Advances in Clinical Medicine
Vol. 13  No. 05 ( 2023 ), Article ID: 65070 , 7 pages
10.12677/ACM.2023.1351012

老年髋部骨折术后急性肾损伤研究现状

袁鑫,陈世荣*

重庆医科大学附属第二医院关节外科,重庆

收稿日期:2023年4月7日;录用日期:2023年4月29日;发布日期:2023年5月10日

摘要

急性肾损伤(AKI)是老年髋部骨折术后常见并发症,目前尚无特异性治疗方法,故其短期及长期预后不佳。早期识别AKI高风险患者,早期预防、实时监测、早期干预对于改善患者预后至关重要。本文主要从AKI的概念、流行病学、易感因素、围手术期管理等方面进行综述。

关键词

急性肾损伤,髋部骨折,流行病学,易感因素,围手术期管理

Research Status of Acute Renal Injury after Hip Fracture Surgery in the Elderly

Xin Yuan, Shirong Chen*

Joint Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing

Received: Apr. 7th, 2023; accepted: Apr. 29th, 2023; published: May 10th, 2023

ABSTRACT

Acute renal injury (AKI) is a common postoperative complication of hip fractures in the elderly. Currently, there is no specific treatment, so its short-term and long-term prognosis is poor. Early identification of high-risk patients with AKI, early prevention, real-time monitoring, and early intervention are crucial for improving the prognosis of patients. This article reviews the concept, epidemiology, predisposing factors, and perioperative management of AKI.

Keywords:Acute Renal Injury, Hip Fracture, Epidemiology, Susceptibility Factors, Perioperative Management

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

随着预期寿命的延长,骨质疏松性髋部骨折患病率逐年升高。预计到2050年,全球老年髋部骨折患者将达630万例,其中亚洲人群将占据半数以上 [1] 。因其高致残率、高死亡率及严重的医疗负担,老年髋部骨折已成为一个重大的公共卫生问题 [2] 。急性肾损伤(acute kidney injury, AKI)是指肾小球滤过率突然下降,表现为血清肌酐浓度升高或少尿的一种临床综合征 [3] 。现有研究表明髋部骨折术后AKI并不少见,并与患者住院时间延长、住院费用增加以及死亡风险增加密切相关 [4] [5] 。因此,充分了解AKI的患病情况、危险因素及其诊疗方法,可能有助于改善髋部骨折手术患者的预后。

2. AKI定义及诊断

目前临床上主要采用2012年改善全球肾脏病预后组织(Kidney Disease Improving Global Outcomes, KDIGO)制定的标准 [6] ,即在48 h内血清肌酐(serum creatinine, Scr)上升 ≥ 0.3 mg/dL (≥26.5 μmol/L);或在7 d内Scr升至 ≥ 1.5倍基线值水平;或连续6 h尿量 < 0.5 mL/(kg·h)。但患者血清肌酐值和尿量常常受到较多因素干扰,血肌酐浓度可能受到容量超负荷、营养不良、类固醇使用和肌肉创伤的影响 [7] ;围手术期常因细胞内脱水或低血压引起醛固酮和血管加压素的释放,从而导致患者出现生理性少尿 [8] [9] 。此外,用尿量及血清肌酐水平变化来反应患者肾功能具有一定的滞后性。直到肾单位丢失大约50%或当GFR降低至接近60 mL/min/1.73m2时,血清肌酐水平才会出现上升 [10] 。在临床实践中,患者术后第1天即可能出现Scr上升;然而,绝大多数病人在术后第2天才能达到急性肾脏损伤的标准 [11] 。因此,为了弥补Scr及尿量诊断上的不足,改善AKI的识别和治疗,新型生物标志物作为可预测早期AKI的有力诊断工具逐渐成为研究热点。目前在研究的主要有胱抑素C (CysC)、金属蛋白酶组织抑制因子2 (TIMP-2)、胰岛素样生长因子结合蛋白7 (IGFBP-7)、中性粒细胞明胶酶相关脂质运载蛋白(NGAL)、和肾损伤因子1 (KIM-1)等 [12] 。这些生物标志物对亚临床AKI都有良好的诊断价值,但还需进一步的研究与探索,来证明其临床价值。

3. 流行病学

急性肾损伤对医疗保健系统的影响是显着的。据统计,发达国家的急性肾损伤估计每年造成10亿美元的损失,夺去300,000人的生命,每年导致300,000例患者发展成为终末期慢性肾病 [11] 。最近一项涉及44家医院的全国多中心研究表明,我国AKI患者的全因住院死亡率为12.4% [13] 。根据诊断标准、监测周期以及研究人群的不同,老年髋部骨折患者围手术期间AKI的发生率的研究报道有所差异。近期,一项汇总11项研究,涉及16,421例患者的Meta分析结果显示髋部骨折手术患者AKI的合并患病率为17% [14] 。Hong等 [4] 对450例老年髋部骨折患者进行了回顾性分析,该研究发现与非AKI患者相比,AKI患者的住院时间更长(34.7 ± 19.5 vs 26.4 ± 35.1天,p = 0.017),院内死亡率(10.5% vs 2.3%, p < 0.001)和长期死亡率(49.5% vs 36.9%, p = 0.026)更高。Rantalaiho等 [15] 对486例髋部骨折患者进行了回顾,研究发现术后AKI发生率为8.4%,术后3月AKI组的死亡率是非AKI组的3倍(35% vs. 12.7%, p < 0.001)。上述两项研究表明,髋部骨折患者围手术期间AKI与术后住院时间延长、医疗费用和死亡风险显著升高密切相关。

4. 老年髋部骨折患者发生AKI的易感因素

4.1. 患者自身因素

老年肾脏结构和功能随年龄增长的出现生理性改变。组织细胞层面表现为肾小动脉、肾小球、肾小管在内的肾微结构出现硬化性改变,导致功能性肾单位数量减少,以及在某种层度上剩余肾单位的代偿性肥大。大体解剖层面表现为肾体积缩小、皮质变薄以及囊变 [16] 。而在功能上,出现血管舒张因子分泌减少、尿液的浓缩和稀释功能下降以及肾脏血管的自身调节功能减退 [17] 。自30岁起,肾小球滤过率(GFR)就以每十年8 mL/min/1.73m2的速度下降 [10] 。也就是说,老年患者肾功能储备(renal functional reserve, RFR)较青壮年时期明显下降,因此对低血容量、低血压、感染、创伤、药物等损伤更加敏感,AKI发生风险增加。此外,老年髋部患者常伴有糖尿病、高血压、慢性心力衰竭、肾动脉狭窄、代谢综合征、尿路梗阻等慢性疾病。这些疾病长期持续作用于肾脏,会导致肾组织结构出现慢性病变,肾功能逐渐损伤,最终导致慢性肾脏疾病(CKD)。Pannu等人 [18] 研究表明,在慢性肾脏病不同阶段的住院患者中,随着估算GFR水平的降低,AKI的风险增加。近期,一项纳入10项研究,涉及19,213患者的Meta分析结果显示慢性肾脏疾病是髋部骨折术后AKI的高危因素(OR = 3.66, 95% CI = 2.21~6.07) [19] 。因此,对于高龄、伴有多种合并症的高危患者住院期间更需警惕AKI的发生。

4.2. 围手术期相关因素

4.2.1. 药物相关肾毒性

由于患者合并症及髋部骨折相关并发症的影响,多药并存是老年髋部骨折患者普遍存在的问题。住院期间,老年患者服用多种药物的风险更大。已知非甾体类抗炎药(NSAIDs)、血管紧张素酶抑制剂和血管紧张素II受体阻滞剂(ACEI/ARB)类药物、利尿剂、抗生素、质子泵抑制剂等老年髋部骨折患者围手术期常用药物具有潜在的肾毒性。Lapi等人 [20] 研究表明,两种以上潜在肾毒性药物的联合使用会增加AKI的风险。最近,一项研究得出了类似的结论,在已经接受利尿剂和ACEI/ARB类药物治疗的住院患者中,若再加用非甾体类抗炎药治疗可导致AKI风险增高 [21] 。因此,对于合并症较多,围术期用药较多的患者,更应密切监测其肾功能,可根据肾内科专家会诊意见评估患者急性肾损伤风险后酌情调整或停用。

4.2.2. 手术、麻醉相关因素

在手术及麻醉过程中,多种因素可能导致患者血流动力学的不稳,如麻醉剂的用量、麻醉方式选择、术中失血较多等 [22] 。研究表明,术中低血压(Intraoperative hypotension, IOH)在影响肾脏灌注方面起着重要作用,是引起术后AKI重要因素之一。Zhan等 [23] 报道当术中收缩压 ≤ 80 mmHg或平均动脉压 ≤ 55 mmHg并持续超过5 min时,术后AKI的风险将显著增加。近期,一项纳入5项RCT研究的Meta分析结果表明,术中严格血压管理与术后AKI的发生率降低相关(RR = 0.73, 95% CI: 0.58~0.92, p = 0.007) [24] 。及时处理术中血流动力学变化,严格管理术中血压可能是预防老年髋部骨折术后AKI的一个极有吸引力的选择。

4.2.3. 贫血与输血

随着年龄增大,老年人的造血功能逐步减退,促红细胞生成素的反应减弱 [25] 。据统计,40%以上的老年患者住院期间会伴有贫血 [26] 。因骨折创伤及手术引起的急性失血,髋部骨折患者围手术期贫血更为常见。有报道髋部骨折患者术后贫血发生率甚至高达86% [27] 。血红蛋白浓度降低导致血液的携氧能力下降,引起肾组织局部缺血缺氧。而缺氧在AKI的发生、发展中起着重要作用,肾脏中超过90%的ATP产生是通过有氧机制发生的 [28] 。因此,任何氧气供需之间微妙平衡的破坏都会增加AKI的风险。Fowler等 [29] 的一项Meta分析表明,围手术期贫血与AKI、脑血管意外、感染和30天死亡风险增加有关。除了贫血,围手术期输血也被认为是急性肾损伤的独立风险因素 [30] 。异体输血的有害影响被认为是由于红细胞储存过程的变化促进了氧化应激和炎症反应 [31] 。应采取措施优化病人的整体术前状态,同时尽量减少手术出血,以减少血液学相关的急性肾脏损伤风险。

4.2.4. 营养不良

营养不良在老年髋部骨折患者中非常普遍。研究表明,营养不良也是增加围手术期AKI发生率的重要危险因素 [32] [33] 。营养是细胞和器官功能的基础,营养不良可能会显著改变肾脏血流动力学和肾脏浓缩能力,从而加重疾病的严重程度 [34] 。白蛋白可能是营养不良的良好血液标志物 [35] 。在这种情况下,Bohl等 [36] 以术前血清白蛋白低于3.5 g/dL为标准,研究了一个大型数据库17,651名髋部骨折患者(84.4 ± 7.2岁),观察到该群体营养不良的患病率为45.9%。而近期一项关于髋部骨折危险因素的Meta分析结果显示,低白蛋白血症与术后AKI风险增加密切相关 [14] 。此外,一些研究还报道了营养不良指数与AKI的相关性。Li等 [34] 通过对5家医疗机构共46,549名住院病人进行回顾研究,发现患者住院期间的营养风险筛查(Nutritional Risk Screening 2002, NRS-2002)评分指数与AKI的发生密切相关。并且该研究表明,当AKI患者伴有营养不良时,其预后远比营养正常的患者差。因此,有必要对所有髋部骨折患者进行全面的营养风险筛查;针对高危患者,予以积极营养支持以改善其营养状况。

5. 围手术期管理

5.1. 常规管理

目前,老年髋部骨折术后AKI的治疗手段仍十分有限。因此,临床医生对于AKI的管理重点应放在预防其发生、发展方面。术前应做好患者AKI风险的评估,识别可能的肾脏基础疾病,对高危患者进行风险分层,并加强与麻醉和肾内科医生的联系,接受专业建议。并且及时纠正患者低血压、血容量不足、心力衰竭等可逆因素,尽量避免肾毒性药物的使用,密切监测肾功能的变化。同时与患者及家属沟通围手术期AKI的可能性和风险程度,优化手术方案。术中维持患者血流动力学的稳定,避免术中低血压的发生,维持足够的肾脏灌注,同时也要仔细监测容量状态以避免容量超负荷。根据一项Meta的结论,优化循环血容量和心输出量可能对高风险患者的围手术期肾功能有积极影响 [37] 。有关静脉液体的选择,更推荐平衡盐溶液以避免围手术期生理盐水过量输注导致高氯血症,增加AKI的风险 [38] 。有关胶体溶液的使用尚有争议,但目前不建议AKI或有AKI风险的患者在手术中常规使用羟乙基淀粉 [39] 。对于已经发生AKI的患者,需要积极处理其相关并发症,维持水、电解质的平衡,纠正酸碱代谢的紊乱,必要时需行肾脏替代治疗(Renal Replacement Therapy, RRT)。此外,根据KIDGO指南 [40] ,无论疾病处于哪个阶段的AKI患者,都应确保患者每日20~30 kcal/kg的能量摄入,主要成分为碳水化合物和脂肪。而在肾脏替代治疗的情况下,考虑到基础需要以及滤过损失,每天需要提供高达1.7 g/kg的氨基酸来补偿这些损失。而在非透析患者中,这个数值为0.8~1.0 g/kg,并建议主要通过肠道途径来提供营养。

5.2. 肾脏替代治疗(RRT)

肾脏替代治疗(Renal Replacement Therapy, RRT)已广泛应用于对危重AKI患者的治疗。RRT可以通过纠正严重酸中毒和高钾血症患者的代谢紊乱、控制严重肺水肿患者的液体代谢紊乱以及清除严重脓毒症患者的毒素和循环炎性因子来改善重度AKI患者预后。间歇性血液透析(Intermittent Hemodialysis, IHD)和连续性肾脏替代治疗(Continuous Renal Replacement Therapy, CRRT)是目前严重急性肾损伤(AKI)患者的两种主要RRT模式。尽管CRRT相较于IRRT可能有更好的血液动力学稳定性,但先前的研究没有显示这两种模式之间的生存差异 [41] [42] 。近期,有研究发现相较于IHD,CRRT甚至可能疾病严重程度较低的患者的不良结局有关 [43] 。有关RRT启动时机同样存在争议。先前有研究认为早期启动RRT可以纠正和维持酸碱平衡,控制水、电解质代谢紊乱,并快速有效地清除尿毒症毒素,改善患者预后,降低患者死亡率 [44] 。然而,近期一项大型RCT研究表明,早期启动RRT可能无益,反而会使患者面临RRT相关血流动力学不稳定、出血和血流感染等不良事件的风险 [45] 。此外,尽管大剂量RRT被广泛使用,但尚不清楚大剂量RRT是否会改善AKI患者的预后 [46] [47] 。因此,针对RRT的选择模式、治疗时机以及治疗剂量等,需要有更多的全球、多中心RCT研究来提供新的证据。

6. 小结

老年髋部骨折患者术后AKI发病率高,且与患者不良预后密切相关。因此,骨科医生有必要加深对术后AKI的概念、流行病学、易感因素的认识,遵循合理的标准,及时规避高危因素,严格监测肾功能变化,做好围手术期的管理,以有效降低术后AKI的发病率及患者的死亡率、缩短患者的住院时间、减少医疗费用和改善患者预后。

文章引用

袁 鑫,陈世荣. 老年髋部骨折术后急性肾损伤研究现状
Research Status of Acute Renal Injury after Hip Fracture Surgery in the Elderly[J]. 临床医学进展, 2023, 13(05): 7240-7246. https://doi.org/10.12677/ACM.2023.1351012

参考文献

  1. 1. Cooper, C., Campion, G. and Melton, L.R. (1992) Hip Fractures in the Elderly: A World-Wide Projection. Osteoporosis International, 2, 285-289. https://doi.org/10.1007/BF01623184

  2. 2. 老年髋部骨折诊疗与管理指南(2022年版) [J]. 骨科临床与研究杂志, 2023, 8(2): 77-83.

  3. 3. Levey, A.S. and James, M.T. (2017) Acute Kidney Injury. Annals of Internal Medicine, 167, C66-C80. https://doi.org/10.7326/AITC201711070

  4. 4. Hong, S.E., Kim, T.Y., Yoo, J.H., et al. (2017) Acute Kidney Injury Can Predict In-Hospital and Long-Term Mortality in Elderly Patients Undergoing Hip Fracture Surgery. PLOS ONE, 12, e176259. https://doi.org/10.1371/journal.pone.0176259

  5. 5. Shin, K.H. and Han, S.B. (2018) Early Postoperative Hypoal-buminemia Is a Risk Factor for Postoperative Acute Kidney Injury Following Hip Fracture Surgery. Injury, 49, 1572-1576. https://doi.org/10.1016/j.injury.2018.05.001

  6. 6. Khwaja, A. (2012) KDIGO Clinical Practice Guide-lines for Acute Kidney Injury. Nephron Clinical Practice, 120, c179-c184. https://doi.org/10.1159/000339789

  7. 7. Uchino, S. (2010) Creatinine. Current Opinion in Critical Care, 16, 562-567. https://doi.org/10.1097/MCC.0b013e32833ea7f3

  8. 8. Hahn, R.G. (2010) Volume Kinetics for Infusion Fluids. Anesthesiology, 113, 470-481. https://doi.org/10.1097/ALN.0b013e3181dcd88f

  9. 9. Matot, I., Paskaleva, R., Eid, L., et al. (2012) Effect of the Volume of Fluids Administered on Intraoperative Oliguria in Laparoscopic Bariatric Surgery: A Randomized Controlled Trial. The Archives of Surgery, 147, 228-234. https://doi.org/10.1001/archsurg.2011.308

  10. 10. Ronco, C., Bellomo, R. and Kellum, J. (2017) Understanding Renal Functional Reserve. Intensive Care Medicine, 43, 917-920. https://doi.org/10.1007/s00134-017-4691-6

  11. 11. Gumbert, S.D., Kork, F., Jackson, M.L., et al. (2020) Periopera-tive Acute Kidney Injury. Anesthesiology, 132, 180-204. https://doi.org/10.1097/ALN.0000000000002968

  12. 12. Yoon, S.Y., Kim, J.S., Jeong, K.H., et al. (2022) Acute Kidney Injury: Biomarker-Guided Diagnosis and Management. Medicina (Kaunas), 58, Article No. 340. https://doi.org/10.3390/medicina58030340

  13. 13. Yang, L., Xing, G., Wang, L., et al. (2015) Acute Kidney Injury in China: A Cross-Sectional Survey. The Lancet, 386, 1465-1471. https://doi.org/10.1016/S0140-6736(15)00344-X

  14. 14. Li, Z.C., Pu, Y.C., Wang, J., et al. (2021) The Prevalence and Risk Factors of Acute Kidney Injury in Patients Undergoing Hip Fracture Surgery: A Meta-Analysis. Bioengineered, 12, 1976-1985. https://doi.org/10.1080/21655979.2021.1926200

  15. 15. Rantalaiho, I., Gunn, J., Kukkonen, J., et al. (2019) Acute Kidney Injury Following Hip Fracture. Injury, 50, 2268-2271. https://doi.org/10.1016/j.injury.2019.10.008

  16. 16. Denic, A., Glassock, R.J. and Rule, A.D. (2016) Structural and Functional Changes with the Aging Kidney. Advances in Chronic Kidney Disease, 23, 19-28. https://doi.org/10.1053/j.ackd.2015.08.004

  17. 17. 杨媛君, 蔡广研. 老年急性肾损伤的特点与诊治进展[J]. 中国临床保健杂志, 2020, 23(1): 15-19.

  18. 18. Pannu, N., James, M., Hemmelgarn, B.R., et al. (2011) Modification of Out-comes after Acute Kidney Injury by the Presence of CKD. American Journal of Kidney Diseases, 58, 206-213. https://doi.org/10.1053/j.ajkd.2011.01.028

  19. 19. Zhou, X., Zhang, Y., Teng, Y., et al. (2021) Predictors of Postop-erative Acute Kidney Injury in Patients Undergoing Hip Fracture Surgery: A Systematic Review and Meta-Analysis. In-jury, 52, 330-338. https://doi.org/10.1016/j.injury.2020.09.060

  20. 20. Lapi, F., Azoulay, L., Yin, H., et al. (2013) Concurrent Use of Diuretics, Angiotensin Converting Enzyme Inhibitors, and Angiotensin Receptor Blockers with Non-Steroidal An-ti-Inflammatory Drugs and Risk of Acute Kidney Injury: Nested Case-Control Study. BMJ, 346, e8525. https://doi.org/10.1136/bmj.e8525

  21. 21. Bories, M., Bacle, A., Gilardi, H., et al. (2022) Risk of Acute Kidney Injury by Initiation of Non-Steroidal Anti-Inflammatory Drugs in Hospitalised Patients Treated with Diuretics and Ren-in-Angiotensin-Aldosterone System Inhibitors. European Journal of Hospital Pharmacy, 29, 359-361. https://doi.org/10.1136/ejhpharm-2020-002550

  22. 22. 李鹏飞, 聂时南. 围手术期急性肾损伤的研究进展[J]. 东南国防医药, 2019, 21(3): 287-290.

  23. 23. Zhan, S., Xie, W., Yang, M., et al. (2022) Incidence and Risk Factors of Acute Kidney Injury after Femoral Neck Fracture in Elderly Patients: A Retrospective Case-Control Study. BMC Musculoskel-etal Disorders, 23, Article No. 7. https://doi.org/10.1186/s12891-021-04966-3

  24. 24. Tu, M.Y., Hong, S., Lu, J., et al. (2021) Effect of Strict In-traoperative Blood Pressure Management Strategy on Postoperative Acute Kidney Injury in Non-Cardiac Surgery: A Meta-Analysis of Randomised Controlled Trials. International Journal of Clinical Practice, 75, e14570. https://doi.org/10.1111/ijcp.14570

  25. 25. Lanier, J.B., Park, J.J. and Callahan, R.C. (2018) Anemia in Older Adults. American Family Physician, 98, 437-442.

  26. 26. Stauder, R., Valent, P. and Theurl, I. (2018) Anemia at Older Age: Eti-ologies, Clinical Implications, and Management. Blood, 131, 505-514. https://doi.org/10.1182/blood-2017-07-746446

  27. 27. Willems, J.M., de Craen, A.J., Nelissen, R.G., et al. (2012) Haemoglobin Predicts Length of Hospital Stay after Hip Fracture Surgery in Older Patients. Maturitas, 72, 225-228. https://doi.org/10.1016/j.maturitas.2012.03.016

  28. 28. Scholz, H., Boivin, F.J., Schmidt-Ott, K.M., et al. (2021) Kidney Physiology and Susceptibility to Acute Kidney Injury: Implications for Renoprotection. Nature Reviews Neph-rology, 17, 335-349. https://doi.org/10.1038/s41581-021-00394-7

  29. 29. Fowler, A.J., Ahmad, T., Phull, M.K., et al. (2015) Me-ta-Analysis of the Association between Preoperative Anaemia and Mortality after Surgery. British Journal of Surgery, 102, 1314-1324. https://doi.org/10.1002/bjs.9861

  30. 30. Gupta, P., Kang, K.K., Pasternack, J.B., et al. (2021) Peri-operative Transfusion Associated with Increased Morbidity and Mortality in Geriatric Patients Undergoing Hip Fracture Surgery. Geriatric Orthopaedic Surgery & Rehabilitation, 12. https://doi.org/10.1177/21514593211015118

  31. 31. Li, C.N., Ge, Y.P., Liu, H., et al. (2022) Blood Transfusion and Acute Kidney Injury after Total Aortic Arch Replacement for Acute Stanford Type A Aortic Dissection. Heart, Lung and Circulation, 31, 136-143. https://doi.org/10.1016/j.hlc.2021.05.087

  32. 32. Ma, Y., Fang, K., Gang, S., et al. (2020) Occurrence and Predictive Factors of Acute Renal Injury Following Hip and Knee Arthroplasty. Clinical and Experimental Nephrology, 24, 598-605. https://doi.org/10.1007/s10157-020-01874-z

  33. 33. Zhang, Y., Jiang, L., Wang, B., et al. (2018) Epidemi-ological Characteristics of and Risk Factors for Patients with Postoperative Acute Kidney Injury: A Multicenter Prospec-tive Study in 30 Chinese Intensive Care Units. International Urology and Nephrology, 50, 1319-1328. https://doi.org/10.1007/s11255-018-1828-7

  34. 34. Li, C., Xu, L., Guan, C., et al. (2020) Malnutrition Screening and Acute Kidney Injury in Hospitalised Patients: A Retrospective Study over a 5-Year Period from China. British Journal of Nutrition, 123, 337-346. https://doi.org/10.1017/S000711451900271X

  35. 35. Cabrerizo, S., Cuadras, D., Gomez-Busto, F., et al. (2015) Se-rum Albumin and Health in Older People: Review and Meta Analysis. Maturitas, 81, 17-27. https://doi.org/10.1016/j.maturitas.2015.02.009

  36. 36. Bohl, D.D., Shen, M.R., Hannon, C.P., et al. (2017) Serum Albumin Predicts Survival and Postoperative Course Following Surgery for Geriatric Hip Fracture. The Journal of Bone and Joint Surgery. American Volume, 99, 2110-2118. https://doi.org/10.2106/JBJS.16.01620

  37. 37. Brienza, N., Giglio, M.T., Marucci, M., et al. (2009) Does Periopera-tive Hemodynamic Optimization Protect Renal Function in Surgical Patients? A Meta-Analytic Study. Critical Care Medicine, 37, 2079-2090. https://doi.org/10.1097/CCM.0b013e3181a00a43

  38. 38. Yunos, N.M., Bellomo, R., Hegarty, C., et al. (2012) Asso-ciation between a Chloride-Liberal vs Chloride-Restrictive Intravenous Fluid Administration Strategy and Kidney Injury in Critically Ill Adults. JAMA, 308, 1566-1572. https://doi.org/10.1001/jama.2012.13356

  39. 39. Serpa, N.A., Veelo, D.P., Peireira, V.G., et al. (2014) Fluid Resus-citation with Hydroxyethyl Starches in Patients with Sepsis Is Associated with an Increased Incidence of Acute Kidney Injury and Use of Renal Replacement Therapy: A Systematic Review and Meta-Analysis of the Literature. Journal of Critical Care, 29, 181-185. https://doi.org/10.1016/j.jcrc.2013.09.031

  40. 40. Kellum, J.A. and Lameire, N. (2013) Diagnosis, Evaluation, and Management of Acute Kidney Injury: A KDIGO Summary (Part 1). Critical Care, 17, Article No. 204. https://doi.org/10.1186/cc11454

  41. 41. Rabindranath, K., Adams, J., Macleod, A.M., et al. (2007) Intermittent versus Continuous Renal Replacement Therapy for Acute Renal Failure in Adults. Cochrane Database of Systematic Reviews, No. 3, D3773. https://doi.org/10.1002/14651858.CD003773.pub3

  42. 42. Nash, D.M., Przech, S., Wald, R., et al. (2017) Systematic Review and Meta-Analysis of Renal Replacement Therapy Modalities for Acute Kidney Injury in the Intensive Care Unit. Journal of Critical Care, 41, 138-144. https://doi.org/10.1016/j.jcrc.2017.05.002

  43. 43. Gaudry, S., Grolleau, F., Barbar, S., et al. (2022) Continuous Renal Replacement Therapy versus Intermittent Hemodialysis as First Modality for Renal Replacement Therapy in Severe Acute Kidney Injury: A Secondary Analysis of AKIKI and IDEAL-ICU Studies. Critical Care, 26, Article No. 93. https://doi.org/10.1186/s13054-022-03955-9

  44. 44. Zarbock, A., Kellum, J.A., Schmidt, C., et al. (2016) Effect of Early vs Delayed Initiation of Renal Replacement Therapy on Mortality in Critically Ill Patients with Acute Kidney Injury: The ELAIN Randomized Clinical Trial. JAMA, 315, 2190-2199. https://doi.org/10.1001/jama.2016.5828

  45. 45. Bagshaw, S.M., Wald, R., Adhikari, N., et al. (2020) Timing of Initia-tion of Renal-Replacement Therapy in Acute Kidney Injury. The New England Journal of Medicine, 383, 240-251. https://doi.org/10.1056/NEJMoa2000741

  46. 46. Palevsky, P.M., Zhang, J.H., O’Connor, T.Z., et al. (2008) Intensity of Renal Support in Critically Ill Patients with Acute Kidney Injury. The New England Journal of Medicine, 359, 7-20. https://doi.org/10.1056/NEJMoa0802639

  47. 47. Bellomo, R., Cass, A., Cole, L., et al. (2009) Intensity of Continu-ous Renal-Replacement Therapy in Critically Ill Patients. The New England Journal of Medicine, 361, 1627-1638. https://doi.org/10.1056/NEJMoa0902413

期刊菜单