Sustainable Development
Vol. 14  No. 01 ( 2024 ), Article ID: 80268 , 8 pages
10.12677/SD.2024.141027

生物体内微塑料的分析方法与生态风险研究 进展

刘琦

哈尔滨师范大学,地理科学学院,黑龙江 哈尔滨

收稿日期:2023年12月7日;录用日期:2023年12月18日;发布日期:2024年1月31日

摘要

微塑料是广泛存在于环境中的塑料颗粒。近年来,微塑料对环境的污染日益引起人们的关注。本文综述了环境中微塑料的来源、生物体内微塑料的分析方法与生态风险研究进展,微塑料的分析和鉴定对其他研究至关重要,相关的仪器方法也已应用于微塑料的分析和鉴定。本文综述了各种微塑料分析方法的优缺点。未来应建立统一的微塑料定量分析方法,并开发更准确的可追溯性分析技术,进一步探索其环境行为和命运。加强对陆地、淡水和大气环境中微塑料污染的科学研究,制定更加科学合理的治理政策。本文旨在为微塑料污染的防治提供理论依据,同时也为下一步的研究提供见解。

关键词

微塑料,生物,分析方法,生态风险

Research Progress on Analytical Methods and Ecological Risks of Microplastics in Vivo

Qi Liu

School of Geographical Sciences, Harbin Normal University, Harbin Heilongjiang

Received: Dec. 7th, 2023; accepted: Dec. 18th, 2023; published: Jan. 31st, 2024

ABSTRACT

Microplastics are plastic particles that are widely present in the environment. In recent years, the environmental pollution caused by microplastics has attracted more and more attention. In this paper, the sources of microplastics in the environment, the analysis methods of microplastics in organisms and the research progress of ecological risks are reviewed. The analysis and identification of microplastics are of great importance to other studies. Relevant instrumental methods have also been applied to the analysis and identification of microplastics. The advantages and disadvantages of various analytical methods for microplastics are reviewed. A unified quantitative analysis method for microplastics should be established in the future, and more accurate traceability analysis techniques should be developed to further explore their environmental behavior and fate. Scientific research on microplastics pollution in land, freshwater and atmospheric environments should be strengthened, and more scientific and rational control policies should be formulated. This paper aims to provide a theoretical basis for the prevention and control of microplastic pollution, as well as provide insights for further research.

Keywords:Microplastics, Biology, Analytical Methods, Ecological Risks

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

近年来,塑料制品的广泛应用,使塑料对环境的污染也在逐年增加。塑料是一种可塑性强的高分子聚合物 [1] 。塑料不仅有很强的耐腐蚀性而且塑料制品价格低廉,便于加工,因此,塑料被广泛应用于各个领域。过去70年间,全球塑料的年产量大幅攀升,从170万吨升至3.6亿吨 [2] [3] 。塑料工业的快速发展给人们的日常生活带来了极大的便利。与此同时,由于塑料制品的大量使用,伴随着回收率低且管理不善等因素,使其产生了大量的塑料垃圾和一系列环境问题。例如一些河口的鱼类繁殖能力下降。由于在日常生活中不能妥善处理塑料污染物,塑料污染物以颗粒或碎片的形式在淡水、海洋生态系统中、陆地环境和生物体中积累越来越多。塑料垃圾的急剧增加以及由此产生的社会和环境问题引起了广泛关注。

塑料垃圾具有极强的耐久性,且能够在自然界中持续存在,即使受到外界的影响,也能够分解成极其细微的颗粒和碎片,最终形成“微塑料”。最早是在2004年发表在《科学》杂志上的名为“Lost at Sea: where is all the plastic?”一篇文章中提出了微塑料的概念 [4] 。微塑料通常被认为是环境中<5 mm的塑料颗粒 [5] 。微塑料体积小,表面积大,更容易吸附污染物质,因此成为造成环境污染的主要原因。进入环境的微塑料受到风和洋流等外力作用发生迁移,使得微塑料分布范围变广。微塑料广泛存在于陆地、海洋、淡水和其他环境中的不同营养水平的生物体中。近年来,微塑料作为一种新型的环境污染物,引起了社会的广泛关注。

微塑料可以以多种方式在不同环境之间迁移,微塑料已经渗透到整个海洋环境中,甚至在深海和极地地区也发现了微塑料 [6] 。与海洋环境相比,淡水环境更容易受到人类活动的影响。日常生活中随意丢弃的塑料垃圾、船舶垃圾倾倒入海洋、水产养殖业饲料废弃物处理不当、渔网等工具设备等人为因素导致水生环境中微塑料含量增加。人口密度和周边垃圾处理状况是影响微塑料污染的关键因素。

2. 生物体内微塑料的分析方法研究进展

微塑料的取样方法一般分为选择性取样、散装取样和体积缩减取样 [7] 。研究目的不同,使用的方法和工具也不同。直接选择法是指通过视觉识别直接从环境样品中挑选微塑料的方法。该方法适用于表层沉积物样品中塑料颗粒的收集,尤其适用于1~6 mm粒径塑料颗粒的收集 [8] 。浓缩样品法是指在采样点本身对大量样品进行过滤和筛分,并保留目标成分以供进一步分析的方法 [9] 。大样本法是一种保留所有样本的采样方法,适用于样品中含有微塑料等肉眼难以识别的情况 [10] 。在水环境中收集微塑料样本时,浮游生物的网不同的网格通常用于收集。为了使采集到的样品具有代表性,通常会采集大量的水样。拖网取样装置通常用于地表水,如蝠鲼网、新闻网等 [11] 。Manta网一般用于平静水域,以防止采样设备在波浪的作用下跳动而造成损坏,或避免因设备状态不稳定而导致采样水体积不准确。Neuston网可以在暴风雨期间使用,Bongo网通常用于中间水域,底栖拖网用于底部深水 [12] 。拖网放置在船体的迎风方向,以避免船体对采样的影响。通常以2节的速度拖拽15~30分钟 [13] 。不同网目尺寸得到的微塑料也不同。筛孔大小决定了拖网中保留的颗粒大小和过滤后水样的体积。目前,最常见的取样筛孔直径约为300 um。如果孔径太小,堵塞的风险就会增加。沉积物样本的常用采样工具包括箱式采样器、不锈钢铲等 [7] 。为了研究海滩微塑料,通常采用方形样方采样或几个垂直或平行于海岸线的样条。结合多个样本对目标海滩的微塑料污染进行综合评估。取样后,可直接在现场进行初步筛选,筛选后的组分可储存在实验室进行后续分析。

由于采集的环境样品中通常含有干扰杂质,通常不可能直接分析微塑料样品;因此,有必要对样品进行分离和提取。常用的预处理方法有过滤、筛选、密度分离、生化分离(消化)等 [14] 。过滤法和筛分法的提取过程相似,都是利用小孔截留微塑料。筛分法是将水和沉积物样品通过不同孔径的筛子,以去除较大的颗粒和其他杂质。筛网的材质通常是不锈钢或铜。过滤方法中使用的保留材料是孔径比筛网小得多的过滤膜 [14] 。密度分离法利用环境样品中微塑料与杂质之间的密度差进行分离。预处理步骤参见欧盟制定的《欧洲海域海洋垃圾监测指南》 [15] 。具体操作方法为:在环境样品中加入饱和盐水,充分搅拌、摇匀。然后,将该系统保留到重组分离开水相系统再次沉淀,而微塑料继续悬浮或漂浮在溶液表面。最后,收集上层溶液中的微塑料。微塑料的密度一般为0.8~1.4 g·cm3饱和盐溶液、微塑料颗粒可从密度较高的底物(如沉积物(2.65 g·cm−3))中提取。氯化钠价格低廉,容易获得;因此,饱和NaCl溶液(密度1.2 g·cm−3)是常用的密度浮选液 [16] 。但其密度相对较低,在分离过程中不能完全提取出PVC、PET等高密度聚合物。与饱和NaCl溶液相比,饱和ZnCl2和Nal溶液的密度更高,分别为1.4~1.6 g·cm−3和1.6~1.8 g·cm−3,可以提高高密度塑料组分的提取效率 [17] 。因此,也有研究使用饱和Nal或ZnCl2溶液分离和漂浮微塑料。消解法主要用于生物样品的预处理。为了减少环境样品中的底物干扰,通常对样品进行酸消化、碱消化或酶消化预处理 [18] 。一些研究采用35% H2O2溶液对样品进行连续消化,结果表明大部分生物有机成分被消化,这为进一步的研究和分析提供了鼓励 [16] 。酸消化法和碱消化法分别是用酸性溶液或碱性溶液对样品进行消化处理的方法。不同种类的微塑料具有不同的耐化学性,这限制了强酸或强碱的适用性。例如,聚甲醛和聚碳酸酯会与强碱或强酸反应。一些研究使用了酸结果表明,苯乙烯等材料的回收率在90%~98%之间,而尼龙纤维的回收率几乎为零 [19] 。酶切法具有良好的应用前景。少数研究比较了酸消化、碱消化和酶消化对海洋生物的处理效果,发现酶消化可以消化97%以上的浮游生物样品而不破坏任何微塑料碎片,但酸消化和碱消化都会在一定程度上影响消化结果 [20] 。

微塑料来源广泛,在颜色、形状和成分上有很大不同。因此,分析鉴定是微塑料研究的重要组成部分。可视化方法目视检查是一种简单易行的微塑性分析识别技术 [21] [22] 。这种方法一般用于鉴别粒径为1~5 mm的微塑料。微塑料一般是直接用肉眼或借助显微镜观察到的。它们根据环境介质中微塑料的颜色和形状进行分类和识别。然而,目测检测方法的使用也有明显的局限性,如实验人员的视觉差异会影响识别结果,许多微塑料在目测上是无法识别的。视觉检测方法在检测小尺寸微塑料或存在干扰时效果较差 [23] 。有研究表明,目测检测方法的误差随着微塑料颗粒尺寸的减小而增大 [24] 。因此,在目前的微塑料检测中,目视检测不建议作为一种独立的识别方法。尽管在微塑料的视觉识别方面存在一定的不足,但由于其成本低、操作简单,仍然是微塑料分析和识别的常用技术。光谱分析方法拉曼光谱和傅里叶变换红外光谱(FTIR)是微塑料化学成分分析的两种常用技术 [25] 。FTIR通常通过衰减全反射(ATR)、透射和反射来识别微塑料 [26] [27] 。衰减全反射(ATR)提供了最稳定的表面光谱信息。ATR常用于检测粒径大于或等于300 um的微塑料。分析可在1分钟内完成,精度高。透射可以提供高分辨率的光谱,但需要样品被红外光穿透。反射模式用于不透明较厚样品的分析。FTIR分析的优点是能够快速准确地识别塑料颗粒的类型,并且不受荧光干扰的影响 [28] 。FTIR不仅可以提供塑料颗粒的丰度和结构信息,还可以检测微塑料的风化程度,对研究和判断微塑料的风化过程具有重要作用。微塑料来源和输入路径 [29] 。FTIR在实际应用中也存在一些缺陷 [30] [31] 。例如,FTIR适用于粒径大于或等于20 um的塑料颗粒的识别,而环境中粒径较小的微塑料无法检测到 [28] 。此外,很难检测到深色或不透明的塑料颗粒,并且样品中所含的水分也会影响鉴定和分析结果。此外,微塑料需要在探针下逐一检测和分析,这是一个耗时且昂贵的过程。微塑料的拉曼光谱进行,以获得具体的信息高分子量聚合物;因此,导致进一步的识别。与红外分光光度法相比,拉曼光谱法可以检测到粒径小于20 um的微塑料 [32] 。拉曼光谱检测的缺点是成像时间长,限制了其实际应用。拉曼光谱也不适合检测产生荧光的样品。此外,微塑料中的添加剂和颜料会干扰聚合物的识别 [28] [33] 。此外,样品中部分光敏材料经仪器激发后产生的荧光也是干扰微塑料聚合物鉴定的重要因素 [26] 。热解气相色谱/质谱法(Pyr-GC-MS)也是一种常用的微塑性分析技术 [32] 。Pyr-GC-MS通过分析加热样品的分解产物来识别微塑料的化学成分,并识别添加剂和聚合物的类型 [31] 。与光谱法相比,Pyr-GC-MS法只能得到聚合物的质量分数。光谱学不会对样品造成损害,并且可以知道微塑料的数量和大小,然而,这个过程需要很长时间。此外,Pyr-GC-MS方法也存在一些缺陷 [11] :首先,不同的聚合物可能产生相似的分解产物,导致误判。其次,机器上只允许少量的样品;因此,一次只能分析一个塑料颗粒,不适合大量样品的处理和分析。尽管上述微塑性分析方法被广泛使用,在实际应用中还存在一些不足和局限性。例如,这些技术只能用于分析一个或几个参数。在样品成分复杂、微塑料含量低的情况下,所得数据的可靠性较低。因此,发展复杂底物、低样品的多参数分析方法具有广阔的应用前景。因此,有必要改进现有的检测和分析方法,探索和开发新的方法和仪器。此外,为了提高监测数据的准确性、可靠性和可比性,有必要形成统一的方法来加强质量保证控制整个分析过程。

3. 生物体内微塑料的生态风险研究进展

生物附着微塑料的外表面可以容纳细菌、病毒、藻类以及非生物物质 [34] 。微生物通常以生物膜的形式存在。表面携带微生物的微塑料颗粒有可能进入食物链,对高等生物造成危害 [35] 。微塑料之所以经常成为微生物粘附和生长的载体,有两个原因:1) 塑料颗粒的制造材料及其外表面的特性使其非常适合吸附污染物,如无机营养物质和有机物。这些为附着的微生物的生长提供了基础 [36] 。2) 与海洋浮游生物相比,微塑料可以为固定式微生物提供更稳定的环境。研究表明,微塑料进入海洋后,其表面会迅速被微生物覆盖,约7天后形成稳定的生物膜 [37] [38] 。这样的生物膜可以吸引其他浮游生物附着在表面。微塑料在环境中难以降解,其表面附着的微生物组成可能很复杂 [13] 。水质、地理位置和季节变化会影响这种成分,因为它们会影响微生物附着在塑料表面时所遇到的营养状况。

水中的微塑料经常被食物误认,被浮游生物摄入而较小尺寸的颗粒也可能无意中被摄入 [39] 。因此,浮游动物、原生动物、鱼类、鸟类和海洋哺乳动物 [40] [41] [42] [43] 。微塑料的颗粒大小、丰度和环境行为会影响被浮游动物摄入的风险。摄入后,大部分塑料微粒会排出体外,使机体保持不变,但仍有少量残留在体内 [44] 。它们可以侵入各种组织和器官,可能在细胞和分子水平上产生毒性作用 [45] [46] 。关于各种贝类对小尺寸(2~10微米)微塑料的吸收和保留的。研究表明,大于4微米的颗粒完全保留在生物体中。浮游动物的生物摄入为微塑料沿着食物链到达更高级的生物铺平了道路。摄入微塑料(或摄入含有微塑料的猎物)会造成多重危害 [47] 。除了物理损伤外,微塑料中含有的一些化学物质通过表面活性剂的作用在生物体消化道中迅速释放,而表面吸附的污染物也可以在体内释放 [48] 。这些化学物质通常是脂溶性的,储存在脂质含量高的组织中,在食物链较高的生物体中进一步浓缩。它们的毒性作用反过来又对海洋中的不同生物构成危害食物链。例如,研究表明,微塑料吸附内分泌干扰物质会严重干扰日本稻鳉鱼(Oryzias latipes)的内分泌系统,严重影响雄性和雌性的生殖能力 [49] 。由于微塑料在生物体内的积累和生物运输性,需要进一步关注微塑料通过食物链进入人体的潜在威胁和可能的健康风险研究。

除了对环境的物理污染外,微塑料还会造成污染化学污染 [50] 。许多研究表明,微塑料会产生生态毒理学效应。在塑料生产过程中,为了提高塑料的耐腐蚀性或耐热性,需要添加各种添加剂 [51] 。添加增塑剂是为了软化它或改善其他特性。这些添加剂不会永久地与塑料聚合物结合,因此它们可以随着时间的推移从(微)塑料中释放到环境中。表面积/体积比越大,释放效率越高,这适用于塑料颗粒。不幸的是,这些添加剂中的大多数都是高毒性的,例如添加多溴二苯醚以提高耐热性,添加壬基酚作为抗氧化剂 [52] 。当这些化合物进入环境时,它们对环境及其生物群构成严重威胁。垃圾填埋场的渗滤液通常含有大量的添加剂和有毒物质 [53] 。塑料添加剂的释放更有可能发生在微塑料更集中的地方,这些地方的颗粒暴露在紫外线下,并且在微塑料污染对人体健康的危害缺乏深入的研究,相关工作尚处于起步阶段。人体有暴露于微塑料通过呼吸道吸入、食物摄入和皮肤接触环境。目前,没有足够的数据证明微塑料通过皮肤接触直接对人体造成伤害,但可以通过食物链进入人体 [18] [54] 。研究表明,人类食用体内含有微塑料的鱼类会威胁自身健康,如引起细胞坏死和引起炎症等 [55] 。对人类大脑和上皮细胞的体外研究表明,微塑料在细胞水平上引起细胞毒性作用 [56] [57] 。摄入含有携带污染物的微塑料的食物也可导致其在体内富集,并通过食物链进一步传播和积累,从而对包括人类在内的食物链顶端物种构成严重威胁。例如,持久性有机污染物已被证明通过食用微塑料进入鸟类体内 [58] 。当日本水母(Oryzias latipes)摄入含有持久性有机的微塑料时污染物,如多环芳烃,这些污染物对人体是有毒的并引起转移和其他异常 [59] 。

4. 结语及展望

微塑料作为一种全球性的环境污染物,由于其较高的生态风险和对公众健康的潜在不利影响,越来越受到人们的关注。许多研究已经证明了微塑料对动物、植物和人类的毒性作用,它对微生物也有一定的影响。然而,对微塑料的环境风险的评估研究仍处于起步阶段,仍有许多问题需要解决:

1) 目前,关于微塑料生物毒性的研究多集中在水生动物身上,未来还需要对陆地动物、植物、微生物和人群的影响进行更多的研究;

2) 部分研究结果表明,微塑料在宏观个体水平上不会对实验生物造成毒性损害,但其在微观如细胞和分子水平上的毒性作用尚不清楚,需要进一步探索;

3) 关于微塑料在食物链中的转移和富集的研究仍相对匮乏,这一领域应予以重视,今后应适当加大这方面的研究。

微塑料作为一种新兴的污染物,由于其复杂的成分和特殊的物理化学性质,可以吸收环境中的重金属和其他化学污染物,并且微塑料的毒性不能只考虑其本身。微塑料在环境中的毒性远远超过其在实验室对照条件下的毒性,并且有研究表明,老化微塑料具有更大的毒性,由于受环境浓度、颗粒特性、吸附剂污染物、涉及的组织和个体敏感性等诸多因素的影响,目前对微塑料对毒性的认识仍然有限,未来微塑料污染继续存在并可能进一步恶化。微塑料的生态毒性和环境影响仍值得深入探讨。

文章引用

刘 琦. 生物体内微塑料的分析方法与生态风险研究进展
Research Progress on Analytical Methods and Ecological Risks of Microplastics in Vivo[J]. 可持续发展, 2024, 14(01): 205-212. https://doi.org/10.12677/SD.2024.141027

参考文献

  1. 1. Ogunola, O.S., Onada, O.A. and Falaye, A.E. (2018) Mitigation Measures to Avert the Impacts of Plastics and Microplastics in the Marine Environment (a Review). Environmental Science and Pollution Research, 25, 9293-9310. https://doi.org/10.1007/s11356-018-1499-z

  2. 2. Plastics Europe (2019) Plastics—The Facts 2016: An Analysis of European Plastics Production, Demand and Waste Data. https://www.plasticseurope.org

  3. 3. Lahens, L., Strady, E. and Kieu-Le, T.C. (2018) Macroplastic and Microplastic Contamination Assessment of a Tropical River (Saigon River, Vietnam) Transversed by a Developing Megacity. Environmental Pollution, 236, 661-671. https://doi.org/10.1016/j.envpol.2018.02.005

  4. 4. Thompson, R.C., Ylva, O., Mitchell, R.P., Anthony, D., Row-land, S.J., John, A.W.G., Daniel, M.G. and Russell, A.E. (2004) Lost at Sea: Where Is All the Plastic? Science, 304, 838-838. https://doi.org/10.1126/science.1094559

  5. 5. Stolte, A., Forster, S., Gerdts, G. and Schubert, H. (2015) Microplastic Concentrations in Beach Sediments along the German Baltic Coast. Marine Pollution Bulletin, 99, 216-229. https://doi.org/10.1016/j.marpolbul.2015.07.022

  6. 6. Kane, I.A. and Clare, M.A. (2019) Dispersion, Accumulation, and the Ultimate Fate of Microplastics in Deep-Marine Environments: A Review and Future Directions. Frontiers in Earth Science, 7, Article No. 80. https://doi.org/10.3389/feart.2019.00080

  7. 7. Hidalgo-Ruz, V., Gutow, L., Thompson, R.C. and Thiel, M. (2012) Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Envi-ronmental Science & Technology, 46, 3060-3075. https://doi.org/10.1021/es2031505

  8. 8. Karlsson, T.M., Vethaak, A.D., Almroth, B.C., Ariese, F., Van Velzen, M., Hassellv, M. and Leslie, H.A. (2017) Screening for Microplastics in Sediment, Water, Marine Invertebrates and Fish: Method Development and Microplastic Accumulation. Marine Pollution Bulletin, 122, 403-408. https://doi.org/10.1016/j.marpolbul.2017.06.081

  9. 9. Hasselerharm, P.E.R., Falahudin, D., Peeters, E.T.H.M. and Koelmans, A.A. (2018) Microplastic Effect Thresholds for Freshwater Benthic Macroinvertebrates. Environmental Science & Technology, 52, 2278-2286. https://doi.org/10.1021/acs.est.7b05367

  10. 10. Dümichen, E., Barthel, A.-K., Braun, U., Bannick, C.G., Brand, K., Jekel, M. and Senz, R. (2015) Analysis of Polyethylene Microplastics in Environmental Samples, 698 Using a Thermal Decomposition Method. Water Research, 85, 451-457. https://doi.org/10.1016/j.watres.2015.09.002

  11. 11. Faure, F., Saini, C., Potter, G., Galgani, F., De Alencastro, L.F. and Hagmann, P. (2015) An Evaluation of Surface Micro- and Mesoplastic Pollution in Pelagic Ecosystems of the Western Mediterranean Sea. Environmental Science and Pollution Research, 22, 12190-12197. https://doi.org/10.1007/s11356-015-4453-3

  12. 12. Cózar, A., Echevarría, F., Gonzá-lez-Gordillo, J.I., Irigoien, X., Úbeda, B., Hernández-León, S., Palma, Á.T., Navarro, S., García-de-Lomas, J. and Ruiz, A. (2014) Plastic Debris in the Open Ocean. PNAS, 111, 10239-10244. https://doi.org/10.1073/pnas.1314705111

  13. 13. Auta, H.S., Emenike, C.U. and Fauziah, S.H. (2017) Distribution and Importance of Microplastics in the Marine Environment: A Review of the Sources, Fate, Effects, and Potential Solutions. Environment International, 102, 165-176. https://doi.org/10.1016/j.envint.2017.02.013

  14. 14. Schulz, M., Neumann, D., Fleet, D.M. and Matthies, M. (2013) A Multi-Criteria Evaluation System for Marine Litter Pollution Based on Statistical Analyses of OSPAR Beach Litter Monitoring Time Series. Marine Environmental Research, 92, 61-70. https://doi.org/10.1016/j.marenvres.2013.08.013

  15. 15. Nuelle, M.-T., Dekiff, J.H., Remy, D. and Fries, E. (2014) A New Analytical Approach for 829 Monitoring Microplastics in Marine Sediments. Environmental Pollution, 184, 161-169. https://doi.org/10.1016/j.envpol.2013.07.027

  16. 16. Van Cauwenberghe, L., Vanreusel, A., Mees, J. and Janssen, C.R. (2013) Microplastic 909 Pollution in Deep-Sea Sediments. Environmental Pollution, 182, 495-499. https://doi.org/10.1016/j.envpol.2013.08.013

  17. 17. Enders, K., Lenz, R., Beer, S. and Stedmon, C.A. (2017) Ex-traction of Microplastic from Biota: Recommended Acidic Digestion Destroys Common Plastic Polymers. ICES Journal of Marine Science, 74, 326-331. https://doi.org/10.1093/icesjms/fsw173

  18. 18. Desforges, J.-P.W., Galbraith, M. and Ross, P.S. (2015) Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean. Archives of Environmental Contamination and Toxicology, 69, 320-330. https://doi.org/10.1007/s00244-015-0172-5

  19. 19. Cole, M., Webb, H., Lindeque, P.K., Fileman, E.S., Halsband, C. and Galloway, T.S. (2015) Isolation of Microplastics in Biota-Rich Seawater Samples and Marine Organisms. Scientific Reports, 4, Article No. 4528. https://doi.org/10.1038/srep04528

  20. 20. Hidalgo-Ruz, V. and Thiel, M. (2013) Distribution and Abundance of Small Plastic Debris on Beaches in the SE Pacific (Chile): A Study Supported by a Citizen Science Project. Marine Environmental Research, 87-88, 12-18. https://doi.org/10.1016/j.marenvres.2013.02.015

  21. 21. Lee, H., Shim, W.J. and Kwon, J.H. (2014) Sorption Ca-pacity of Plastic Debris for Hydrophobic Organic Chemicals. Science of the Total Environment, 470-471, 1545-1552. https://doi.org/10.1016/j.scitotenv.2013.08.023

  22. 22. Shim, W.J., Sang, H.H. and Eo, S.E. (2016) Identification Methods in Microplastic Analysis: A Review. Analytical Methods, 9, 1384-1391. https://doi.org/10.1039/C6AY02558G

  23. 23. Dekiff, J.H., Remy, D., Klasmeier, J. and Fries, E. (2014) Occurrence and Spatial Distribution of Microplastics in Sediments from Norderney. Environmental Pollution, 186, 248-256. https://doi.org/10.1016/j.envpol.2013.11.019

  24. 24. Cabernard, L., Roscher, L., Lorenz, C., Gerdts, G. and Primpke, S. (2018) Comparison of Raman and Fourier Transform Infrared Spectroscopy for the Quantification of Microplastics in the Aquatic Environment. Environmental Science & Technology, 52, 13279-13288. https://doi.org/10.1021/acs.est.8b03438

  25. 25. Song, Y.K., Sang, H.H., Mi, J., Han, G.M. and Shim, W.J. (2015) Occurrence and Distribution of Microplastics in the Sea Surface Microlayer in Jinhae Bay, South Korea. Archives of Environmental Contamination and Toxicology, 69, 279-287. https://doi.org/10.1007/s00244-015-0209-9

  26. 26. Ugolini, A., Ungherese, G., Ciofini, M., Lapucci, A. and Camaiti, M. (2013) Microplastic Debris in Sand Hoppers. Estuarine, Coastal and Shelf Science, 129, 19-22. https://doi.org/10.1016/j.ecss.2013.05.026

  27. 27. Tagg, A.S., Melanie, S., Harrison, J.P. and Ojeda, J.J. (2015) Identification and Quantification of Microplastics in Wastewater Using Focal Plane Array-Based Reflectance Mi-cro-FT-IR Imaging. Analytical Chemistry, 87, 6032-6040. https://doi.org/10.1021/acs.analchem.5b00495

  28. 28. Käppler, A., Fischer, D., Oberbeckmann, S., Schernewski, G., Labrenz, M., Eichhorn, K.-J. and Voit, B. (2016) Analysis of Environmental Microplastics by Vibrational Microspectroscopy: FTIR, Raman or both? Analytical and Bioanalytical Chemistry, 408, 8377-8391. https://doi.org/10.1007/s00216-016-9956-3

  29. 29. Fischer, M. and Scholz-Böttcher, B.M. (2017) Simultaneous Trace Identification and Quantification of Common Types of Microplastics in Environmental Samples by Pyrolysis-Gas Chromatography-Mass Spectrometry. Environmental Science & Technology, 51, 5052-5060. https://doi.org/10.1021/acs.est.6b06362

  30. 30. Frias, J.P.G.L., Gago, J., Otero, V. and Sobral, P. (2016) Microplastics in Coastal Sediments from Southern Portuguese Shelf Waters. Marine Environmental Research, 114, 24-30. https://doi.org/10.1016/j.marenvres.2015.12.006

  31. 31. Fries, E., Dekiff, J.H., et al. (2013) Identification of Polymer Types and Additives in Marine Microplastic Particles Using Pyrolysis-GC/MS and Scanning Electron Micros-copy. Environmental Science: Processes & Impacts, 15, 1949-1956. https://doi.org/10.1039/c3em00214d

  32. 32. Gü, M., Lö, J., Kuczera, M., Mintenig, A.S. and Gerdts, G. (2015) Focal Plane Array Detector-Based Micro-Fourier- Transform Infrared Imaging for the Analysis of Microplastics in Envi-ronmental Samples. Environmental Chemistry, 12, 563-581. https://doi.org/10.1071/EN14205

  33. 33. Song, Y.K., Sang, H.H., Mi, J., Han, G.M., Rani, M., Lee, J. and Shim, W.J. (2015) A Comparison of Microscopic and Spectro-scopic Identification Methods for Analysis of Microplastics in Environmental Samples. Marine Pollution Bulletin, 93, 202-209. https://doi.org/10.1016/j.marpolbul.2015.01.015

  34. 34. Gutow, L., Eckerlebe, A., Gimenez, L. and Saborowski, R. (2015) Experimental Evaluation of Seaweeds as a Vector for Microplastics into Marine Food Webs. Environmental Science & Technology, 50, 915-923. https://doi.org/10.1021/acs.est.5b02431

  35. 35. Bejgarn, S., Macleod, M., Bogdal, C. and Breitholtz, M. (2015) Toxicity of Leachate from Weathering Plastics: An Exploratory Screening Study with Nitocra spinipes. Chemosphere, 132, 114-119. https://doi.org/10.1016/j.chemosphere.2015.03.010

  36. 36. Bakir, A., Rowland, S.J. and Thompson, R.C. (2014) Transport of Persistent Organic Pollutants by Microplastics in Estuarine Conditions. Estuarine, Coastal and Shelf Science, 140, 14-21. https://doi.org/10.1016/j.ecss.2014.01.004

  37. 37. Delphine, L. and Michael, C. (2011) Early Microbial Biofilm Formation on Marine Plastic Debris. Marine Pollution Bulletin, 62, 197-200. https://doi.org/10.1016/j.marpolbul.2010.10.013

  38. 38. Holmes, L.A., Turner, A. and Thompson, R.C. (2012) Ad-sorption of Trace Metals to Plastic Resin Pellets in the Marine Environment. Environmental Pollution, 160, 42-48. https://doi.org/10.1016/j.envpol.2011.08.052

  39. 39. Engler, R.E. (2012) The Complex Interaction between Marine Debris and Toxic Chemicals in the Ocean. Environmental Science & Technology, 46, 12302-12315. https://doi.org/10.1021/es3027105

  40. 40. Franeker, J.A., Van, Christine, B., Johannis, D., Keith, F., Jane, G., Nils, G., Poul-Lindhard, H., Martin, H., Jens-Kjeld, J. and Gilles, L.G. (2011) Monitoring Plastic Ingestion by the Northern Fulmar Fulmarus glacialis in the North Sea. Environmental Pollution, 159, 2609-2615. https://doi.org/10.1016/j.envpol.2011.06.008

  41. 41. Setälä, O., Fleming-Lehtinen, V. and Lehtiniemi, M. (2014) Ingestion and Transfer of Microplastics in the Planktonic Food Web. Environmental Pollution, 185, 77-83. https://doi.org/10.1016/j.envpol.2013.10.013

  42. 42. Steer, M., Cole, M., Thompson, R.C. and Lindeque, P.K. (2017) Microplastic Ingestion in Fish Larvae in the Western English Channel. Environmental Pollution, 226, 250-259. https://doi.org/10.1016/j.envpol.2017.03.062

  43. 43. Tourinho, P.S., Sul, J.A.I.D. and Fillmann, G. (2010) Is Marine Debris Ingestion Still a Problem for the Coastal Marine Biota of Southern Brazil? Marine Pollution Bulletin, 60, 396-401. https://doi.org/10.1016/j.marpolbul.2009.10.013

  44. 44. Hans, B., Hollman, P.C.H. and Peters, R.J.B. (2015) Potential Health Impact of Environmentally Released Micro- and Nanoplastics in the Human Food Production Chain: Experiences from Nanotoxicology. Environmental Science & Technology, 49, 8932-8947. https://doi.org/10.1021/acs.est.5b01090

  45. 45. Galloway, T.S., Cole, M. and Lewis, C. (2017) Interactions of Microplastic Debris throughout the Marine Ecosystem. Nature Ecology & Evolution, 1, Article No. 116. https://doi.org/10.1038/s41559-017-0116

  46. 46. Teuten, E.L., Saquing, J.M., Knappe, D.R.U., Barlaz, M.A., Susanne, J., Annika, B.R., Rowland, S.J., Thompson, R.C., Galloway, T.S. and Rei, Y. (2009) Transport and Release of Chemicals from Plastics to the Environment and to Wildlife. Philosophical Transactions of the Royal Society B, 364, 2027-2045. https://doi.org/10.1098/rstb.2008.0284

  47. 47. Farrell, P. and Nelson, K. (2013) Trophic Level Transfer of Microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environmental Pollution, 177, 1-3. https://doi.org/10.1016/j.envpol.2013.01.046

  48. 48. Wright, S.L. and Kelly, F.J. (2017) Plastic and Human Health: A Micro Issue? Environmental Science & Technology, 51, 6634-6647. https://doi.org/10.1021/acs.est.7b00423

  49. 49. Rochman, C.M., Kurobe, T., Flores, I. and Teh, S.J. (2014) Early Warning Signs of Endocrine Disruption in Adult Fish from the Ingestion of Polyethylene with and without Sorbed Chemical Pollutants from the Marine Environment. Science of the Total Environment, 493, 656-661. https://doi.org/10.1016/j.scitotenv.2014.06.051

  50. 50. Wright, S.L., Thompson, R.C. and Galloway, T.S. (2013) The Physical Impacts of Microplastics on Marine Organisms: A Review. Environmental Pollution, 178, 483-492. https://doi.org/10.1016/j.envpol.2013.02.031

  51. 51. Delilah, L., Ake, L. and Gran, D. (2011) Environmental and Health Hazard Ranking and Assessment of Plastic Polymers Based on Chemical Composition. Science of the Total En-vironment, 409, 3309-3324. https://doi.org/10.1016/j.scitotenv.2011.04.038

  52. 52. Horton, A.A., Walton, A., Spurgeon, D.J., Lahive, E. and Svendsen, C. (2017) Microplastics in Freshwater and Terrestrial Environments: Evaluating the Current Understanding to Identify the Knowledge Gaps and Future Research Priorities. Science of the Total Environment, 586, 127-141. https://doi.org/10.1016/j.scitotenv.2017.01.190

  53. 53. Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A. and Christensen, T.H. (2002) Present and Long-Term Composition of MSW Landfill Leachate: A Review. Critical Re-views in Environmental Science and Technology, 32, 297-336. https://doi.org/10.1080/10643380290813462

  54. 54. Liboiron, M., Liboiron, F., Wells, E., Richárd, N., Zahara, A., Mather, C., Bradshaw, H. and Murichi, J. (2016) Low Plastic Ingestion Rate in Atlantic Cod (Gadus morhua) from Newfoundland Destined for Human Consumption Collected through Citizen Science Methods. Marine Pollution Bulletin, 113, 428-437. https://doi.org/10.1016/j.marpolbul.2016.10.043

  55. 55. Rochman, C.M., Kross, S.M., Armstrong, J.B., Bogan, M.T., Darling, E.S., Green, S.J., Smyth, A.R. and Veríssimo, D. (2015) Scientific Evidence Supports a Ban on Microbeads. Environmental Science & Technology, 49, 10759-10761. https://doi.org/10.1021/acs.est.5b03909

  56. 56. Barboza, L.G.A., Vethaak, A.D., Lavorante, B.R.B.O., Lundebye, A.K. and Guilhermino, L. (2018) Marine Microplastic Debris: An Emerging Issue for Food Security, Food Safety and Human Health. Marine Pollution Bulletin, 133, 336-348. https://doi.org/10.1016/j.marpolbul.2018.05.047

  57. 57. Schirinzi, G.F., Pérez-Pomeda, I., Sanchís, J., Rossini, C., Farré, M. and Barceló, D. (2017) Cytotoxic Effects of Commonly Used Nanomaterials and Microplastics on Cerebral and Epithelial Human Cells. Environmental Research, 159, 579-587. https://doi.org/10.1016/j.envres.2017.08.043

  58. 58. Teuten, E.L., Rowland, S.J., Galloway, T.S. and Thompson, R.C. (2007) Potential for Plastics to Transport Hydrophobic Contaminants. Environmental Science & Technology, 41, 892 7759-7764. https://doi.org/10.1021/es071737s

  59. 59. Rochman, C.M., Hoh, E., Kurobe, T. and Teh, S.J. (2013) Ingested Plastic Transfers Hazardous Chemicals to Fish and Induces Hepatic Stress. Scientific Reports, 3, Article No. 3263. https://doi.org/10.1038/srep03263

期刊菜单