Advances in Clinical Medicine
Vol. 12  No. 10 ( 2022 ), Article ID: 56649 , 4 pages
10.12677/ACM.2022.12101304

甲巯咪唑致肝损伤相关因素研究进展

张丽芹

兰山区方城中心卫生院,山东 临沂

收稿日期:2022年9月15日;录用日期:2022年10月2日;发布日期:2022年10月12日

摘要

甲巯咪唑(MMI)是目前临床上应用最广泛的抗甲状腺药物之一,肝功能损害是其最常见的不良反应,并成为困扰临床医生治疗甲状腺功能亢进的难关。本文对药物性肝损伤(DILI)机制主要是甲巯咪唑致肝损伤(MMI-DILI)机制进行综述,以帮助临床医生预判应用甲巯咪唑的可能带来的风险,并为进一步研究MMI-DILI机制提供思路。

关键词

甲巯咪唑,药物性肝损伤,药物代谢,HLA

Advances in the Study of Related Factors of Methimazole-Induced Liver Injury

Liqin Zhang

Fangcheng Central Health Center, Lanshan District, Linyi Shandong

Received: Sep. 15th, 2022; accepted: Oct. 2nd, 2022; published: Oct. 12th, 2022

ABSTRACT

Methimazole (MMI) is currently one of the most widely used clinically anti-thyroid drugs, liver injury is the most common adverse reactions, and it is a serious problem for physicians to treat hyperthyroidism. However, the mechanism of methimazole-induced hepatotoxicity is not fully understood so far. In this paper, the mechanisms of drugs-induced liver injury (DILI) and methimazole-induced liver damage (MMI-DILI) were reviewed, in order to help clinical doctors to predict drugs’ side effect, and provide ideas for further research on mechanism of MMI-DILI.

Keywords:Methimazole, Drugs-Induced Liver Injury (DILI), Drug Metabolism, HLA

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

甲状腺功能亢进是常见的内分泌疾病,根据病因可分为弥漫性毒性甲状腺肿(Graves病)、结节性毒性甲状腺肿和甲状腺自主高功能腺瘤等,其中最为常见的是Graves病。Graves病的治疗包括抗甲状腺药物(anti-thyroid drugs, ATD)、放射性碘和手术 [1]。甲巯咪唑(Methimazole, MMI)是治疗Graves病的经典药物之一,其药物不良反应包括肝损害、粒细胞减少、皮疹等,最为常见的是肝功能损伤 [2]。

甲巯咪唑是硫代酰胺化合物,它引起的肝损害多发生在用药1个月内,临床表现如黄疸、肝区疼痛等无特异性且不明显,实验室检查以转氨酶尤其是ALT升高为主,部分病例以胆红素升高为主,停药后可缓解 [3]。目前甲巯咪唑仍是治疗甲亢最常见的药物,其肝毒性具体机制仍不明确。本文综述了目前国内外研究的一些可能机制,包括药物代谢、免疫损伤等。

2. 药物代谢

目前认为甲巯咪唑引起胆汁淤积性肝炎 [4],其中药物代谢产物可能是重要的一环。肝脏是人体大多数药物代谢的器官,包含多种药物代谢酶,最为重要的是细胞色素CYP450系统,参与药物的I相代谢。研究表明,在包括MMI在内的含硫代酰胺的药物代谢中,CYP450系统发挥着重要作用。MMI在肝脏代谢酶的作用下产生两种中间代谢产物——N-甲基硫脲(N-methylthiourea)和乙二醛(glyoxal),其可能与药物所致的肝脏毒性有关 [5]。另一种药物代谢酶——黄素单加氧酶(flavin-containing monooxygenase, FMO)也可能在MMI-DILI中发挥重要作用。FMO3是FMO最重要的亚型,主要参与氧化含N或S的药物,同时,FMO3基因的某些突变降低酶活性从而增强药效 [6]。甲巯咪唑是含S药物,其被FMO直接氧化,其氧化产物次磺酸及亚磺酸也可能参与肝脏损伤 [7]。国内一些学者发现,山东地区汉族人群GD患者的FMO3基因E308G位点多态性影响酶活性而参与甲巯咪唑致肝损害 [8]。

葡萄糖醛酸苷化是增强MMI排泄的重要代谢途径。因此,葡萄糖醛酸糖基转移酶(UGT)的活性降低导致MMI的II相新陈代谢受损,这可能会参与甲巯咪唑所致的肝脏损伤 [9]。另外,MMI的解毒过程需要还原性谷胱甘肽(GSH)参与,GSH的缺乏可能也对肝脏有不利影响 [10]。

此外,药物转运蛋白同样可能在MMI-DILI中发挥重要作用。目前考虑与DILI相关的药物转运蛋白包括胆盐输出泵(BSEP,由ABCC11编码) [11],多重耐药蛋白2 (MRP2,由ABCC2编码) [12] 和有机阴离子转运多肽B1 (OATP1B1,由SLCO1B1编码) [13] 等。最新研究证实,编码OATP1B1的基因SLCO1B1的多态性与MMI-DILI相关 [14]。

3. 免疫损伤

目前认为药物性肝损伤的免疫损伤机制可能为:药物代谢产物作为为半抗原,与血清蛋白结合后被抗原提呈细胞表面的HLA分子识别并处理,提呈给相应T细胞,介导免疫应答。因此,HLA分子及其基因在药物性肝损伤发挥重要作用 [15] [16]。HLA复合体分为I、II、III类,经典的I类包括HLA-A、HLA-B、HLA-C三个功能基因,其编码的HLA I类分子与CD8+T细胞结合;经典的II类包括HLA-DP、HLA-DQ、HLA-DR三个亚区(每个亚区内含有二至多个A、B基因座位),编码HLA-DP分子、HLA-DQ分子、HLA-DR分子,与CD4+T细胞结合 [17]。目前的GWAS研究发现,药物所致的肝损害与人类白细胞抗原(HLA)基因密切相关 [18]。比如,抗结核药物及抗逆转录药物同时产生肝毒性的患者存在HLA-B*57 [19]、HLA-B*35:01等位基因是何首乌致肝损的遗传危险因素 [20]、氟氯西林所致的药物性肝损害的患者存在HLA-B*57:01 [21]、抗真菌药特比萘芬引起肝脏损伤与HLA-A*33:01相关 [22]、中枢作用非阿片样镇痛药氟吡汀所致的肝损害与HLA-DRB*16:01和HLA-DQB1*05:02相关 [23] 等。

因此,甲巯咪唑的代谢产物同样可能作为半抗原参与了免疫应答,从而介导了肝功能损伤。最新的一项病例对照研究表明,HLA-C*03:02在甲巯咪唑所致的肝损害中发挥重要作用 [24]。

4. 总结

药物性肝损伤(DILI)是临床常见且严重的药物不良反应。甲巯咪唑作为临床最常应用的抗甲状腺药物,它所致的肝功能损害为治疗甲状腺功能亢进带来了挑战。甲巯咪唑的代谢是一个连续且复杂的过程,其中需要多种代谢酶、转运蛋白、免疫分子等参与,此过程中任何参与的分子改变都有可能导致肝功能损伤 [7] [25]。

目前研究发现,甲巯咪唑所致的肝功能损伤可能与药物代谢、免疫损伤相关。随着药物基因组学的发展,研究者们还发现了多种与MMI-DILI相关的基因,包括药物代谢基因 [14] 和免疫相关基因 [24]。这可能帮助临床医生在治疗前找到目标基因,从而判断患者是否适合应用甲巯咪唑来治疗甲亢。但是,对于甲巯咪唑致肝功能损伤的具体机制仍不明确,且基因检测造价昂贵,仍需继续寻找简单可行的检验标志物 [26]。

文章引用

张丽芹. 甲巯咪唑致肝损伤相关因素研究进展
Advances in the Study of Related Factors of Methimazole-Induced Liver Injury[J]. 临床医学进展, 2022, 12(10): 9020-9023. https://doi.org/10.12677/ACM.2022.12101304

参考文献

  1. 1. McDermott, M. (2020) Hyperthyroidism. Annals of Internal Medicine, 172, ITC49-ITC64. https://doi.org/10.7326/AITC202004070

  2. 2. 刘超, 蒋琳. 抗甲状腺药物不良反应的再认识[J]. 中华内分泌代谢杂志, 2011, 27(6): 529-532.

  3. 3. 王宁, 王薇, 张红, 袁振芳, 郭晓蕙, 张俊清. 抗甲状腺药物与甲状腺功能亢进症所致肝功能异常的临床分析[J]. 中国临床药理学杂志, 2018, 34(3): 244-247.

  4. 4. Woeber, K. (2002) Me-thimazole-Induced Hepatotoxicity. Endocrine Practice, 8, 222-224. https://doi.org/10.4158/EP.8.3.222

  5. 5. Heidari, R., Babaei, H. and Eghbal, M. (2013) Mechanisms of Methima-zole Cytotoxicity in Isolated Rat Hepatocytes. Drug and Chemical Toxicology, 36, 403-411. https://doi.org/10.3109/01480545.2012.749272

  6. 6. 巩政, 王旗. 黄素单加氧酶3的基因多态性及其在药物代谢和毒性中的作用[J]. 中国中药杂志, 2015, 40(14): 2701-2705.

  7. 7. Heidari, R., Niknahad, H., Jamshidzadeh, A., Eghbal, M.A. and Abdoli. N. (2015) An Overview on the Proposed Mechanisms of Antithyroid Drugs-Induced Liver Injury. Advanced Pharmaceutical Bulletin, 5, 1-11. https://doi.org/10.5681/apb.2015.001

  8. 8. 殷静, 王芳, 王永艳, 汤洪策, 孙纯, 阎胜利. 甲巯咪唑致肝损害与黄素单加氧酶3E308G位点基因多态性的相关性研究[J]. 中国药学杂志, 2014. 49(15): 1338-1341.

  9. 9. Li, X., Yang, J., Jin, S., Dai, Y., Fan, Y., Fan, X., et al. (2020) Mechanistic Examination of Methimazole-Induced Hepatotoxi-city in Patients with Grave’s Disease: A Metabolomic Approach. Archives of Toxicology, 94, 231-244. https://doi.org/10.1007/s00204-019-02618-z

  10. 10. Heidari, R., Niknahad, H., Jamshidzadeh, A. and Abdoli, N. (2014) Factors Affecting Drug-Induced Liver Injury: Antithyroid Drugs as Instances. Clinical and Molecular Hepatolo-gy, 20, 237-248. https://doi.org/10.3350/cmh.2014.20.3.237

  11. 11. Lang, C., Meier, Y., Stieger, B., Beuers, U., Lang, T., Kerb, R., et al. (2007) Mutations and Polymorphisms in the Bile Salt Export Pump and the Multidrug Resistance Protein 3 Associat-ed with Drug-Induced Liver Injury. Pharmacogenet Genomics, 17, 47-60. https://doi.org/10.1097/01.fpc.0000230418.28091.76

  12. 12. Choi, J.H., Ahn, B.M., Yi, J., Lee, J.H., Lee, J.H., Nam, S.W., et al. (2007) MRP2 haplotypes Confer Differential Susceptibility to Toxic Liver Injury. Pharmacogenetics and Genomics, 17, 403-415. https://doi.org/10.1097/01.fpc.0000236337.41799.b3

  13. 13. Li, L.M., Chen, L., Deng, G.H., Tan, W.T., Dan, Y.J., Wang, R.Q., et al. (2012) SLCO1B1 *15 Haplotype Is Associated with Rifampin-Induced Liver Injury. Molecular Med-icine Reports, 6, 75-82. https://doi.org/10.3892/mmr.2012.900

  14. 14. Jin, S., Li, X., Fan, Y., Fan, X., Dai, Y., Lin, H., et al. (2019) Associ-ation between Genetic Polymorphisms of SLCO1B1 and Susceptibility to Methimazole-Induced Liver Injury. Basic & Clinical Pharmacology & Toxicology, 125, 508-517. https://doi.org/10.1111/bcpt.13284

  15. 15. Stephens, C. and Andrade, R.J. (2020) Genetic Predisposition to Drug-Induced Liver Injury. Clinics in Liver Disease, 24, 11-23. https://doi.org/10.1016/j.cld.2019.08.003

  16. 16. Grove, J. and Aithal, G. (2015) Human Leukocyte Antigen Genetic Risk Factors of Drug-Induced Liver Toxicology. Expert Opinion on Drug Metabolism & Toxicology, 11, 395-409. https://doi.org/10.1517/17425255.2015.992414

  17. 17. Fan, W., Shiao, M.S., Hui, R.C., Su, S.C., Wang, C.W., Chang, Y.C., et al. (2017) HLA Association with Drug-Induced Adverse Reactions. Journal of Immunology Research, 2017, Article ID: 3186328. https://doi.org/10.1155/2017/3186328

  18. 18. Ma, Q., Yang, W., Wang, L., Ma, L., Jing, Y., Wang, J., et al. (2020) Research Advances in the Association of Drug- Induced Liver Injury with Polymorphisms in Human Leukocyte Antigen. International Immunopharmacology, 81, Article ID: 106037. https://doi.org/10.1016/j.intimp.2019.106037

  19. 19. Petros, Z., Kishikawa, J., Makonnen, E., Yimer, G., Habtewold, A. and Aklillu, E. (2017) HLA-B* 57 Allele Is Associated with Concomitant Anti-Tuberculosis and Antiretroviral Drugs Induced Liver Toxicity in Ethiopians. Frontiers in Pharmacology, 8, Article No. 90. https://doi.org/10.3389/fphar.2017.00090

  20. 20. Li, C., Rao, T., Chen, X., Zou, Z., Wei, A., Tang, J., et al. (2019) HLA-B* 35:01 Allele Is a Potential Biomarker for Predicting Polygonum multiflorum-Induced Liver Injury in Humans. Hepatology, 70, 346-357. https://doi.org/10.1002/hep.30660

  21. 21. Nicoletti, P., Aithal, G.P., Chamberlain, T.C., Coulthard, S., Alshabeeb, M., Grove, J.I., et al. (2019) Drug-Induced Liver Injury due to Flucloxacillin: Relevance of Multiple Human Leukocyte An-tigen Alleles. Clinical Pharmacology and Therapeutics, 106, 245-253. https://doi.org/10.1002/cpt.1375

  22. 22. Fon-tana, R., Cirulli, E.T., Gu, J., Kleiner, D., Ostrov, D., Phillips, E., Schutte, R., et al. (2018) The Role of HLA-A*33:01 in Patients with Cholestatic Hepatitis Attributed to Terbinafine. Journal of Hepatology, 69, 1317-1325. https://doi.org/10.1016/j.jhep.2018.08.004

  23. 23. Nicoletti, P., Werk, A.N., Sawle, A., Shen, Y., Urban, T.J., Coul-thard, S.A., et al. (2016) HLA-DRB1*16: 01-DQB1*05: 02 Is a Novel Genetic Risk Factor for Flupirtine-Induced Liver Injury. Pharmacogenetics and Genomics, 26, 218-224. https://doi.org/10.1097/FPC.0000000000000209

  24. 24. Li, X., Jin, S., Fan, Y., Fan, X., Tang, Z., Cai, W., et al. (2019) Association of HLA-C*03:02 with Methimazole-Induced Liver Injury in Graves’ Disease Patients. Biomedicine & Pharmacotherapy, 117, Article ID: 109095. https://doi.org/10.1016/j.biopha.2019.109095

  25. 25. Akmal, A. and Kung, J. (2014) Propylthiouracil, and Methi-mazole, and Carbimazole-Related Hepatotoxicity. Expert Opinion on Drug Safety, 13, 1397-1406. https://doi.org/10.1517/14740338.2014.953796

  26. 26. Clare, K., Miller, M. and Dillon, J. (2017) Genetic Factors Influencing Drug-Induced Liver Injury: Do They Have a Role in Prevention and Diagnosis? Current Hepatology Reports, 16, 258-264. https://doi.org/10.1007/s11901-017-0363-9

期刊菜单