Advances in Clinical Medicine
Vol. 14  No. 03 ( 2024 ), Article ID: 83722 , 7 pages
10.12677/acm.2024.143913

放射联合免疫治疗增强远端效应的研究进展

舒锐,赖建平*,刘德慧,李义兴

三峡大学第一临床医学院宜昌市中心人民医院核医学科,湖北 宜昌

收稿日期:2024年2月27日;录用日期:2024年3月21日;发布日期:2024年3月29日

摘要

在一个部位进行放射治疗可能导致未接受放射治疗的远处转移性肿瘤消退的效应被称为远端效应(abscopal effect)。远端效应是由辐射对免疫系统影响介导的全身免疫反应。在许多类型的恶性肿瘤中观察到了这种效应,包括肺癌、肾细胞癌、肝细胞癌、淋巴瘤和黑色素瘤等。然而,这种效应是罕见的,因为已建立的免疫耐受机制可能会阻碍远端效应的产生。近些年,随着免疫疗法的出现,放射治疗与免疫治疗相结合提高了远端效应发生率,人们对远端效应的兴趣重新燃起。

关键词

远端效应,放射治疗,免疫治疗

Research Progress on Enhancing the Abscopal Effect through the Combination of Radiation and Immunotherapy

Rui Shu, Jianping Lai*, Dehui Liu, Yixing Li

Department of Nuclear Medicine, Yichang Central People’s Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang Hubei

Received: Feb. 27th, 2024; accepted: Mar. 21st, 2024; published: Mar. 29th, 2024

ABSTRACT

The phenomenon where radiation therapy in one site may lead to the regression of distant metastatic tumors without radiotherapy radiation is called abscopal effect. The abscopal effect involves a systemic immune response mediated by the impact of radiation on the immune system. This effect has been observed in various malignant tumors, including lung cancer, renal cell carcinoma, hepatocellular carcinoma, lymphoma, and melanoma. However, this effect is rare due to established immune tolerance mechanisms that may hinder the occurrence of the abscopal effect. In recent years, with the emergence of immunotherapy, the combination of radiation therapy and immunotherapy has increased the incidence of the abscopal effect, reigniting interest in this phenomenon.

Keywords:Abscopal Effect, Radiotherapy, Immunotherapy

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

放射治疗是癌症治疗的基本组成方式,是缓解癌症患者疼痛并维持生活质量的重要手段,据统计约有一半的癌症患者接受放射治疗 [1] 。放射治疗除了对受照肿瘤细胞的直接损伤外,还可诱导一系列生物学效应,这些生物学效应被认为是全身性免疫介导的抗肿瘤效应 [2] 。远端效应由Mole在1953年首次提出 [3] ,描述了照射区域外肿瘤的消退,该效应通过全身抗肿瘤免疫应答介导,诱导远离原发照射部位的非照射转移性病变的消退,现已在不同的类型肿瘤中得到证实。随着免疫治疗的引入,放射联合免疫治疗可增强全身抗肿瘤免疫反应,提高远端效应的发生率。

2. 远端效应的机制

电离辐射可以使肿瘤细胞DNA双链断裂,从而导致肿瘤细胞死亡。肿瘤细胞在修复辐射损伤能力比正常细胞弱,这导致肿瘤细胞死亡差异。当肿瘤被照射时,肿瘤细胞应激或损伤可能导致坏死和凋亡,从而释放肿瘤相关抗原。肿瘤相关抗原数量和多样性的大幅增加可以刺激肿瘤特异性免疫应答,放射治疗诱导的肿瘤细胞死亡有利于抗原在树突状细胞中交叉呈递,并通过激活toll样受体4 (Toll-Like Receptor 4, TLR4)和1型干扰素(Interferon 1, IFN 1)信号来刺激CD8+T细胞 [4] 。肿瘤相关抗原被树突状细胞吸收,然后呈递给CD8+T细胞。CD8+T细胞可以识别并攻击原发和转移的肿瘤细胞 [5] 。这些激活的CD8+T细胞会移动到其他部位,并产生远端效应 [6] 。同时受到辐射的肿瘤细胞也可能释放细胞凋亡相关分子模式(Damage-Associated Molecular Patterns, DAMP),例如高迁移率族蛋白1、热休克蛋白、钙网蛋白和葡萄糖调节蛋白96,这些分子模式通过TLR4途径激活树突状细胞 [4] 。高迁移率族蛋白1能够刺激单核细胞产生细胞因子,例如TNF-α和白细胞介素IL-1、IL-6和IL-8,这些细胞因子可充当促炎介质并有助于树突状细胞成熟,DAMP和细胞因子能增强免疫细胞的运输 [7] 。电离辐射还可影响肿瘤微环境(Tumor Microenvironment, TME),可导致缺氧肿瘤的再氧合,改变低氧诱导因子1α (Hypoxia-inducible factor 1α, HIF-1a)的表达水平 [8] ,并潜在地改变肿瘤利用血管生成机制进一步转移的能力 [9] 。辐射产生的胞浆双链DNA导致受辐射的肿瘤细胞产生干扰素β (IFN β),并导致树突状细胞渗入肿瘤,从而促进肿瘤相关抗原向CD8+T细胞的交叉呈递 [10] ,使得放射治疗后存活的肿瘤细胞更好地成为CD8+T细胞的消灭目标。

3. 不同种类肿瘤的远端效应

远端效应在许多恶性肿瘤中都有被发现。Pevzner等 [11] 统计了1973年至2019年期间35项临床研究,描述了51例不同部位的远端效应,结果发现,其中黑色素瘤病例约占33% (17/51),是恶性肿瘤发生远端效应的最多类型。通常肿瘤的主要原发部位是肾脏(9/51)和肺(7/51)。记录远端效应的常见转移部位是肺(约41%)、淋巴结(约31%)和肝脏(约16%)。在51例中只有13例观察到肿瘤转移的多重消退。原发性肿瘤(包括胆管癌和肾细胞癌)的病例报告也描述了远端效应 [12] [13] 。Liu等 [12] 发现,如果在肝内胆管癌中观察到远端效应,放射治疗可以增强肿瘤相关抗原的呈递,并帮助T细胞识别肿瘤相关抗原。Wersäll等 [13] 报道了,在28名接受治疗肾细胞癌患者中,4名之前未接受放射治疗的转移患者在对原发肿瘤进行立体定向放射治疗后,有转移病灶出现暂时或永久性消退,这项研究还指出,与未表现出远端效应的患者相比,表现出远端效应的患者的生存时间有所延长。

4. 放射联合免疫治疗协同作用的免疫基础

虽然单独放射治疗可能足以在少数患者中产生远端效应,但联合免疫治疗可增强远端效应。TME被认为是致癌的驱动因素,TME的特点是肿瘤细胞与其周围基质之间存在免疫抑制相互作用,允许肿瘤细胞持续存活和增殖 [14] 。免疫逃避是致癌的标志,单独放射治疗克服免疫抑制状态且有效诱导全身免疫激活的程度是有限的,联合免疫疗法可克服免疫抑制性TME,并增强免疫反应。例如,程序性细胞死亡蛋白1/程序性细胞死亡配体1 (PD-1/PD-L1)途径在TME内的免疫耐受中发挥着重要作用。肿瘤细胞可通过高表达PD-L1与T细胞表面的PD-1结合,抑制T细胞的免疫效应,从而实现免疫逃逸,促进肿瘤进展 [15] 。通过针对免疫抑制性的TME,PD-1/PD-L1免疫药物的出现使恶性肿瘤治疗取得重大进展。抗PD-1药物帕博利珠单抗已被美国食品和药物管理局批准用于治疗恶性肿瘤,包括转移性黑色素瘤、小细胞肺癌和头颈鳞状细胞癌。放射治疗会触发T细胞诱导肿瘤细胞的免疫原性死亡,而抗PD-1免疫治疗则通过阻断PD-1与PD-L1结合,来改善T细胞介导的免疫反应 [11] 。放射治疗及免疫治疗各自在免疫调节中具有相应作用,将它们联合应用可能具有协同的全身抗肿瘤作用。尽管放射治疗产生了较为理想的免疫原性抗肿瘤效果,但它也通过激活免疫抑制细胞因子TGFβ、增加调节性T细胞(Treg细胞)和促进致瘤M2巨噬细胞而有助于免疫抑制 [16] 。联合免疫疗法可能会将放射治疗的平衡转向肿瘤排斥。就PD-1/PD-L1通路而言,放射治疗会上调局部PD-L1表达,并且PD-L1阻断对于克服对放射治疗的耐药性是必要的。肿瘤细胞接受照射还会促进CD8+T细胞活性,这可能会补充免疫治疗的作用,最终针对免疫反应的不同方面,增强免疫原性细胞死亡 [17] 。此外,放射治疗降低肿瘤相关抗原持续存在而产生的免疫耐受性,并促进免疫治疗的效果 [18] 。

5. 放射联合免疫治疗的应用及增强远端效应

远端效应的发生率很低,似乎广泛的应用价值有限。随着免疫治疗的出现,放射治疗与免疫治疗相结合,与单独使用放射治疗或免疫治疗相比,这种组合大大提高了远端缓解率。不同的免疫抑制剂可以通过不同方面的免疫应答来增强远位效应 [19] 。例如,抗CD40可用于增加抗原呈递细胞的活化;抗细胞毒性T淋巴细胞相关蛋白4 (CTLA4)、PD 1抑制剂、PD-L1抑制剂可作为免疫检查点抑制剂(Immune Checkpoint Inhibition, ICI),ICI可增强针对肿瘤细胞的T细胞活性 [20] 。电离辐射可刺激瘤内CD8+T细胞或原始T细胞的增殖和分化来增强ICI的作用。Twyman-Saint等 [21] 报道了抗CTLA4具有促进T细胞扩增的能力,而放射治疗改善了克隆T细胞扩增的能力。此外,PD-L1抑制剂可逆转T细胞耗竭,从而减轻CD8+T细胞/Treg细胞比率的下降,并进一步促进寡克隆T细胞扩增。CTLA-4抑制剂主要作用于初始的Treg细胞,而抗PD1药物则作用于新激活和耗竭的T细胞。对于CTLA-4抑制剂,由于Treg细胞的消耗,即使在放射治疗开始之前,联合的免疫治疗也可能有效 [22] 。Hiniker等 [23] 进行的一项I期研究表明,放射治疗前给予CTLA-4抑制剂伊匹木单抗的完全或部分缓解率为50%,完全缓解率为27%,放射治疗后给予伊匹木单抗的部分缓解率为18%。Dovedi等 [24] 提出,导致肿瘤细胞PD-L1上调的机制涉及肿瘤浸润性CD8+T细胞产生IFN-γ,通过同时予以PD-L1抑制剂和放射治疗,可避免获得性放射抵抗。2014年的一项研究 [25] 也支持在放射治疗的同时实施ICI的策略,该研究称,放射治疗增加了肿瘤细胞PD-L1的表达。Dagoglu等 [26] 的综述报告称,在分析的大多数病例中,免疫治疗同时或之后立即接受放射治疗的患者出现远端效应,其中15/24项研究使用伊匹木单抗,24项研究中有两项使用PD1抑制剂帕博利珠单抗,24项研究中有3项使用PD1抑制剂纳武利尤单抗。CHECKMATE 577是一项3期前瞻性随机试验,它显示在局部晚期食道癌的放化疗和手术后加以纳武利尤单抗可使中位无病生存期增加一倍以上 [27] 。在一项不能切除的III期非小细胞肺癌(NSCLC)研究中 [28] ,患者在接受放化疗后被随机分配接受PD-L1抑制剂度伐利尤单抗或安慰剂,使用度伐利尤单抗的无进展生存期从5.6个月显著提高到17.2个月。随着ICI的发展,远端效应的出现变得更加频繁。在一项测试放射治疗与免疫制剂、粒细胞–巨噬细胞集落刺激因子(GM-CSF)联合治疗多种类型实体转移癌的临床试验中 [29] ,约30%的患者出现远端效应。在一项关于黑色素瘤的研究中 [21] ,放射治疗与包含CTLA4抑制剂和PD-L1抑制剂的免疫疗法相结合,增加了远端效应发生率。在另一项黑色素瘤研究中 [30] ,晚期黑色素瘤患者在接受伊匹木单抗联合放射治疗后显示出52%的远端效应率,尽管之前单独使用伊匹木单抗时疾病进展。

6. 免疫抑制及克服免疫抑制

远端效应的罕见性表明,即使将放射治疗与免疫治疗相结合,激活的抗肿瘤CD8+T细胞也无法克服TME的抑制作用,远端效应的发展仍然可能因广泛存在的免疫抑制或耐受性而受到限制。电离辐射不仅对外周血中的免疫细胞具有杀伤力,从而抑制了机体的免疫功能,还可以通过增加包括Treg细胞和髓系抑制细胞(MDSC)在内的一些抑制性免疫细胞来影响TME [31] [32] 。Treg细胞是一种CD4+淋巴细胞,在肿瘤中,Treg细胞可导致不必要的免疫抑制作用,甚至促进疾病进展 [33] 。有研究表明,当肿瘤细胞接受各种类型的放射治疗时,TME中的Treg细胞数量显着增加 [34] 。Treg细胞水平升高与TME抑制、免疫治疗抵抗和预后不良有关 [35] 。同时由肿瘤释放的免疫抑制性细胞因子(例如转化生长因子-β)和在T细胞上表达的表面受体(例如CTLA-4)可以抑制T细胞的功能。M2巨噬细胞、MDSC和未成熟树突状细胞也可抑制T细胞功能 [36] [37] 。这类免疫抑制细胞和免疫抑制细胞因子的普遍存在,限制了远端效应。Twyman-Saint等的黑色素瘤的研究 [21] ,将放射治疗与抗CTLA4相结合,导致了有限的远端效应。这项研究发现,放射治疗和抗CTLA4导致肿瘤细胞上PD-L1上调,介导T细胞耗竭,部分解释了观察到有限的远端效应的原因。除了患者之前接受过放射治疗或化疗外,免疫介导的远端效应也可能受到患者骨髓抑制程度、总体肿瘤负荷、中性粒细胞和淋巴细胞的比率等因素的影响 [19] 。在大多数肿瘤患者中观察到的免疫细胞耗竭或淋巴细胞减少可能会降低有效免疫反应的机会,肿瘤内的缺氧区域也可能导致免疫抑制。有研究表明 [38] ,在卵巢癌治疗过程中,肿瘤相关缺氧诱导的趋化因子能够招募免疫抑制Treg细胞。克服免疫抑制的方法是使用多种免疫抑制剂,如上述的黑素瘤研究所强调的 [21] ,该研究描述了当肿瘤用放射治疗和CTLA-4抑制剂时,PD-L1介导的免疫抑制,并采用抗CTLA-4和抗PD-L1的组合来克服这种免疫抑制。该研究表明,放射治疗增加了肿瘤内T细胞和T细胞受体的多样性,并且抗CTLA-4可抑制Treg细胞,而添加PD-L1抑制剂逆转了T细胞耗竭,从而减轻CD8+T细胞和Treg细胞比率的下降,并进一步促进寡克隆T细胞扩增。放射治疗结合具有不同作用机制的免疫抑制剂可克服免疫抑制。

7. 远端效应的预测因素

随着时间的推移,人们对远端效应的认识不断增强,并一直在努力了解是否有任何特定因素介导了这种效应。Camphausen等 [39] 研究了p53 (一种在受辐射细胞中上调的蛋白质复合物)是否在远端效应中起到作用。他们的研究表明了,放射治疗可能会产生p53介导的全身抗血管生成作用,p53的表达会在放射治疗后上调,与下游炎症和血管生成抑制相协调,这可能是远端效应的机制之一 [39] [40] 。因此,p53表达和突变状态是放射治疗后远端效应的潜在生物标志物。某些肿瘤中浸润性T细胞的存在与病情的好转相关,并且远端效应与放射治疗前的淋巴细胞计数之间存在显著相关性,这使其成为预测是否会出远端效应潜在的生物标志物 [41] 。其他研究表明,放射治疗会导致突变型KPNA2表达增加,并与T细胞受体上调相关,表明了这些突变有可能预测抗肿瘤T细胞的反应,从而导致远端效应。与该突变体发生反应的T细胞受体克隆在放射治疗前几乎不存在,但在放射治疗后外周血样本中却急剧增加 [42] 。钙网蛋白也被证明在免疫治疗和放射治疗后可诱导T细胞致敏 [17] 。除了这些潜在生物标志物之外,还可以在放射治疗期间监测远端效应的介质(例如TREX1和INF-β),以评估诱导的远端效应对抗肿瘤进展方面的作用。还有研究表明 [43] ,由于电离辐射,磷酸化组蛋白H2AX分子会引发DNA损伤,并且可以观察抗H2AX抗体来评估NSCLC患者的放射治疗疗效和远端效应。

8. 小结

在首次描述远位效应几十年后,越来越多的证据表明,放射治疗与免疫治疗的结合可以增强端位效应。在克服免疫抑制及更好地激发远端效应的产生等方面仍然存在持续的挑战,需要在激发远端效应的背景下探讨和研发用于克服免疫抑制的药物。为了更好地预测并诱导远端效应的发生,需要我们将预测生物标志物与治疗后指标相结合,进一步研究临床试验中远端效应的机制和探索新的标志物。将放射治疗和免疫治疗更协调地相结合,提高远端效应发生率,可能会对患者治疗效果产生重大影响,从而改善患者的预后并挽救更多的生命。

文章引用

舒 锐,赖建平,刘德慧,李义兴. 放射联合免疫治疗增强远端效应的研究进展
Research Progress on Enhancing the Abscopal Effect through the Combination of Radiation and Immunotherapy[J]. 临床医学进展, 2024, 14(03): 1824-1830. https://doi.org/10.12677/acm.2024.143913

参考文献

  1. 1. Citrin, D.E. (2017) Recent Developments in Radiotherapy. The New England Journal of Medicine, 377, 1065-1075. https://doi.org/10.1056/NEJMra1608986

  2. 2. Demaria, S., Ng, B., Devitt, M.L., Babb, J.S., Kawashima, N., Liebes, L., and Formenti, S.C. (2004) Ionizing Radiation Inhibition of Distant Untreated Tumors (Abscopal Effect) Is Immune Mediated. International Journal of Radiation Oncology, Biology, Physics, 58, 862-870. https://doi.org/10.1016/j.ijrobp.2003.09.012

  3. 3. Mole, R.H. (1953) Whole Body Irradiation; Radiobiology or Medicine? The British Journal of Radiology, 26, 234-241. https://doi.org/10.1259/0007-1285-26-305-234

  4. 4. Janopaul-Naylor, J.R., Shen, Y., Qian, D.C. and Buchwald, Z.S. (2021) The Abscopal Effect: A Review of Pre-Clinical and Clinical Advances. International Journal of Molecular Sciences, 22, Article 11061. https://doi.org/10.3390/ijms222011061

  5. 5. Grass, G.D., Krishna, N. and Kim, S. (2016) The Immune Mechanisms of Abscopal Effect in Radiation Therapy. Current Problems in Cancer, 40, 10-24. https://doi.org/10.1016/j.currproblcancer.2015.10.003

  6. 6. Koukourakis, M.I. and Giatromanolaki, A. (2022) Tumor Draining Lymph Nodes, Immune Response, and Radiotherapy: Towards a Revisal of Therapeutic Principles. Biochimica et Biophysica Acta, 1877, Article 188704. https://doi.org/10.1016/j.bbcan.2022.188704

  7. 7. Andersson, U., Wang, H., Palmblad, K., Aveberger, A.C., Bloom, O., Erlandsson-Harris, H., Janson, A., Kokkola, R., Zhang, M., Yang, H. and Tracey, K.J. (2000) High Mobility Group 1 Protein (HMG-1) Stimulates Proinflammatory Cytokine Synthesis in Human Monocytes. The Journal of Experimental Medicine, 192, 565-570. https://doi.org/10.1084/jem.192.4.565

  8. 8. Zhang, Y.C., Jiang, G., Gao, H., Liu, H.M. and Liang, J. (2014) Influence of Ionizing Radiation on Ovarian Carcinoma SKOV-3 Xenografts in Nude Mice Under Hypoxic Conditions. Asian Pacific Journal of Cancer Prevention, 15, 2353-2358. https://doi.org/10.7314/apjcp.2014.15.5.2353

  9. 9. Wan, J. and Wu, W. (2016) Hyperthermia Induced HIF-1a Expression of Lung Cancer through AKT and ERK Signaling Pathways. Journal of Experimental & Clinical Cancer Research, 35, Article No. 119. https://doi.org/10.1186/s13046-016-0399-7

  10. 10. Vanpouille-Box, C., Alard, A., Aryankalayil, M.J., Sarfraz, Y., Diamond, J.M., Schneider, R.J., Inghirami, G., Coleman, C.N., Formenti, S.C. and Demaria, S. (2017) DNA Exonuclease Trex1 Regulates Radiotherapy-Induced Tumour Immunogenicity. Nature Communications, 8, Article No. 15618. https://doi.org/10.1038/ncomms15618

  11. 11. Pevzner, A.M., Tsyganov, M.M., Ibragimova, M.K. and Litvyakov, N.V. (2021) Abscopal Effect in the Radio and Immunotherapy. Radiation Oncology Journal, 39, 247-253. https://doi.org/10.3857/roj.2021.00115

  12. 12. Liu, X., Yao, J., Song, L., Zhang, S., Huang, T. and Li, Y. (2019) Local and Abscopal Responses in Advanced Intrahepatic Cholangiocarcinoma with Low TMB, MSS, pMMR and Negative PD-L1 Expression Following Combined Therapy of SBRT with PD-1 Blockade. Journal for Immunotherapy of Cancer, 7, Article 204. https://doi.org/10.1186/s40425-019-0692-z

  13. 13. Wersäll, P.J., Blomgren, H., Pisa, P., Lax, I., Kälkner, K.M. and Svedman, C. (2006) Regression of Non-Irradiated Metastases after Extracranial Stereotactic Radiotherapy in Metastatic Renal Cell Carcinoma. Acta Oncologica, 45, 493-497. https://doi.org/10.1080/02841860600604611

  14. 14. Hanahan D. (2022) Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12, 31-46. https://doi.org/10.1158/2159-8290.CD-21-1059

  15. 15. Liu, J., Chen, Z., Li, Y., Zhao, W., Wu, J. and Zhang, Z. (2021) PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy. Frontiers in Pharmacology, 12, Article 731798. https://doi.org/10.3389/fphar.2021.731798

  16. 16. Formenti, S.C. and Demaria, S. (2013) Combining Radiotherapy and Cancer Immunotherapy: A Paradigm Shift. Journal of the National Cancer Institute, 105, 256-265. https://doi.org/10.1093/jnci/djs629

  17. 17. Ngwa, W., Irabor, O.C., Schoenfeld, J.D., Hesser, J., Demaria, S. and Formenti, S.C. (2018) Using Immunotherapy to Boost the Abscopal Effect. Nature Reviews Cancer, 18, 313-322. https://doi.org/10.1038/nrc.2018.6

  18. 18. Drake, C.G. (2012) Combination Immunotherapy Approaches. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 23, viii41-viii46. https://doi.org/10.1093/annonc/mds262

  19. 19. Kang, J., Demaria, S. and Formenti, S. (2016) Current Clinical Trials Testing the Combination of Immunotherapy with Radiotherapy. Journal for Immunotherapy of Cancer, 4, Article 51. https://doi.org/10.1186/s40425-016-0156-7

  20. 20. Hao, Y., Yasmin-Karim, S., Moreau, M., Sinha, N., Sajo, E. and Ngwa, W. (2016) Enhancing Radiotherapy for Lung Cancer Using Immunoadjuvants Delivered in Situ from New Design Radiotherapy Biomaterials: A Preclinical Study. Physics in Medicine and Biology, 61, N697-N707. https://doi.org/10.1088/1361-6560/61/24/N697

  21. 21. Twyman-Saint Victor, C., Rech, A.J., Maity, A., Rengan, R., Pauken, K.E., Stelekati, E., Benci, J.L., Xu, B., Dada, H., Odorizzi, P.M., Herati, R.S., Mansfield, K.D., Patsch, D., Amaravadi, R.K., Schuchter, L.M., Ishwaran, H., Mick, R., Pryma, D.A., Xu, X., Feldman, M.D. and Minn, A.J. (2015) Radiation and Dual Checkpoint Blockade Activate Non-Redundant Immune Mechanisms in Cancer. Nature, 520, 373-377. https://doi.org/10.1038/nature14292

  22. 22. Young, K.H., Baird, J.R., Savage, T., Cottam, B., Friedman, D., Bambina, S., Messenheimer, D.J., Fox, B., Newell, P., Bahjat, K.S., Gough, M.J. and Crittenden, M.R. (2016) Optimizing Timing of Immunotherapy Improves Control of Tumors by Hypofractionated Radiation Therapy. PLOS ONE, 11, e0157164. https://doi.org/10.1371/journal.pone.0157164

  23. 23. Hiniker, S.M., Reddy, S.A., Maecker, H.T., Subrahmanyam, P.B., Rosenberg-Hasson, Y., Swetter, S.M., Saha, S., Shura, L. and Knox, S.J. (2016) A Prospective Clinical Trial Combining Radiation Therapy with Systemic Immunotherapy in Metastatic Melanoma. International Journal of Radiation Oncology, Biology, Physics, 96, 578-588. https://doi.org/10.1016/j.ijrobp.2016.07.005

  24. 24. Dovedi, S.J. and Illidge, T.M. (2015) The Antitumor Immune Response Generated by Fractionated Radiation Therapy May be Limited by Tumor Cell Adaptive Resistance and Can be Circumvented by PD-L1 Blockade. Oncoimmunology, 4, e1016709. https://doi.org/10.1080/2162402X.2015.1016709

  25. 25. Deng, L., Liang, H., Burnette, B., Beckett, M., Darga, T., Weichselbaum, R.R. and Fu, Y.X. (2014) Irradiation and Anti-PD-L1 Treatment Synergistically Promote Antitumor Immunity in Mice. The Journal of Clinical Investigation, 124, 687-695. https://doi.org/10.1172/JCI67313

  26. 26. Dagoglu, N., Karaman, S., Caglar, H.B. and Oral, E.N. (2019) Abscopal Effect of Radiotherapy in the Immunotherapy Era: Systematic Review of Reported Cases. Cureus, 11, e4103. https://doi.org/10.7759/cureus.4103

  27. 27. Kelly, R.J., Ajani, J.A., Kuzdzal, J., Zander, T., Van Cutsem, E., Piessen, G., Mendez, G., Feliciano, J., Motoyama, S., Lièvre, A., Uronis, H., Elimova, E., Grootscholten, C., Geboes, K., Zafar, S., Snow, S., Ko, A.H., Feeney, K., Schenker, M., Kocon, P., et al., for the CheckMate 577 Investigators (2021) Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. The New England Journal of Medicine, 384, 1191-1203. https://doi.org/10.1056/NEJMoa2032125

  28. 28. Antonia, S.J., Villegas, A., Daniel, D., Vicente, D., Murakami, S., Hui, R., Kurata, T., Chiappori, A., Lee, K.H., de Wit, M., Cho, B.C., Bourhaba, M., Quantin, X., Tokito, T., Mekhail, T., Planchard, D., Kim, Y.C., Karapetis, C.S., Hiret, S., Ostoros, G. and PACIFIC Investigators (2018) Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. The New England Journal of Medicine, 379, 2342-2350. https://doi.org/10.1056/NEJMoa1809697

  29. 29. Golden, E.B., Chhabra, A., Chachoua, A., Adams, S., Donach, M., Fenton-Kerimian, M., Friedman, K., Ponzo, F., Babb, J.S., Goldberg, J., Demaria, S. and Formenti, S.C. (2015) Local Radiotherapy and Granulocyte-Macrophage Colony-Stimulating Factor to Generate Abscopal Responses in Patients with Metastatic Solid Tumours: A Proof-of-Principle Trial. The Lancet Oncology, 16, 795-803. https://doi.org/10.1016/S1470-2045(15)00054-6

  30. 30. Mampuya, W.A., Bouchaab, H., Schaefer, N., Kinj, R., La Rosa, S., Letovanec, I., Ozsahin, M., Bourhis, J., Coukos, G., Peters, S. and Herrera, F.G. (2021) Abscopal Effect in a Patient with Malignant Pleural Mesothelioma Treated with Palliative Radiotherapy and Pembrolizumab. Clinical and Translational Radiation Oncology, 27, 85-88. https://doi.org/10.1016/j.ctro.2020.12.006

  31. 31. Rodríguez-Ruiz, M.E., Vanpouille-Box, C., Melero, I., Formenti, S.C. and Demaria, S. (2018) Immunological Mechanisms Responsible for Radiation-Induced Abscopal Effect. Trends in Immunology, 39, 644-655. https://doi.org/10.1016/j.it.2018.06.001

  32. 32. Kho, V.M., Mekers, V.E., Span, P.N., Bussink, J. and Adema, G.J. (2021) Radiotherapy and cGAS/STING Signaling: Impact on MDSCs in the Tumor Microenvironment. Cellular Immunology, 362, Article 104298. https://doi.org/10.1016/j.cellimm.2021.104298

  33. 33. Wolf, D., Sopper, S., Pircher, A., Gastl, G. and Wolf, A.M. (2015) Treg(s) in Cancer: Friends or Foe? Journal of Cellular Physiology, 230, 2598-2605. https://doi.org/10.1002/jcp.25016

  34. 34. Beauford, S.S., Kumari, A. and Garnett-Benson, C. (2020) Ionizing Radiation Modulates the Phenotype and Function of Human CD4 Induced Regulatory T Cells. BMC Immunology, 21, Article No. 18. https://doi.org/10.1186/s12865-020-00349-w

  35. 35. Paluskievicz, C.M., Cao, X., Abdi, R., Zheng, P., Liu, Y. and Bromberg, J.S. (2019) T Regulatory Cells and Priming the Suppressive Tumor Microenvironment. Frontiers in Immunology, 10, Article 2453. https://doi.org/10.3389/fimmu.2019.02453

  36. 36. Barker, H.E., Paget, J.T., Khan, A.A. and Harrington, K. J. (2015) The Tumour Microenvironment after Radiotherapy: Mechanisms of Resistance and Recurrence. Nature Reviews Cancer, 15, 409-425. https://doi.org/10.1038/nrc3958

  37. 37. Vatner, R.E., Cooper, B.T., Vanpouille-Box, C., Demaria, S. and Formenti, S. C. (2014) Combinations of Immunotherapy and Radiation in Cancer Therapy. Frontiers in Oncology, 4, Article 325. https://doi.org/10.3389/fonc.2014.00325

  38. 38. Facciabene, A., Peng, X., Hagemann, I.S., Balint, K., Barchetti, A., Wang, L.P., Gimotty, P.A., Gilks, C.B., Lal, P., Zhang, L. and Coukos, G. (2011) Tumour Hypoxia Promotes Tolerance and Angiogenesis via CCL28 and Treg Cells. Nature, 475, 226-230. https://doi.org/10.1038/nature10169

  39. 39. Camphausen, K., Moses, M.A., Ménard, C., Sproull, M., Beecken, W.D., Folkman, J. and O’Reilly, M.S. (2003) Radiation Abscopal Antitumor Effect Is Mediated through p53. Cancer Research, 63, 1990-1993.

  40. 40. Strigari, L., Mancuso, M., Ubertini, V., Soriani, A., Giardullo, P., Benassi, M., D’Alessio, D., Leonardi, S., Soddu, S. and Bossi, G. (2015) Abscopal Effect of Radiation Therapy: Interplay between Radiation Dose and p53 Status. International Journal of Radiation Biology, 91, 294. https://doi.org/10.3109/09553002.2014.997514

  41. 41. Craig, D.J., Nanavaty, N.S., Devanaboyina, M., Stanbery, L., Hamouda, D., Edelman, G., Dworkin, L. and Nemunaitis, J.J. (2021) The Abscopal Effect of Radiation Therapy. Future Oncology (London, England), 17, 1683-1694. https://doi.org/10.2217/fon-2020-0994

  42. 42. Wilkins, A., McDonald, F., Harrington, K. and Melcher, A. (2019) Radiotherapy Enhances Responses of Lung Cancer to CTLA-4 Blockade. Journal for Immunotherapy of Cancer, 7, Article 64. https://doi.org/10.1186/s40425-019-0542-z

  43. 43. Siva, S., Lobachevsky, P., MacManus, M.P., Kron, T., Möller, A., Lobb, R.J., Ventura, J., Best, N., Smith, J., Ball, D. and Martin, O.A. (2016) Radiotherapy for Non-Small Cell Lung Cancer Induces DNA Damage Response in Both Irradiated and Out-of-Field Normal Tissues. Clinical Cancer Research, 22, 4817-4826. https://doi.org/10.1158/1078-0432.CCR-16-0138

  44. NOTES

    *通讯作者。

期刊菜单