Advances in Applied Mathematics
Vol. 09  No. 12 ( 2020 ), Article ID: 39568 , 7 pages
10.12677/AAM.2020.912269

一类带p-Laplacian算子的分数阶微分方程边值问题正解的存在性

段佳艳*,王文霞,郭晓珍

太原师范学院数学系,山西 晋中

收稿日期:2020年11月27日;录用日期:2020年12月22日;发布日期:2020年12月30日

摘要

本文研究了一类带有p-Laplacian算子的分数阶微分方程边值问题的正解的存在性,利用Leray-Schauder非线性抉择,得出边值问题至少存在一个正解的充分条件,并给出了一个具体的例子。

关键词

p-Laplacian算子,Leray-Schauder非线性抉择,正解

Existence of Positive Solutions for Boundary Value Problem of Fractional Differential Equations with p-Laplacian Operator

Jiayan Duan*, Wenxia Wang, Xiaozhen Guo

Department of Mathematics, Taiyuan Normal University, Jinzhong Shanxi

Received: Nov. 27th, 2020; accepted: Dec. 22nd, 2020; published: Dec. 30th, 2020

ABSTRACT

This paper is concerned with the existence of positive solution for a class of boundary value problems of fractional differential equations with p-Laplacian operator. By usingLeray-Schauder nonlinear choice, some sufficient conditions for the existence of at least one positive solution are obtained. In addition, an example is given to illustrate theoretical results.

Keywords:p-Laplacian Operator, Leray-Schauder Nonlinear Alternative Theorem, Positive Solution

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

分数阶微积分是在整数阶微积分的理论基础上发展而来,近年来分数阶微分方程在物理学、工程学、机械、医学、生物学等许多领域得到了广泛应用 [1] [2] [3] [4]。为了解决越来越多复杂的现象和问题,学者和专家开始研究带p-Laplacian算子的分数阶微分方程。文 [5] 研究如下带p-Laplacian算子的分数阶微分方程

{ D 0 + β ( φ p ( D 0 + α u ) ) ( t ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = 0 , u ( 1 ) + σ D 0 + γ u ( 1 ) = 0 , D 0 + α u ( 0 ) = 0 ,

这里 D 0 + α , D 0 + β D 0 + γ 是标准的Riemann-Liouville型分数阶导数, 1 < α 2 0 < β 1 0 < γ 1 α γ 1 0 ,常数 σ 是一个正数, φ p ( s ) = | s | p 2 s , p > 1 。利用锥上的不动点定理,获得了正解的一些存在性和多重性结果。

文 [6] 研究如下带有p-Laplacian算子的Riemann-Liouville型分数阶微分方程边值问题

{ D α ( φ p ( D β u ( t ) ) ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = 0 , u ( 1 ) = λ D γ u ( ξ ) , D β u ( 0 ) = 0 ,

应用凸锥上的不动点理获得了该问题正解的存在性结果。这里 α , β , γ 0 < α < 1 1 < β 2 γ = β 1 2 0 < ξ 1 2 λ [ 0 , + ) λ Γ ( β ) ξ ( β 1 ) / 2 < Γ ( β + 1 2 ) φ p ( s ) = | s | p 2 s , p > 1

基于上述文献中的研究,本文主要利用Leray-Schauder非线性抉择讨论如下带有p-Laplacian算子的Riemann-Liouville型分数阶微分方程边值问题

{ ( ϕ p ( D 0 + α u ( t ) ) ) + f ( t , u ( t ) , D 0 + α u ( t ) ) = 0 , t [ 0 , 1 ] , u ( 0 ) = u ( 1 ) = D 0 + α u ( 0 ) = 0 , (1)

解的存在性,其中 1 < α 2 ϕ p ( s ) = | s | p 2 s q > 1 ϕ p 1 = ϕ q 1 p + 1 q = 1

2. 预备知识

定义1 [7] 函数 y : ( 0 , + ) R α > 0 阶Riemann-Liouville分数阶积分为

I 0 + α y ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 y ( s ) d s ,

等式的右端在 ( 0 , + ) 有定义,其中 Γ ( ) 为Gamma函数。

定义2 [7] 连续函数 y : ( 0 , + ) R α > 0 阶Riemann-Liouville分数阶导数为

D 0 + α y ( t ) = 1 Γ ( n α ) ( d d t ) n 0 t y ( s ) ( t s ) α n + 1 d s ,

等式的右端在 ( 0 , + ) 有定义,其中 n = min { m Z : m α } Γ ( ) 为Gamma函数。

引理1 [7] α > 0 u C ( 0 , 1 ) L ( 0 , 1 ) D 0 + α u C ( 0 , 1 ) L ( 0 , 1 ) ,则分数阶微分方程 D 0 + α u ( t ) = 0 有唯一解

u ( t ) = c 1 t α 1 + c 2 t α 2 + c n t α n ,

其中 n = min { m Z : m α } c i R , i = 1 , 2 , , n

引理2 [7] α > 0 u C ( 0 , 1 ) L ( 0 , 1 ) D 0 + α u C ( 0 , 1 ) L ( 0 , 1 ) ,则

I 0 + α D 0 + α u ( t ) = u ( t ) + c 1 t α 1 + c 2 t α 2 + c n t α n ,

其中 n = min { m Z : m α } c i R , i = 1 , 2 , , n

引理3 若 y ( t ) C [ 0 , 1 ] ,且 1 < α 2 ,则分数阶微分方程

{ ( ϕ p ( D 0 + α u ( t ) ) ) + y ( t ) = 0 , 0 < t < 1 , u ( 0 ) = u ( 1 ) = D 0 + α u ( 0 ) = 0 ,

有唯一解

u ( t ) = 0 1 G ( t , s ) ϕ q ( 0 s y ( τ ) d τ ) d s ,

其中

G ( t , s ) = 1 Γ ( α ) { t α 1 ( 1 s ) α 1 ( t s ) α 1 , 0 s t 1 , t α 1 ( 1 s ) α 1 , 0 t s 1.

证明 由 ( ϕ p ( D 0 + α u ( t ) ) ) + y ( t ) = 0 可得

ϕ p ( D 0 + α u ( t ) ) = 0 t y ( s ) d s + c 0 ,

于是

D 0 + α u ( t ) = ϕ q ( 0 t y ( s ) d s + c 0 ) .

根据引理2可得

u ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 ϕ q ( 0 s y ( τ ) d τ + c 0 ) d s + c 1 t α 1 + c 2 t α 2 .

D 0 + α u ( 0 ) = 0 c 0 = 0 ,由 u ( 0 ) = 0 ,得 c 2 = 0 ,由 u ( 1 ) = 0 ,得

c 1 = 1 Γ ( α ) 0 1 ( 1 s ) α 1 ϕ q ( 0 s y ( τ ) d τ ) d s .

所以

u ( t ) = 1 Γ ( α ) 0 1 t α 1 ( 1 s ) α 1 ϕ q ( 0 s y ( τ ) d τ ) d s 1 Γ ( α ) 0 t ( t s ) α 1 ϕ q ( 0 s y ( τ ) d τ ) d s = 1 Γ ( α ) 0 t [ t α 1 ( 1 s ) α 1 ( t s ) α 1 ] ϕ q ( 0 s y ( τ ) d τ ) d s + 1 Γ ( α ) t 1 t α 1 ( 1 s ) α 1 ϕ q ( 0 s y ( τ ) d τ ) d s = 0 1 G ( t , s ) ϕ q ( 0 s y ( τ ) d τ ) d s .

证毕。

注 由引理3的证明容易看到 D 0 + α u ( t ) = ϕ q ( 0 t y ( s ) d s ) , t [ 0 , 1 ]

引理4 [8] G ( t , s ) 有下面的性质

1) G ( t , s ) 0 ,对 s , t ( 0 , 1 )

2)存在正函数 r C [ 0 , 1 ] 使得

min 1 / 4 t 3 / 4 G ( t , s ) r ( s ) max t [ 0 , 1 ] G ( t , s ) = r ( s ) G ( s , s ) , 0 < s < 1 ;

3) max t [ 0 , 1 ] 0 1 G ( t , s ) d s = 1 2 2 ( α 1 ) Γ ( α )

引理5 [8] (Leray-Schauder非线性抉择)假设 Ω 是线性赋范空间X中包含原点的开集, F : Ω ¯ X 全连续,并且满足边界条件,即当 x Ω 0 < λ < 1 F λ x ,则F在 Ω ¯ 上至少有一个不动点。

3. 主要结果

下节将用到如下假设

(H1) f : [ 0 , 1 ] × [ 0 , + ) × R [ 0 , + ) 为连续函数,假设存在非负连续函数 j ( t ) , l ( t ) , w ( t ) 使得

| f ( t , u , v ) | j ( t ) ϕ p ( | u | ) + l ( t ) ϕ p ( | v | ) + w ( t ) , t [ 0 , 1 ] .

X = { u ( t ) C [ 0 , 1 ] | D 0 + α u ( t ) C [ 0 , 1 ] } ,定义范数 u = max t [ 0 , 1 ] | u ( t ) | + max t [ 0 , 1 ] | D 0 + α u ( t ) | ,容易证明X是Banach空间。定义算子

T u ( t ) = 0 1 G ( t , s ) ϕ q ( 0 s f ( τ , u ( τ ) , D 0 + α u ( τ ) ) d τ ) d s , t [ 0 , 1 ] .

定理1假设(H1)成立。若(H1)中的函数 j , l , w 满足存在常数 ρ > 0 使得

2 2 ( α 1 ) Γ ( α ) ρ [ ρ p 1 ( 0 1 j ( τ ) d τ + 0 1 l ( τ ) d τ ) + 0 1 w ( τ ) d τ ] q 1 1 , (2.1)

则边值问题(1)存在解 u = u ( t ) 且满足 0 < u < ρ

证明 首先证明 T : X X 为全连续算子。由函数f的连续性容易证明T是连续算子。

以下证明T为紧的。设 Ω 是X中的有界子集,于是存在正数 M > 0 使得 u Ω u M 。从而对于任意的 u Ω

| T u ( t ) | = | 0 1 G ( t , s ) ϕ q ( 0 s f ( τ , u ( τ ) , D 0 + α u ( τ ) ) d τ ) d s | 0 1 G ( t , s ) ϕ q ( | 0 s f ( τ , u ( τ ) , D 0 + α u ( τ ) ) d τ | ) d s 0 1 G ( t , s ) ϕ q ( 0 s | f ( τ , u ( τ ) , D 0 + α u ( τ ) ) | d τ ) d s 0 1 G ( t , s ) ϕ q ( 0 1 ( j ( τ ) ϕ p ( | u ( τ ) | ) + l ( τ ) ϕ p ( | D 0 + α u ( τ ) | ) + w ( τ ) ) d τ ) d s 0 1 G ( t , s ) ϕ q ( 0 1 ( j ( τ ) ϕ p ( u ) + l ( τ ) ϕ p ( u ) + w ( τ ) ) d τ ) d s 1 2 2 ( α 1 ) Γ ( α ) [ M p 1 ( 0 1 j ( τ ) d τ + 0 1 l ( τ ) d τ ) + 0 1 w ( τ ) d τ ] q 1 , t [ 0 , 1 ] ,

| D 0 + α T u ( t ) | = | ϕ q ( 0 t f ( s , u ( s ) , D 0 + α u ( s ) ) d s ) | ϕ q ( 0 t | f ( s , u ( s ) , D 0 + α u ( s ) ) | d s ) ϕ q ( 0 1 ( j ( s ) ϕ p ( | u ( s ) | ) + l ( s ) ϕ p ( | D 0 + α u ( s ) | ) + w ( s ) ) d s ) [ ϕ q ( ϕ p ( u ) 0 1 j ( s ) d s + ϕ p ( u ) 0 1 l ( s ) d s + 0 1 w ( s ) d s ) ] [ M p 1 ( 0 1 j ( s ) d s + 0 1 l ( s ) d s ) + 0 1 w ( s ) d s ] q 1 , t [ 0 , 1 ] .

因此 T ( Ω ) { D 0 + α T u | u Ω } 皆为一致有界的子集合。

再证 T ( Ω ) { D 0 + α T u | u Ω } 皆是等度连续的。对任意的 0 t 1 < t 2 1 u Ω

| T u ( t 2 ) T u ( t 1 ) | = | 0 1 G ( t 2 , s ) ϕ q ( 0 s f ( τ , u ( τ ) , D 0 + α u ( τ ) ) d τ ) d s 0 1 G ( t 1 , s ) ϕ q ( 0 s f ( τ , u ( τ ) , D 0 + α u ( τ ) ) d τ ) d s | = | 0 1 [ G ( t 2 , s ) G ( t 1 , s ) ] ϕ q ( 0 s f ( τ , u ( τ ) , D 0 + α u ( τ ) ) d τ ) d s | [ M p 1 ( 0 1 j ( τ ) d τ + 0 1 l ( τ ) d τ ) + 0 1 w ( τ ) d τ ] q 1 0 1 | G ( t 2 , s ) G ( t 1 , s ) | d s .

注意到 G ( t , s ) [ 0 , 1 ] × [ 0 , 1 ] 上的一致连续性可知, T ( Ω ) 是等度连续的。此外

| D 0 + α T u ( t 2 ) D 0 + α T u ( t 1 ) | = | [ ϕ q ( 0 t 2 f ( s , u ( s ) , D 0 + α u ( s ) ) d s ) ϕ q ( 0 t 1 f ( s , u ( s ) , D 0 + α u ( s ) ) d s ) ] | = | ( 0 t 2 f ( s , u ( s ) , D 0 + α u ( s ) ) d s ) q 1 ( 0 t 1 f ( s , u ( s ) , D 0 + α u ( s ) ) d s ) q 1 | ,

0 < q 1 < 1 时,根据不等式 b m + c m ( b + c ) m , b 0 , c 0 , 0 < m < 1 可得

0 ( 0 t 2 f ( s , u ( s ) , D 0 + α u ( s ) ) d s ) q 1 ( 0 t 1 f ( s , u ( s ) , D 0 + α u ( s ) ) d s ) q 1 ( t 1 t 2 f ( s , u ( s ) , D 0 + α u ( s ) ) d s ) q 1 ( t 1 t 2 ( j ( s ) ϕ p ( | u ( s ) | ) + l ( s ) ϕ p ( | D 0 + α u ( s ) | ) + w ( s ) ) d s ) q 1 ( ϕ p ( u ) t 1 t 2 j ( s ) d s + ϕ p ( u ) t 1 t 2 l ( s ) d s + t 1 t 2 w ( s ) d s ) q 1 ( M p 1 ( t 1 t 2 j ( s ) d s + t 1 t 2 l ( s ) d s ) + t 1 t 2 w ( s ) d s ) q 1 ,

再根据积分第一中值定理,因 j ( s ) , l ( s ) , w ( s ) [ t 1 , t 2 ] 上连续,则至少存在三点 μ , η , κ [ t 1 , t 2 ] ,使得

t 1 t 2 j ( s ) d s = j ( μ ) ( t 2 t 1 ) , t 1 t 2 l ( s ) d s = l ( η ) ( t 2 t 1 ) , t 1 t 2 w ( s ) d s = w ( κ ) ( t 2 t 1 ) ,

于是

| D 0 + α T u ( t 2 ) D 0 + α T u ( t 1 ) | [ M p 1 ( j ( μ ) + l ( η ) ) + w ( κ ) ] q 1 ( t 2 t 1 ) q 1 ,

q 1 1 时,由拉格朗日中值定理有

0 ( 0 t 2 f ( s , u ( s ) , D 0 + α u ( s ) ) d s ) q 1 ( 0 t 1 f ( s , u ( s ) , D 0 + α u ( s ) ) d s ) q 1 = ( q 1 ) ( 0 ξ f ( s , u ( s ) , D 0 + α u ( s ) ) d s ) q 2 f ( ξ , u ( ξ ) , D 0 + α u ( ξ ) ) ( t 2 t 1 ) ( q 1 ) [ M p 1 ( 0 ξ j ( s ) d s + 0 ξ l ( s ) d s ) + 0 ξ w ( s ) d s ] q 2 ( M p 1 ( j ( ξ ) + l ( ξ ) ) + w ( ξ ) ) ( t 2 t 1 ) ,

其中 ξ ( t 1 , t 2 ) 之间某个确定的值。故

| D 0 + α T u ( t 2 ) D 0 + α T u ( t 1 ) | ( q 1 ) [ M p 1 ( 0 ξ j ( s ) d s + 0 ξ l ( s ) d s ) + 0 ξ w ( s ) d s ] q 2 ( M p 1 ( j ( ξ ) + l ( ξ ) ) + w ( ξ ) ) ( t 2 t 1 ) .

由此可得 { D 0 + α T u | u Ω } 是等度连续的。

既然集合 T ( Ω ) { D 0 + α T u | u Ω } 都是一致有界且等度连续的,根据Arzela-Ascoli定理可知 T ( Ω ) { D 0 + α T u | u Ω } 皆为 C [ 0 , 1 ] 中的相对紧集,进而可知T是全连续算子。

U = { u X | u ρ } ,有 U X ,由上述证明可知 T : U ¯ X 是全连续的。我们断言当 u U λ ( 0,1 ) u λ T u 。如若不然存在 u 0 U λ 0 ( 0,1 ) 使 u 0 = λ 0 T u 0 。于是有

ρ = u 0 = λ 0 T u 0 1 2 2 ( α 1 ) Γ ( α ) [ ρ p 1 ( 0 1 j ( τ ) d τ + 0 1 l ( τ ) d τ ) + 0 1 w ( τ ) d τ ] q 1 ,

进而有

2 2 ( α 1 ) Γ ( α ) ρ [ ρ p 1 ( 0 1 j ( τ ) d τ + 0 1 l ( τ ) d τ ) + 0 1 w ( τ ) d τ ] q 1 1 ,

此与(2.1)式矛盾。由引理5可知边值问题(1)存在解 u ( t ) 使得 0 u ρ 。证毕。

4. 举例

考虑下列具有p-laplacian算子分数阶微分方程边值问题

{ ( ϕ 3 ( D 0 + 3 / 2 u ( t ) ) ) + ( t 2 + u 2 ( t ) 1 + t 2 + e t | D 0 + 3 / 2 u ( t ) | 2 ) = 0 , 0 t 1 , u ( 0 ) = u ( 1 ) = D 0 + 3 / 2 u ( 0 ) = 0 ,

其中 p = 3 , α = 3 / 2

f ( t , u , v ) = ( t 2 + u 2 1 + t 2 + e t | v | 2 ) , 0 t 1 ,

选取 j ( t ) = e t , l ( t ) = e t , w ( t ) = t ,有

| f ( t , u , v ) | e t ϕ 3 ( | u | ) + e t ϕ 3 ( | v | ) + t , 0 t 1 ,

ρ = 1 ,有

2 2 ( α 1 ) Γ ( α ) ρ [ ρ p 1 ( 0 1 j ( τ ) d τ + 0 1 l ( τ ) d τ ) + 0 1 w ( τ ) d τ ] q 1 > 1 ,

定理1的条件皆满足,所以该边值问题至少存在一个解。

基金项目

国家自然科学基金(11361047)。

文章引用

段佳艳,王文霞,郭晓珍. 一类带p-Laplacian算子的分数阶微分方程边值问题正解的存在性
Existence of Positive Solutions for Boundary Value Problem of Fractional Differential Equations with p-Laplacian Operator[J]. 应用数学进展, 2020, 09(12): 2301-2307. https://doi.org/10.12677/AAM.2020.912269

参考文献

  1. 1. Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006) Theory and Applications of Differential Equations. Elsevier Science Ltd., Amsterdam.

  2. 2. Chai, G.Q. (2012) Positive Solutions for Boundary Value Problem of Fractional Differential Equation with p-Laplacian Operator. Boundary Value Problems, 18, 1-20. https://doi.org/10.1186/s13661-016-0548-0

  3. 3. Lu, H.L., Han, Z.L., Sun, S.R. and Liu, J. (2013) Existence on Positive Solutions for Boundary Value Problems of Nonlinear Fractional Differential Equations with p-Laplacian. Advances in Difference Equations, 30, 1-16.

  4. 4. Liang, S.H. and Zhang, J.H. (2010) Existence of Multiple Positive for M-Point Fractional Boundary Value Problems on an Infinite Interval. Mathematical and Computer Modelling, 54, 1334-1446. https://doi.org/10.1186/1687-1847-2013-30

  5. 5. Wang, W.X. and Guo, X.T. (2016) Eigenvalue Problem for Fractional Differential Equations with Nonlinear Integral and Disturbance Parameter in Boundary Conditions. Boundary Value Problems, 42, 1-23. https://doi.org/10.1186/1687-2770-2012-18

  6. 6. Bai, Z.B. and Lu, H.S. (2005) Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation. Mathmatical Analysis and Applications, 311, 495-505. https://doi.org/10.1016/j.jmaa.2005.02.052

  7. 7. 白占兵. 分数阶微分方程边值问题理论及其应用[M]. 北京: 中国科学技术出版社, 2013.

  8. 8. 李小平, 李辉来. 带p-Laplace算子分数阶微分方程边值问题正解的存在性[J]. 吉林大学学报(理学版), 2017, 55(3): 481-489.

  9. NOTES

    *通讯作者。

期刊菜单