统一等弊端。

3.3. SBT失败标准

成人SBT主要通过观察血氧饱和度、呼吸频率,潮气量、心率及血压等客观指标评估肺通气、肺换气能力及血流动力学稳定程度;通过评估患者主观感受、精神状态等主观指标评估患者对撤机的心理承受能力 [26] 。在早产儿的研究中多由试验期间发生的临床事件组合评估,多项研究 [21] [23] [25] [27] [28] 以上调FiO2 15%后仍出现以下情况之一:1) 血氧饱和度 < 85%持续15秒以上,2) 心率 < 100次/分持续15秒以上,作为SBT失败的定义。Shalish等人 [24] 对SBT期间发生的各种临床事件进行统计,发现拔管失败的患儿会出现更多的临床事件,但并没有发现何种事件组合更能预测拔管失败。

3.4. SBT后处理

若SBT成功,则可根据患儿情况考虑拔管。拔管后给予合适的无创呼吸机通气可提高拔管成功率,多数研究认为,经鼻间歇正压通气模式(Nasal Intermittent Positive Pressure Ventilation, NIPPV)是拔管后预防再插管最有效的模式,且不会增加BPD等不良预后的发生,也不会增加呼吸机使用时长及住院时长 [29] [30] [31] 。也有研究认为无创高频震荡通气模式甚至比NIPPV模式更有效 [32] 。

若试验失败,根据患儿进行SBT时发生的临床事件,思考失败原因,给予针对性治疗,在原发因素缓解后,再次尝试SBT。SBT在成人中每隔24小时进行一次 [33] ,因为原发因素不能在短时间内被缓解,每天多次SBT并不能提高成功率,反而会导致呼吸肌疲劳,甚至加重病情。在早产儿研究中,多数间隔24小时进行重复试验。SBT的试验频率在早产儿中缺乏严谨的探索。

4. 安全性及有效性

安全性

膈肌电活动及呼吸变异性监测可以用来评估呼吸做功增加。Latremouille等人 [34] 监测了13例超早产儿5分钟ET-CPAP法SBT期间的膈肌电活动及呼吸变异性,发现SBT显著增加了超早产儿的呼吸负荷。Nakato等人 [35] 收集了<37周胎龄的早产儿行3分钟SBT时的心率、经皮血氧饱和度、呼吸频率、潮气量和Silverman Andersen呼吸严重程度评分,发现行SBT会使潮气量显著减少、呼吸频率及呼吸做功显著增加。APEX研究团队的预研究 [36] 中统计了50名早产儿SBT过程中临床事件的发生率,57%的早产儿会在5分钟内发生至少1次临床情况不稳定,这可能会使早产儿的病情恶化。所以他们建议在有明确的标准识别SBT失败之前,不建议常规使用SBT来评估早产儿的拔管准备情况。

Vervenioti等人 [37] 对<32周胎龄的早产儿进行了30分钟的SBT并评估其呼吸做功,ET-CPAP法SBT与低参数的同步间歇指令性通气(Synchronized Intermittent Mandatory Ventilation, SIMV)相比,并未增加呼吸做功也没有发现有不良事件发生,因此他们认为30分钟的SBT可以安全地在早产儿中进行。

SBT可能会增加早产儿呼吸做功、引起血氧下降及心率减慢等不稳定情况出现,因此试验需在患儿有一定耐受能力的条件下实施。但目前为止,尚未见试验相关不良事件的报道。

5. 结论

SBT是一个实用的、低成本的、易于床边实施的拔管前评估工具。在成人人群中已经是一种成熟的、普遍的评估方法,但在早产儿中研究较少。多数研究为诊断性试验,证明了CPAP法SBT预测拔管成功的准确性较高,但存在较多假阴性。PSV法或ATC法可减小人工气道造成的额外呼吸阻力,可能会减少假阴性的发生,但需要更多严谨的研究证实。在SBT的实施中,试验时机、方法、评估时间、试验失败的定义及失败后重复试验的间隔时间均缺乏高质量的随机对照试验进一步探索。SBT可能会增加早产儿呼吸做功,造成心率、血氧下降等临床事件发生,由此可见试验时机的判断尤为重要,需在患儿有一定耐受能力的条件下实施。目前为止,尚未见SBT相关不良事件的报道。SBT是一项十分具有前景的判断早产儿拔管准备情况的评估工具。

文章引用

成淑琪,薛 江. 自主呼吸试验在早产儿拔管中的应用
Application of Spontaneous Breathing Trials in Extubation of Preterm Infants[J]. 临床医学进展, 2024, 14(03): 165-170. https://doi.org/10.12677/ACM.2024.143681

参考文献

  1. 1. Mukerji, A., Razak, A., Aggarwal, A., et al. (2020) Early versus Delayed Extubation in Extremely Preterm Neonates: A Retrospective Cohort Study. Journal of Perinatology, 40, 118-123. https://doi.org/10.1038/s41372-019-0495-6

  2. 2. Choi, Y.-B., Lee, J., Park, J., et al. (2018) Impact of Prolonged Mechanical Ventilation in Very Low Birth Weight Infants: Results from a National Cohort Study. The Journal of Pediat-rics, 194, 34-39.E3. https://doi.org/10.1016/j.jpeds.2017.10.042

  3. 3. Hoshino, Y., Arai, J., Hirono, K., et al. (2023) Ventilator-Induced Diaphragmatic Dysfunction in Extremely Preterm Infants: A Pilot Ultrasound Study. European Journal of Pediatrics, 182, 1555-1559. https://doi.org/10.1007/s00431-023-04846-z

  4. 4. Söderström, F., Ågren, J. and Sindelar, R. (2021) Early Extuba-tion Is Associated with Shorter Duration of Mechanical Ventilation and Lower Incidence of Bronchopulmonary Dyspla-sia. Early Human Development, 163, Article ID: 105467. https://doi.org/10.1016/j.earlhumdev.2021.105467

  5. 5. Shalish, W., Keszler, M., Kovacs, L., et al. (2023) Age at First Extubation Attempt and Death or Respiratory Morbidities in Extremely Preterm Infants. The Journal of Pediatrics, 252, 124-130.E3. https://doi.org/10.1016/j.jpeds.2022.08.025

  6. 6. 薛辛东, 杜立中, 母得志, 等. 新生儿机械通气常规[J]. 中华儿科杂志, 2015, 53(5): 327-333.

  7. 7. Al-Mandari, H., Shalish, W., Dempsey, E., et al. (2015) International Survey on Periextubation Practices in Extremely Preterm Infants. Archives of Disease in Childhood—Fetal and Neonatal Edition, 100, F428-F431. https://doi.org/10.1136/archdischild-2015-308549

  8. 8. Masry, A., Nimeri, N.A.M.A., Koobar, O., et al. (2021) Reintubation Rates after Extubation to Different Non-Invasive Ventilation Modes in Preterm Infants. BMC Pediatrics, 21, Article No. 281. https://doi.org/10.1186/s12887-021-02760-7

  9. 9. Li, J., Zhang, J., Hao, Q., et al. (2022) The Impact of Time In-terval between First Extubation and Reintubation on Bronchopulmonary Dysplasia or Death in Very Low Birth Weight Infants. Frontiers in Pediatrics, 10, Article ID: 867767. https://doi.org/10.3389/fped.2022.867767

  10. 10. Chawla, S., Natarajan, G., Shankaran, S., et al. (2017) Markers of Successful Extubation in Extremely Preterm Infants, and Morbidi-ty after Failed Extubation. The Journal of Pediatrics, 189, 113-119. https://doi.org/10.1016/j.jpeds.2017.04.050

  11. 11. Shalish, W., Kanbar, L., Kovacs, L., et al. (2019) The Impact of Time Interval between Extubation and Reintubation on Death or Bronchopulmonary Dysplasia in Extremely Preterm In-fants. The Journal of Pediatrics, 205, 70-76.E2. https://doi.org/10.1016/j.jpeds.2018.09.062

  12. 12. Park, S.J., Bae, M.H., Jeong, M.H., et al. (2023) Risk Factors and Clinical Outcomes of Extubation Failure in Very Early Preterm Infants: A Single-Center Cohort Study. BMC Pediatrics, 23, Article No. 36. https://doi.org/10.1186/s12887-023-03833-5

  13. 13. Bacci, S.L, Ldos, S., Johnston, C., Hattori, W.T., et al. (2020) Mechanical Ventilation Weaning Practices in Neonatal and Pediatric ICUs in Brazil: The Weaning Survey-Brazil. Jornal Brasileiro De Pneumologia, 46, E20190005. https://doi.org/10.36416/1806-3756/e20190005

  14. 14. Newth, C.J.L., Venkataraman, S., Willson, D.F., et al. (2009) Weaning and Extubation Readiness in Pediatric Patients. Pediatric Critical Care Medicine, 10, 1-11. https://doi.org/10.1097/PCC.0b013e318193724d

  15. 15. Sklar, M.C., Burns, K., Rittayamai, N., et al. (2017) Effort to Breathe with Various Spontaneous Breathing Trial Techniques. A Physiologic Meta-Analysis. American Journal of Res-piratory and Critical Care Medicine, 195, 1477-1485. https://doi.org/10.1164/rccm.201607-1338OC

  16. 16. Li, Y., Li, H. and Zhang, D. (2020) Comparison of T-Piece and Pressure Support Ventilation as Spontaneous Breathing Trials in Critically Ill Patients: A Systematic Review and Me-ta-Analysis. Critical Care, 24, Article No. 67. https://doi.org/10.1186/s13054-020-2764-3

  17. 17. Teixeira, R.F., Carvalho, A.C.A., De Araujo, R.D., et al. (2021) Spontaneous Breathing Trials in Preterm Infants: Systematic Review and Meta-Analysis. Respiratory Care, 66, 129-137. https://doi.org/10.4187/respcare.07928

  18. 18. Shalish, W., Latremouille, S., Papenburg, J., et al. (2019) Predictors of Extubation Readiness in Preterm Infants: A Systematic Review and Meta-Analysis. Archives of Disease in Child-hood—Fetal and Neonatal Edition, 104, F89-F97. https://doi.org/10.1136/archdischild-2017-313878

  19. 19. Hentschel, R., Buntzel, J., Guttmann, J., et al. (2011) Endo-tracheal Tube Resistance and Inertance in a Model of Mechanical Ventilation of Newborns and Small Infants—The Im-pact of Ventilator Settings on Tracheal Pressure Swings. Physiological Measurement, 32, 1439-1451. https://doi.org/10.1088/0967-3334/32/9/007

  20. 20. Cardinal-Fernandez, P., Bougnaud, J., Cour, M., et al. (2022) Automatic Tube Compensation during Spontaneous Breathing Trials. Respiratory Care, 67, 1335-1342. https://doi.org/10.4187/respcare.09920

  21. 21. Kamlin, C.O.F., Davis, P.G., Argus, B., et al. (2007) A Trial of Spon-taneous Breathing to Determine the Readiness for Extubation in Very Low Birth Weight Infants: A Prospective Evalua-tion. Archives of Disease in Childhood—Fetal and Neonatal Edition, 93, F305-F306. https://doi.org/10.1136/adc.2007.129890

  22. 22. Ely, E.W., Baker, A.M., Dunagan, D.P., et al. (1996) Effect on the Duration of Mechanical Ventilation of Identifying Patients Capable of Breathing Spontaneously. New England Journal of Medicine, 335, 1864-1869. https://doi.org/10.1056/NEJM199612193352502

  23. 23. Khan, A., Kumar, V., Hussain, A.S., et al. (2021) Accuracy of Spontaneous Breathing Trial Using ET-CPAP in Predicting Successful Extubation of Neonates. Cureus, 13, e17711. https://doi.org/10.7759/cureus.17711

  24. 24. Shalish, W., Kanbar, L., Kovacs, L., et al. (2020) Assessment of Extuba-tion Readiness Using Spontaneous Breathing Trials in Extremely Preterm Neonates. JAMA Pediatrics, 174, Article No. 178. https://doi.org/10.1001/jamapediatrics.2019.4868

  25. 25. Williams, E.E., ArattuThodika, F.M.S., Chappelow, I., et al. (2022) Diaphragmatic Electromyography during a Spontaneous Breathing Trial to Predict Extubation Failure in Preterm Infants. Pediatric Research, 92, 1064-1069. https://doi.org/10.1038/s41390-022-02085-w

  26. 26. Boles, J.-M., Bion, J., Connors, A., et al. (2007) Weaning from Mechanical Ventilation. European Respiratory Journal, 29, 1033-1056. https://doi.org/10.1183/09031936.00010206

  27. 27. Chawla, S., Natarajan, G., Gelmini, M., et al. (2013) Role of Spontaneous Breathing Trial in Predicting Successful Extubation in Premature Infants: Spontaneous Breathing Trial Premature Infants. Pediatric Pulmonology, 48, 443-448. https://doi.org/10.1002/ppul.22623

  28. 28. Dassios, T., Kaltsogianni, O. and Greenough, A. (2017) Relaxation Rate of the Respiratory Muscles and Prediction of Extubation Outcome in Prematurely Born Infants. Neonatology, 112, 251-257. https://doi.org/10.1159/000477233

  29. 29. Lemyre, B., Laughon, M., Bose, C., et al. (2016) Early Nasal Intermittent Positive Pressure Ventilation (NIPPV) versus Early Nasal Continuous Positive Airway Pressure (NCPAP) for Preterm Infants. The Cochrane Database of Systematic Reviews, 2016, CD005384. https://doi.org/10.1002/14651858.CD005384.pub2

  30. 30. Mukerji, A., Rempel, E., Thabane, L., et al. (2023) High Continuous Positive Airway Pressures versus Non-Invasive Positive Pressure Ventilation in Preterm Neonates: Protocol for a Multicentre Pilot Randomised Controlled Trial. BMJ Open, 13, E069024. https://doi.org/10.1136/bmjopen-2022-069024

  31. 31. Ramaswamy, V.V., Bandyopadhyay, T., Nanda, D., et al. (2020) Efficacy of Noninvasive Respiratory Support Modes as Postextubation Respiratory Support in Preterm Neonates: A Systematic Review and Network Meta‐Analysis. Pediatric Pulmonology, 55, 2924-2939. https://doi.org/10.1002/ppul.25007

  32. 32. Wang, K., Zhou, X., Gao, S., et al. (2023) Noninvasive High-Frequency Oscillatory Ventilation versus Nasal Intermittent Positive Pressure Ventilation for Preterm Infants as an Extubation Sup-port: A Systematic Review and Meta-Analysis. Pediatric Pulmonology, 58, 704-711. https://doi.org/10.1002/ppul.26244

  33. 33. Esteban, A. and Solsona, J.F. (1995) A Comparison of Four Methods of Weaning Patients from Mechanical Ventilation. The New England Journal of Medicine, 332, 345-350. https://doi.org/10.1056/NEJM199502093320601

  34. 34. Latremouille, S., Bhuller, M., Rao, S., et al. (2021) Dia-phragmatic Activity and Neural Breathing Variability during a 5-Min Endotracheal Continuous Positive Airway Pressure Trial in Extremely Preterm Infants. Pediatric Research, 89, 1810-1817. https://doi.org/10.1038/s41390-020-01159-x

  35. 35. Nakato, A.M., Ribeiro, D.F., Simão, A.C., et al. (2021) Impact of Spontaneous Breathing Trials in Cardiorespiratory Stability of Preterm Infants. Respiratory Care, 66, 286-291. https://doi.org/10.4187/respcare.07955

  36. 36. Shalish, W., Kanbar, L.J., Rao, S., et al. (2017) Prediction of Extuba-tion Readiness in Extremely Preterm Infants by the Automated Analysis of Cardiorespiratory Behavior: Study Protocol. BMC Pediatrics, 17, Article No. 167. https://doi.org/10.1186/s12887-017-0911-z

  37. 37. Vervenioti, A., Dassios, T., Sinopidis, X., et al. (2021) Does a Brief Trial of Endotracheal CPAP before Extubation Increase the Work of Breathing in Preterm Infants? Early Human Development, 157, Article ID: 105368. https://doi.org/10.1016/j.earlhumdev.2021.105368

  38. NOTES

    *通讯作者。

期刊菜单