Advances in Clinical Medicine
Vol. 13  No. 12 ( 2023 ), Article ID: 78376 , 5 pages
10.12677/ACM.2023.13122861

Toll受体对半乳糖缺陷型IgA肾病影响机制 研究进展

努尔加那提·努尔木哈买提,陆晨*

新疆医科大学第一附属医院肾脏病中心,新疆 乌鲁木齐

收稿日期:2023年11月27日;录用日期:2023年12月21日;发布日期:2023年12月29日

摘要

IgA肾病是指肾小球系膜区以IgA或IgA沉积为主的一种原发性肾小球疾病。异常糖基化的IgA1分子,主要是循环半乳糖缺陷的IgA1,是IgA肾病系膜沉积和随后肾损伤的触发因素。近年来,发现半乳糖缺陷的IgA1在IgA肾病的发展中具有极其重要的作用。目前驱动半乳糖缺陷的IgA1产生的致病机制尚未完全阐明。已知通过Toll样受-9的先天免疫激活参与Gd-IgA1的产生。一种增殖诱导配体和IL-6也可增强IgA肾病中半乳糖缺陷的IgA1的合成。半乳糖缺陷的IgA1在临床研究中所提示其与疾病病理及进展之间的关系,以提高读者对IgA肾病发病机制的理解,本文为疾病研究提供新的思路。

关键词

IgA肾病,半乳糖缺乏型IgA1,Toll样受体

Research Progress on the Mechanism of the Effect of Toll Receptor on Galactose Deficient IgA Nephropathy

Nuerjianati Nuermuhamaiti, Chen Lu*

Kidney Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Nov. 27th, 2023; accepted: Dec. 21st, 2023; published: Dec. 29th, 2023

ABSTRACT

IgA nephropathy is a primary glomerular disease characterized by IgA or IgA deposition in the mesangial region. Abnormally glycosylated deficient IgA1 molecules, mainly circulating galactose deficient IgA1, are the trigger factors for IgA nephropathy deposition and subsequent renal injury. In recent years, it has been found that galactose deficient IgA1 plays an important role in the development of IgA nephropathy. At present, the pathogenic mechanism driving the production of galactose deficient IgA1 has not been fully elucidated. It is known that innate immune activation via Toll like receptor-9 is involved in the production of galactose deficient IgA1. A proliferation inducing ligand and IL-6 can also enhance the synthesis of glycosylated deficient IgA1 in IgA nephropathy. The relationship between glycosylated deficient IgA1 and disease pathology and progression in clinical research is suggested to improve readers’ understanding of the pathogenesis of IgA nephropathy. This paper provides new ideas for disease research.

Keywords:IgA Nephropathy, Galactose Deficient IgA1, Toll Like Receptor

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 背景

1968年,法国病理学家Jean Berger博士和他的同事Nicole Hinglais博士(电子显微镜学家)最初将IgA肾病(IgAN)描述为一种具有肾小球“IgA-IgG毛细血管间沉积”的肾病 [1] 。IgAN起病隐匿,临床表现多样,可出现无症状性血尿和(或)蛋白尿、慢性肾炎综合征、肾病综合征,甚至是快速进展至肾衰竭。瑞典的一项队列研究显示,IgAN患者的死亡率每310人年增加一例,预期寿命缩短6年 [2] [3] ,30%~40%的IgAN患者在发病20~30年后会发展为终末期肾病 [4] [5] ,但20%的患者将保留肾功能,如果不进行有效干预,IgAN会导致肾功能不可逆的恶化,从而导致劳动力的损失和巨大的社会负担 [6] 。

2. 分型

IgA是人类中含量最丰富的抗体同种型,约占人体总免疫球蛋白的三分之二。IgA有IgA1和IgA2亚类,其中IgAN患者肾小球沉积物中的IgA仅属于IgA1亚类,二者的主要区别是IgA1分子铰链区含有19个氨基酸和6个潜在的O型糖基化位点;而IgA2分子仅有10个氨基酸,且没有O型糖基化位点 [7] 。从来源上,IgAl主要存在于血清中,约占血清中IgA的85%,主要为单体形式,少量以J链多肽链接构成聚合体形式存在。IgA2少部分存在于血清,约占血清中IgA的15%,主要存在于外分泌液中,以聚合体形式存在 [8] 。

3. 半乳糖缺乏型IgAN1致病机制

半乳糖缺陷的IgA1 (Gd-IgA1)是指IgA1分子O型糖基化位点修饰存在明显的半乳糖缺失,从而暴露出聚糖分子的结合位点,故被自身抗体识别;IgAN患者的循环IgA1水平升高,伴有一些半乳糖缺乏的O-聚糖,即由末端GalNAc或唾液酸化GalNAc组成。虽然IgA1的糖基化发生改变,但其他含O-聚糖的糖蛋白的糖基化没有改变 [9] 。此外,Gd-IgA1的血清水平升高是一种遗传特征 [10] [11] ,表明在IgAN的发病机制中存在遗传共同决定因素 [12] 。Suzuki [13] [14] 等学者认为IgAN发病需要经过“四重打击”病理过程,首先是Gd-IgA1异常增多,然后特异性识别Gd-IgA1的抗糖基IgG抗体的参与,再次是致病性免疫复合物的形成,最后是这些难以清除的免疫复合物沉积在肾小球系膜并通过补体系统激活系膜细胞,使细胞过度增殖并过度分泌细胞外基质和炎症机制,导致IgAN的病理改变和临床表现。

4. Toll受体在半乳糖缺陷的IgAN致病机制

Toll样受体(TLR)是先天免疫系统中的关键分子,与IgAN的发病机制有关 [15] [16] 。TLR-9是I型跨膜蛋白,由胞外区,跨膜区和胞内区组成。髓样分化因子88(MyD88)是TLR-9和其他TLRs的衔接分子。TLR-9外源性配体主要是非甲基化胞嘧啶–磷酸–鸟嘌呤二核苷酸序列(unmethylated CpGdinucleotides, CpG-DNA),来源于细菌和病毒,内源性配体有CpG-染色体-IgG复合物等,主要来源于凋亡细胞 [17] 。由于TLR-9主要位胞浆中,因此配体需要经过内吞作用进入细胞内,与胞内TLR-9结合,激活My88依赖型信号通路,从而活化免疫细胞,发挥免疫作用。Suzuki [18] 等人的实验中,实验中向易感染IgAN的ddY小鼠模型注射配体CpG-ODN,出现系膜增生及细胞外基质扩张,导致异常糖基化IgAN和IgG-IgA IC过度产生,证明了TLR-9激活加重了易患IgAN的ddY小鼠的肾损伤。

5. 增殖诱导配体表达增加在IgA肾病中IgA1异常糖基化

增殖诱导配体(APRIL)是肿瘤坏死因子超家族(TNF)的成员,是一种刺激B淋巴细胞增殖和IgA产生的细胞因子。APRIL与另一个TNF超家族配体B细胞激活因子(BAFF)共享一些对B细胞发育重要的信号受体。IgAN的全基因组关联研究揭示了一个包含TNFSF13基因的位点 [19] ,该基因编码APRIL配体,该配体与BAFF具有高度同源性(48%) [20] ,是IgAN的遗传易感位点。McCarthy等人报告了一种过度表达BAFF的转基因小鼠,该小鼠在存在共生菌群的情况下与人类IgAN高度相似。BAFF过度表达后,小鼠出现高循环水平的异常糖基化IgA、gA系膜沉积、血尿和蛋白尿 [21] [22] ,即APRIL的表达总是与BAFF的表达呈正相关。翟亚玲 [23] 等人的体外试验结果表明,APRIL及淋巴细胞异常都可能导致IgAN中Gd-IgA1的升高,因为APRIL增加了IgAN患者淋巴细胞中Gd-IgA1的生成。并且在对IgAN患者临床特征的分析中发现,血浆APRIL水平越高,临床表现越严重(高蛋白尿和低eGFR)。所以检测APRIL在IgAN诊断及预后中具有重要作用。

6. IL-6诱导异常糖基化IgA的产生

根据研究显示 [24] [25] ,IL-6是影响IgA1糖基化中最活跃的细胞因子,因为IL-6的上调介导了系膜细胞增殖和基质扩张,并促进了肾脏中的炎性细胞浸润,特别是活动性疾病期间,尿液中检测到的IL-6量与之相关。Suzuki等人的实验中向ddy小鼠注射CpG ODN可增强体外脾细胞产生IL-6,并且向脾细胞培养基中添加IL-6也可增加IgA的产生。此外,IL-6增强了异常糖基化IgA的合成和IgG-IgA IC的形成,并增加了APRIL的产生。这些发现表明IL-6可能是诱导TLR-9激活介导的肾源性IgA过度产生的主要分子之一。IL-6及APRIL的刺激均可增强IgA和Gd-IgA1的产生,APRIL和IL-6途径各自独立介导TLR-9诱导的Gd-IgA1的过度生成,表明APRIL和IL-6协同及独立促进Gd-IgA1的生成。

7. 结语

尽管多项研究表明,Gd-IgA1及其自身抗体作为一种特异性的生物标志物,其诊断准确性较为可靠,然而在肾脏病人群中,特别是免疫性疾病所引起的肾脏疾病患者中,这些标志物的诊断特异度并不高,并且由于分析肾小球IgA1的糖基化需要复杂的程序,目前尚无复制性研究报道。所以进一步了解TLR-9促进异常糖基化IgA的机制及TLR-9激活APRIL和IL-6的过量产生,有助于寻找更加可靠的无创性标志物以辅助诊断IgAN。这些分子的血清水平确实具有评估IgAN预后和疾病活动性的临床诊断潜力,独立于肾活检的信息。以及通过一些标志物对其治疗效果及转归进行判断。同时,在采用生物标志物进行诊断时,排除一些已知的免疫相关的肾脏疾病,可提高诊断的准确率。

文章引用

努尔加那提·努尔木哈买提,陆 晨. Toll受体对半乳糖缺陷型IgA肾病影响机制研究进展
Research Progress on the Mechanism of the Effect of Toll Receptor on Galactose Deficient IgA Nephropathy[J]. 临床医学进展, 2023, 13(12): 20324-20328. https://doi.org/10.12677/ACM.2023.13122861

参考文献

  1. 1. Berger, J. and Hinglais, N. (1968) [Intercapillary Deposits of IgA-IgG]. Journal of Urology and Nephrology, 74, 694- 695.

  2. 2. Jarrick, S., et al. (2019) Mortality in IgA Nephropathy: A Nationwide Population-Based Cohort Study. Jour-nal of the American Society of Nephrology, 30, 866-876. https://doi.org/10.1681/ASN.2018101017

  3. 3. Rajasekaran, A., Julian, B.A. and Rizk, D.V. (2021) IgA Nephrop-athy: An Interesting Autoimmune Kidney Disease. The American Journal of the Medical Sciences, 361, 176-194. https://doi.org/10.1016/j.amjms.2020.10.003

  4. 4. McGrogan, A., Franssen, C.F. and de Vries, C.S. (2011) The Incidence of Primary Glomerulonephritis Worldwide: A Systematic Review of the Literature. Nephrology Dialysis Transplantation, 26, 414-430. https://doi.org/10.1093/ndt/gfq665

  5. 5. Woo, K.T., et al. (2010) Global Evolutionary Trend of the Prevalence of Primary Glomerulonephritis over the Past Three Decades. Nephron Clinical Practice, 116, c337-c346. https://doi.org/10.1159/000319594

  6. 6. Floege, J. and Amann, K. (2016) Primary Glomerulonephritides. The Lancet, 387, 2036-2048. https://doi.org/10.1016/S0140-6736(16)00272-5

  7. 7. 商华. IgA肾病免疫发病机制研究新进展[J]. 中国医药科学, 2021, 11(20): 60-63, 105.

  8. 8. 邓振领, 王悦. IgA肾病患者肾小球系膜区沉积的IgA1来源的研究进展[J]. 生理科学进展, 2019, 50(2): 146-148.

  9. 9. Suzuki, H., et al. (2014) Cytokines Alter IgA1 O-Glycosylation by Dysregu-lating C1GalT1 and ST6GalNAc-II Enzymes. Journal of Biological Chemistry, 289, 5330-5339. https://doi.org/10.1074/jbc.M113.512277

  10. 10. Gharavi, A.G., et al. (2008) Aberrant IgA1 Glycosylation Is Inher-ited in Familial and Sporadic IgA Nephropathy. Journal of the American Society of Nephrology, 19, 1008-1014. https://doi.org/10.1681/ASN.2007091052

  11. 11. Xing, Y., et al. (2020) C1GALT1 Expression Is Associated with Galactosylation of IgA1 in Peripheral B Lymphocyte in Immunoglobulin a Nephropathy. BMC Nephrology, 21, Article No. 18. https://doi.org/10.1186/s12882-019-1675-5

  12. 12. Wang, Y., et al. (2021) Interaction between GALNT12 and C1GALT1 Associates with Galactose-Deficient IgA1 and IgA Nephropathy. Journal of the American Society of Nephrology, 32, 545-552. https://doi.org/10.1681/ASN.2020060823

  13. 13. Takahata, A., et al. (2020) Crucial Role of AIM/CD5L in the De-velopment of Glomerular Inflammation in IgA Nephropathy. Journal of the American Society of Nephrology, 31, 2013-2024. https://doi.org/10.1681/ASN.2019100987

  14. 14. Suzuki, H., et al. (2011) The Pathophysiology of IgA Nephropathy. Journal of the American Society of Nephrology, 22, 1795-1803. https://doi.org/10.1681/ASN.2011050464

  15. 15. Brown, G.J., et al. (2022) TLR7 Gain-of-Function Genetic Varia-tion Causes Human Lupus. Nature, 605, 349-356. https://doi.org/10.1038/s41586-022-04642-z

  16. 16. Zachova, K., et al. (2022) Galactose-Deficient IgA1 B Cells in the Circulation of IgA Nephropathy Patients Carry Preferentially Lambda Light Chains and Mucosal Homing Receptors. Journal of the American Society of Nephrology, 33, 908-917. https://doi.org/10.1681/ASN.2021081086

  17. 17. Takeda, K. and Akira, S. (2004) TLR Signaling Pathways. Semi-nars in Immunology, 16, 3-9. https://doi.org/10.1016/j.smim.2003.10.003

  18. 18. Makita, Y., et al. (2020) TLR9 Activation Induces Aberrant IgA Glycosylation via APRIL- and IL-6-Mediated Pathways in IgA Nephropathy. Kidney International, 97, 340-349. https://doi.org/10.1016/j.kint.2019.08.022

  19. 19. Yu, X.Q., et al. (2011) A Genome-Wide Association Study in Han Chinese Identifies Multiple Susceptibility Loci for IgA Nephropathy. Nature Genetics, 44, 178-182. https://doi.org/10.1038/ng.1047

  20. 20. Schneider, P., et al. (1999) BAFF, a Novel Ligand of the Tumor Necrosis Factor Family, Stimulates B Cell Growth. Journal of Experimental Medicine, 189, 1747-1756. https://doi.org/10.1084/jem.189.11.1747

  21. 21. McCarthy, D.D., et al. (2011) Mice Overexpressing BAFF Develop a Commensal Flora-Dependent, IgA-Associated Nephropathy. Journal of Clinical Investigation, 121, 3991-4002. https://doi.org/10.1172/JCI45563

  22. 22. Takahara, M., et al. (2019) A Proliferation-Inducing Ligand (APRIL) In-duced Hyper-Production of IgA from Tonsillar Mononuclear Cells in Patients with IgA Nephropathy. Cellular Immu-nology, 341, Article ID: 103925. https://doi.org/10.1016/j.cellimm.2019.103925

  23. 23. Zhai, Y.L., et al. (2016) Increased APRIL Expression Induces IgA1 Aberrant Glycosylation in IgA Nephropathy. Medicine, 95, e3099. https://doi.org/10.1097/MD.0000000000003099

  24. 24. Schmitt, R., et al. (2014) The Combined Role of Galac-tose-Deficient IgA1 and Streptococcal IgA-Binding M Protein in Inducing IL-6 and C3 Secretion from Human Mesangi-al Cells: Implications for IgA Nephropathy. The Journal of Immunology, 193, 317-326. https://doi.org/10.4049/jimmunol.1302249

  25. 25. Groza, Y., et al. (2022) IL-6 and Its Role in IgA Nephropathy De-velopment. Cytokine & Growth Factor Reviews, 66, 1-14. https://doi.org/10.1016/j.cytogfr.2022.04.001

期刊菜单