Advances in Clinical Medicine
Vol. 13  No. 12 ( 2023 ), Article ID: 76565 , 7 pages
10.12677/ACM.2023.13122631

通过血管内超声评估冠脉支架贴壁不良的 研究进展

武晓龙1,2,王奖荣1,王聪1,侯应龙1,2*

1山东第一医科大学第一附属医院(山东省千佛山医院)心血管病学,山东省医药卫生心律失常重点实验室,山东 济南

2山东第一医科大学(山东省医学科学院)研究生院,山东 济南

收稿日期:2023年11月5日;录用日期:2023年11月28日;发布日期:2023年12月6日

摘要

支架贴壁不良(stent malapposition, SM)现象普遍存在于经皮冠脉介入治疗后,根据发生的时间将支架贴壁不良分为急性支架贴壁不良(acute stent malapposition, ASM)和晚期支架贴壁不良(late stent malapposition, LSM)。LSM可能对术后患者的心肌梗死和晚期支架内血肿的发生有影响,但ASM与预后结局的关系仍有争议。通过血管内超声(intravascular ultrasound, IVUS)评估SM及其对预后的影响时,支架种类可能影响SM的发生率,弥漫性的钙化病变、支架对称性、炎症反应和支架长度等可能是SM的相关危险因素,SM的严重程度和支架内最小面积可能是预测临床结局的有效指标。IVUS在防治支架贴壁不良中具有不可忽视的作用,尤其对于左主干这类疾病的患者行介入干预时。在晚期支架内血栓病变的患者中,SM的发生率更高,此类患者建议长期口服双重抗血小板药物治疗。

关键词

经皮冠状动脉介入治疗,血管内超声,支架贴壁不良,预后

Research Advances in the Assessment of Stent Malapposition in Coronary Artery by Intravascular Ultrasound

Xiaolong Wu1,2, Jiangrong Wang1, Cong Wang1, Yinglong Hou1,2*

1Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan Shandong

2Graduate School, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan Shandong

Received: Nov. 5th, 2023; accepted: Nov. 28th, 2023; published: Dec. 6th, 2023

ABSTRACT

Stent malapposition (SM) is a common phenomenon after percutaneous coronary intervention (PCI), and it is categorized into acute stent malapposition (ASM) and late stent malapposition (LSM) according to the time of occurrence. LSM may have an impact on the development of myocardial infarction and late in-stent thrombus in postprocedural patients, but the relationship between ASM and prognostic outcomes remains controversial. When assessing SM and its prognosis by intravascular ultrasound (IVUS), stent type may influence the incidence of SM. Diffuse calcified lesions, stent symmetry, inflammatory response and stent length may be relevant risk factors for SM. The severity of SM and the minimal stent area may serve as effective indicators for predicting clinical outcomes. IVUS plays a crucial role in preventing SM, particularly when treating patients with left main coronary artery disease. The incidence of SM is higher in patients with late stent thrombotic lesions, and long-term dual antiplatelet therapy is recommended for such patients.

Keywords:Percutaneous Coronary Intervention, Intravascular Ultrasound, Stent Malapposition, Prognosis

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

经皮冠状动脉介入术(percutaneous coronary intervention, PCI)是目前治疗冠心病的有效方法 [1] 。近年的研究表明,与传统冠脉造影相比,血管内超声(intravascular ultrasound, IVUS)指导下的PCI具有更好的临床结局,因此也彰显了IVUS在指导冠心病介入治疗中的应用价值与地位,其中对于支架贴壁不良的评估及处理具有不可忽视的作用 [2] [3] [4] 。本文将从支架贴壁不良的定义与发生率、发生原因与影响因素、临床影响及其防治等方面作一综述。

2. 支架贴壁不良的定义与发生率

支架贴壁不良(stent malapposition, SM)是指支架小梁与冠脉内膜之间未能完全贴合并遗留腔隙,其间可见血流影像 [5] 。严重的SM被定义为支架小梁到血管壁的距离(轴向距离) ≥ 0.4 mm或支架未贴壁的长度(纵向长度) ≥ 1 mm [6] 。根据SM发生的时间,可以分为急性支架贴壁不良(acute stent malapposition, ASM)和晚期支架贴壁不良(late stent malapposition, LSM)。ASM是指在支架植入后即刻出现的SM,LSM是指在PCI术后即刻支架完全贴壁,而在随访检查中发现存在SM [7] [8] 。

SM的发生率与支架种类有关。文献报道,植入药物洗脱支架(drug-eluting stent, DES)的患者合并LSM 的发生率高于植入裸金属支架(bare metal stent, BMS)的患者 [9] [10] 。Guo等人 [11] 研究发现在ST段抬高型心肌梗死的患者中,ASM的发生率在BMS为40.3%,高于DES的34.3%,而LSM的发生率在DES为46.8%,显著高于BMS的29.0%,但是该研究排除了左主干病变患者。RAVEL研究 [12] 表明,植入BMS的患者合并LSM的发生率为4%,而植入DES的患者LSM发生率为21%。Hur等人 [13] 通过荟萃分析也显示,DES组患者LSM发生率显著高于BMS组(11.8 vs 4.2%)。据报道,西罗莫司药物洗脱支架(sirolimus-eluting stents, SES)植入后SM发生率为25% [14] ;而在TAXUS-II和-IV试验中,紫杉醇药物洗脱支架(paclitaxel-eluting stents, PES)植入后6~9个月SM发生率在4.4%~8.0%之间 [15] [16] [17] 。Cook等人 [5] 研究也得出了同样的结论,即SES组的SM比PES组发生更常见(27% vs 9%, p = 0.001)。作者认为产生这种现象的原因可能是SES组比PES组的晚期血管内丢失报告率低,其次也可能与支架植入时不均匀的扩张或慢性回缩有关。

3. 支架贴壁不良的发生原因与影响因素

SM的原因在ASM与LSM中有所不同。ASM发生的原因 [18] 有:① 支架尺寸和管腔直径不匹配;② 支架植入时的膨胀压力不够,或者病变相关因素如巨大斑块、严重钙化或血管扩张导致的支架扩张不足 [19] ;③ 急性血栓阻挡了支架金属梁与血管内膜的紧密接触,但在随后几周内血栓消退,导致了SM [20] 。LSM产生的机制主要有:① 血管壁正性重塑。对植入DES患者的IVUS随访研究显示,LSM患者支架段存在血管壁正性重塑,并可能与过敏反应(嗜酸性粒细胞的浸润)和炎症过程有关 [21] 。Cook等人在28例非常晚期的支架内血栓患者中对10例患者进行血栓抽吸后IVUS影像分析,LSM发生率为73%,这些患者的支架段血管横截面积显著高于参考段血管横截面积,且嗜酸性粒细胞的数量与支架贴壁不良的横截面的面积存在相关性,表现为明显的血管壁正性重塑。② 支架部位的急性血栓在后续随访中溶解,因此IVUS检查可表现为LSM [11] [22] [23] 。

SM的影响因素有:① 钙化:严重的钙化程度可能会影响支架植入后的效果。Kyodo等人认为 [24] ,即使在旋磨术后再进行高压球囊后扩张,靶病变处钙化的存在也可能增加SM的风险,并且SM的严重程度(支架小梁到血管壁的最大距离)与靶病变处的最大钙化角度有显著相关性,但是与钙化的厚度无关。② 支架偏心率:通过IVUS测得理想的支架植入标准是支架完全贴壁以及支架偏心率 ≥ 0.7 [25] ,后者是指在每一帧图像测得最小支架直径/最大支架直径后计算的平均值,并与SM可能存在相关性。Hoffmann等人认为 [26] ,在弥漫性钙化病变的患者中,钙化程度越高,支架偏心率越小。③ 支架对称性:是指(最大支架直径–最小支架直径)/最大支架直径,以上的最小支架直径和最大支架直径可能来自于不同的横断面 [27] 。支架对称性的阈值定义为0.3 [28] 。研究表明 [29] ,支架对称性比偏心率更有意义。值得注意的是,支架对称性 < 0.3和支架偏心率 ≥ 0.7是否有关联需要进一步证实。④ 炎症介质:炎症与冠状动脉疾病的发生、进展及预后密切相关。Peng等人 [30] 研究表明,血清hs-CRP、miRNA-21和MMP-2是LSM发生的危险因素,MMP-2升高和MMP-2/TIMP-2失衡可能是导致PCI术后LSM的潜在机制。⑤ 其它:Hong等人 [31] 研究表明,支架长度、急性心肌梗死患者直接支架植入术和CTO病变是发生LSM的独立的相关因素。Enrico等人 [32] 探讨了864例患者1020个病灶,其中左主干病变部位有55个(5.4%),研究发现左主干疾病、稳定性心绞痛、支架预扩张或后扩张、残余性狭窄、支架内斑块脱垂与SM具有相关性。

4. 支架贴壁不良的临床影响

目前普遍认为ASM与患者PCI术后长期的临床影响无关。Enrico等人 [32] 纳入了864例患者,在中位随访302天(IQ 127-567)时,ASM并不影响主要心脏不良事件发生的风险。前瞻性研究显示,IVUS检查中的SM与随访后的心血管事件无明显相关。在支架植入后即刻影像的相关研究中,ASM并不是支架内血栓形成的独立预测因子 [2] [11] 。尽管如此,保证最佳的支架贴壁在冠脉病变患者人群中依然是必要的。

研究显示,LSM可影响PCI患者术后长期的临床结局,尤其在晚期支架内血栓的发生方面。Cook等人 [5] 共对194例病变患者进行了5年的前瞻性随访,在8个月时对患者进行IVUS评估,显示有37例(19.1%)患者存在LSM,结论提示LSM与患者发生主要不良心脏事件有关。虽然在死亡方面没有差异,但心肌梗死和晚期支架内血肿的发生率均高于支架贴壁良好的患者。在分析支架内血栓的患者中发现支架贴壁不良并不少见 [33] ,其中PRESTIGE研究和PESTO研究表明 [34] [35] ,在急性支架内血栓形成的患者中,SM的发生率分别为27%和60%,在晚期支架内血栓形成的患者中,SM的发生率分别为10%和44%。

SM的严重程度也作为PCI术后是否进行后扩张的一个参考因素,当SM的严重程度超过一定的水平是否是安全的值得进一步探讨。一系列研究发现,支架贴壁不良轴向距离 < 0.35 mm的支架小梁在随访过程中会完全与血管内皮细胞融合 [36] [37] [38] 。有研究发现在晚期支架内血栓形成的患者中,SM的轴向距离普遍在0.3~0.6 mm之间,纵向长度在1.0~2.1 mm之间 [39] 。Kim等人 [40] 研究了SM的轴向距离、纵向长度以及周长等指标,进行了三维测量支架贴壁不良的标准,将SM的严重程度用总贴壁不良体积(total malapposition volume, TMV)来表示,通过前瞻性随访表明,TMV ≥ 7 mm2与心脏不良事件的发生具有显著相关性。

此外,最小支架内面积(minimum stent area, MSA)亦可影响患者的临床结局。有研究通过IVUS将左主干支架内MSA < 8 mm2、分叉部MSA < 7 mm2、左前降支开口MSA < 6 mm2、左回旋支开口MSA < 5 mm2定义为支架扩张不良,存在支架扩张不良的患者其再狭窄率较高 [41] 。研究显示,支架内MSA ≤ 5 mm2、支架边缘斑块负荷 ≥ 50%、支架边缘夹层、弥漫的支架贴壁不良是远期不良事件的独立预测因素 [28] [42] [43] [44] 。Lee等人 [45] 研究了由IVUS引导的支架植入后对1254例患者3年临床结局的影响,文章指出,若达到MSA > 5.5 mm2或MSA/远端参考官腔面积 > 90%的标准,将与长期的临床终点改善相关,因此为了实现远期效果的改善,应尽量使支架膨胀。EXCEL的研究 [46] 结论也表明MSA对患者的全因死亡、心肌梗死、支架内血栓形成具有不良影响。

5. IVUS在支架贴壁不良防治中的作用

IVUS在防治SM中具有如下作用:① IVUS可以提供更多的病变细节,如管腔直径、斑块特点、斑块在病变管腔中的分布等,从而可以指导支架直径和长度的选择及定位;② IVUS有助于优化支架策略(即单支架还是双支架);③ PCI术后行IVUS可以发现支架贴壁不良和支架膨胀不全,可通过后扩张进一步优化,从而获得更大的支架尺寸;④ 能及时发现急性并发症如支架边缘夹层/血肿或支架变形 [47] [48] [49] [50] 。更重要的是,对于左主干病变的诸多特征如左主干分叉前后的直径差异、不规则管腔结构、偏心斑块、严重钙化等,这些很难仅通过血管造影进行正确判别 [51] [52] [53] ,因此IVUS在冠脉病变患者的介入干预中具有独特的应用价值作用。

由于SM的发生机制尚不完全清楚,目前仍无法完全避免其发生。在PCI术中及随访过程中运用IVUS等先进的影像学技术,既可以提供更多的病变细节,也能够帮助优化支架策略,可以早期发现支架贴壁不良,通过后扩张去进行优化,从而可以获得更大的支架尺寸,对降低SM的发生率有一定的作用。针对LSM患者,应该加强临床监测,并且延长双联抗血小板药物治疗的时间,有望降低晚期支架内血栓形成的风险。目前关于LSM患者介入干预策略尚无一致的结论。此外,未来随着新型支架的不断研发和应用于临床实践,可能为解决SM提供更优的选择。

基金项目

国家自然科学基金(81970281)。

文章引用

武晓龙,王奖荣,王 聪,侯应龙. 通过血管内超声评估冠脉支架贴壁不良的研究进展
Research Advances in the Assessment of Stent Malapposition in Coronary Artery by Intravascular Ultrasound[J]. 临床医学进展, 2023, 13(12): 18714-18720. https://doi.org/10.12677/ACM.2023.13122631

参考文献

  1. 1. Brilakis, E.S., Mashayekhi, K., Tsuchikane, E., et al. (2019) Guiding Principles for Chronic Total Occlusion Percutane-ous Coronary Intervention. Circulation, 140, 420-433. https://doi.org/10.1161/CIRCULATIONAHA.119.039797

  2. 2. Lombardi, M., Chiabrando, J.G., Romagnoli, E., et al. (2023) Impact of Acute and Persistent Stent Malapposition after Percutaneous Coronary Intervention on Adverse Car-diovascular Outcomes. Minerva Cardiology and Angiology, 71, 525-534. https://doi.org/10.23736/S2724-5683.22.06185-3

  3. 3. Groenland, F.T.W., Neleman, T., Kakar, H., et al. (2022) Intravascular Ultrasound-Guided versus Coronary Angiography-Guided Percutaneous Coronary Intervention in Patients with Acute Myocardial Infarction: A Systematic Review and Meta-Analysis. International Journal of Cardiology, 353, 35-42. https://doi.org/10.1016/j.ijcard.2022.01.021

  4. 4. Mentias, A., Sarrazin, M.V., Saad, M., et al. (2020) Long-Term Outcomes of Coronary Stenting with and without Use of Intravascular Ultrasound. JACC: Cardiovascular Interventions, 13, 1880-1890. https://doi.org/10.1016/j.jcin.2020.04.052

  5. 5. Cook, S., Eshtehardi, P., Kalesan, B., et al. (2012) Impact of In-complete Stent Apposition on Long-Term Clinical Outcome after Drug-Eluting Stent Implantation. European Heart Journal, 33, 1334-1343. https://doi.org/10.1093/eurheartj/ehr484

  6. 6. Lee, S.Y., Im, E., Hong, S.J., et al. (2019) Severe Acute Stent Mal-apposition after Drug-Eluting Stent Implantation: Effects on Long-Term Clinical Outcomes. Journal of the American Heart Association, 8, e012800. https://doi.org/10.1161/JAHA.119.012800

  7. 7. Lee, S.Y., Mintz, G.S., Kim, J.S., et al. (2020) Long-Term Clinical Outcomes of Drug-Eluting Stent Malapposition. Korean Circulation Journal, 50, 880-889. https://doi.org/10.4070/kcj.2020.0198

  8. 8. Naganuma, T. (2020) Acute Stent Malapposition: Harmful or Harmless? International Journal of Cardiology, 299, 106-107. https://doi.org/10.1016/j.ijcard.2019.08.057

  9. 9. Shah, V.M., Mintz, G.S., Apple, S. and Weissman, N.J. (2002) Background Incidence of Late Malapposition after Bare-Metal Stent Implantation. Circulation, 106, 1753-1755. https://doi.org/10.1161/01.CIR.0000035239.90657.B1

  10. 10. Hong, M.K., Mintz, G.S., Lee, C.W., et al. (2006) Late Stent Malapposition after Drug-Eluting Stent Implantation. Circulation, 113, 414-419. https://doi.org/10.1161/CIRCULATIONAHA.105.563403

  11. 11. Guo, N., Maehara, A., Mintz, G.S., et al. (2010) Incidence, Mechanisms, Predictors, and Clinical Impact of Acute and Late Stent Malapposition after Primary Intervention in Patients with Acute Myocardial Infarction. Circulation, 122, 1077-1084. https://doi.org/10.1161/CIRCULATIONAHA.109.906040

  12. 12. Serruys, P.W., Degertekin, M., Tanabe, K., et al. (2002) Intravascular Ultrasound Findings in the Multicenter, Randomized, Double-Blind RAVEL (Randomized Study with the Sirolimus-Eluting Velocity Balloon-Expandable Stent in the Treatment of Patients with De Novo Native Coro-nary Artery Lesions) Trial. Circulation, 106, 798-803. https://doi.org/10.1161/01.CIR.0000025585.63486.59

  13. 13. Hur, S.H., Ako, J., Honda, Y., et al. (2009) Late-Acquired Incomplete Stent Apposition: Morphologic Characterization. Cardiovascular Revascularization Medicine, 10, 236-246. https://doi.org/10.1016/j.carrev.2009.02.002

  14. 14. Hoffmann, R., Morice, M.C., Moses, J.W., et al. (2008) Impact of Late Incomplete Stent Apposition after Sirolimus-Eluting Stent Implantation on 4-Year Clinical Events: Intravascular Ultrasound Analysis from the Multicentre, Randomised, RAVEL, E-SIRIUS and SIRIUS Trials. Heart, 94, 322-328. https://doi.org/10.1136/hrt.2007.120154

  15. 15. Tanabe, K., Serruys, P.W., Degertekin, M., et al. (2005) Incomplete Stent Apposition after Implantation of Paclitaxel-Eluting Stents or Bare Metal Stents. Circulation, 111, 900-905. https://doi.org/10.1161/01.CIR.0000155607.54922.16

  16. 16. Weissman, N.J., Ellis, S.G., Grube, E., et al. (2007) Effect of the Polymer-Based, Paclitaxel-Eluting TAXUS Express stent on Vascular Tissue Responses: A Volumetric In-travascular Ultrasound Integrated Analysis from the TAXUS IV, V, and VI Trials. European Heart Journal, 28, 1574-1582. https://doi.org/10.1093/eurheartj/ehm174

  17. 17. Cheneau, E., Satler, L.F., Escolar, E., et al. (2005) Un-derexpansion of Sirolimus-Eluting Stents: Incidence and Relationship to Delivery Pressure. Catheterization and Cardio-vascular Interventions, 65, 222-226. https://doi.org/10.1002/ccd.20350

  18. 18. Attizzani, G.F., Capodanno, D., Ohno, Y. and Tamburino, C. (2014) Mechanisms, Pathophysiology, and Clinical Aspects of Incomplete Stent Apposition. Journal of the American College of Cardiology, 63, 1355-1367. https://doi.org/10.1016/j.jacc.2014.01.019

  19. 19. Kim, B.K., Shin, D.H., Kim, J.S., et al. (2012) Optical Coherence Tomography-Based Evaluation of Malapposed Strut Coverage after Drug-Eluting Stent Implantation. The International Journal of Cardiovascular Imaging, 28, 1887-1894. https://doi.org/10.1007/s10554-012-0039-z

  20. 20. Roth, C., Gangl, C., Dalos, D., et al. (2018) Incidence of Late-Acquired Stent Malapposition of Drug Eluting Stents with Second Generation Permanent and Biodegradable Poly-mer Coatings—A Prospective, Randomized Comparison Using Optical Coherence Tomography. Journal of Intervention-al Cardiology, 31, 780-791. https://doi.org/10.1111/joic.12572

  21. 21. Cook, S.P., Ladich, E., Nakazawa, G., et al. (2009) Correlation of Intra-vascular Ultrasound Findings with Histopathological Analysis of Thrombus Aspirates in Patients with Very Late Drug-Eluting Stent Thrombosis. Circulation, 120, 391-399. https://doi.org/10.1161/CIRCULATIONAHA.109.854398

  22. 22. Cook, S.P., Wenaweser, P., Togni, M., et al. (2007) Incomplete Stent Apposition and Very Late Stent Thrombosis after Drug-Eluting Stent Implantation. Circulation, 115, 2426-2434. https://doi.org/10.1161/CIRCULATIONAHA.106.658237

  23. 23. Ng, J.C.K., Lian, S.S., Zhong, L., et al. (2022) Stent Malapposition Generates Stent Thrombosis: Insights from a Thrombosis Model. International Journal of Cardiol-ogy, 353, 43-45. https://doi.org/10.1016/j.ijcard.2022.02.003

  24. 24. Kyodo, A., Okura, H., Okamura, A., et al. (2022) Incidence and Characteristics of Incomplete Stent Apposition in Calcified Lesions: An Optical Coherence Tomography Study. Cardiovascular Revascularization Medicine, 41, 55-60. https://doi.org/10.1016/j.carrev.2021.12.032

  25. 25. Qian, J., Zhang, F., Wu, H., et al. (2007) Size of Coronary Artery in a Myocardial Bridge Compared with Adjacent Nontunneled Left Anterior Descending Coronary Artery. The American Journal of Cardiology, 99, 1653-1655. https://doi.org/10.1016/j.amjcard.2007.01.051

  26. 26. Hoffmann, R. (1998) Treatment of Calcified Coronary Lesions with Palmaz-Schatz Stents: An Intravascular Ultrasound Study. European Heart Journal, 19, 1224-1231. https://doi.org/10.1053/euhj.1998.1028

  27. 27. Saito, Y., Kobayashi, Y., Fujii, K., et al. (2021) Clinical Expert Con-sensus Document on Intravascular Ultrasound from the Japanese Association of Cardiovascular Intervention and Thera-peutics (2021). Cardiovascular Intervention and Therapeutics, 37, 40-51. https://doi.org/10.1007/s12928-021-00824-0

  28. 28. de Jaegere, P. (1998) Intravascular Ultrasound-Guided Opti-mized Stent Deployment Immediate and 6 Months Clinical and Angiographic Results from the Multicenter Ultrasound Stenting in Coronaries Study (MUSIC Study). European Heart Journal, 19, 1214-1223. https://doi.org/10.1053/euhj.1998.1012

  29. 29. Suwannasom, P., Sotomi, Y., Ishibashi, Y., et al. (2016) The Impact of Post-Procedural Asymmetry, Expansion, and Eccentricity of Bioresorbable Everolimus-Eluting Scaffold and Metallic Everolimus-Eluting Stent on Clinical Outcomes in the ABSORB II Trial. JACC: Cardiovascular Interventions, 9, 1231-1242. https://doi.org/10.1016/j.jcin.2016.03.027

  30. 30. Liu, P., Qiu, C.G., Huang, Z.W. and Zhou, Y. (2023) Incidence, Risk Factors, and Clinical Sequelae of Incomplete Stent Apposition after Sirolimus-Eluting Stent. The International Journal of Cardiovascular Imaging, 39, 1921-1926. https://doi.org/10.1007/s10554-023-02896-w

  31. 31. Hong, M.K., Mintz, G.S., Lee, C.W., et al. (2004) Incidence, Mechanism, Predictors, and Long-Term Prognosis of Late Stent Malapposition after Bare-Metal Stent Implantation. Cir-culation, 109, 881-886. https://doi.org/10.1007/s10554-023-02896-w

  32. 32. Romagnoli, E., Gatto, L., La Manna, A., et al. (2017) Role of Residual Acute Stent Malapposition in Percutaneous Coronary Interventions. Catheterization and Cardiovascular Inter-ventions, 90, 566-575. https://doi.org/10.1002/ccd.26974

  33. 33. Raber, L., Mintz, G.S., Koskinas, K.C., et al. (2018) Clinical Use of Intra-coronary Imaging. Part 1: Guidance and Optimization of Coronary Interventions. An Expert Consensus Document of the European Association of Percutaneous Cardiovascular Interventions. EuroIntervention, 14, 656-677. https://doi.org/10.4244/EIJY18M06_01

  34. 34. Adriaenssens, T., Joner, M., Godschalk, T.C., et al. (2017) Optical Coherence Tomography Findings in Patients with Coronary Stent Thrombosis. Circulation, 136, 1007-1021. https://doi.org/10.1161/CIRCULATIONAHA.117.026788

  35. 35. Souteyrand, G., Amabile, N., Mangin, L., et al. (2016) Mechanisms of Stent Thrombosis Analysed by Optical Coherence Tomography: Insights from the National PESTO French Registry. European Heart Journal, 37, 1208-1216. https://doi.org/10.1093/eurheartj/ehv711

  36. 36. Gutiérrez-Chico, J.L., Wykrzykowska, J., Nüesch, E., et al. (2012) Vascular Tissue Reaction to Acute Malapposition in Human Coronary Arteries. Circulation: Cardiovascular Interven-tions, 5, 20-29. https://doi.org/10.1161/CIRCINTERVENTIONS.111.965301

  37. 37. Shimamura, K., Kubo, T., Akasaka, T., et al. (2014) Outcomes of Everolimus-Eluting Stent Incomplete Stent Apposition: A Serial Optical Coherence Tomography Analysis. European Heart Journal: Cardiovascular Imaging, 16, 23-28. https://doi.org/10.1093/ehjci/jeu174

  38. 38. Sotomi, Y., Onuma, Y., Dijkstra, J., et al. (2018) Fate of Post-Procedural Malapposition of Everolimus-Eluting Polymeric Bioresorbable Scaffold and Everolimus-Eluting Cobalt Chromium Me-tallic Stent in Human Coronary Arteries: Sequential Assessment with Optical Coherence Tomography in ABSORB Japan Trial. European Heart Journal: Cardiovascular Imaging, 19, 59-66. https://doi.org/10.1093/ehjci/jew329

  39. 39. Taniwaki, M., Radu, M.D., Zaugg, S., et al. (2016) Mechanisms of Very Late Drug-Eluting Stent Thrombosis Assessed by Optical Coherence Tomography. Circulation, 133, 650-660. https://doi.org/10.1161/CIRCULATIONAHA.115.019071

  40. 40. Kim, B.G., Kachel, M., Kim, J.S., et al. (2022) Clinical Implications of Poststent Optical Coherence Tomographic Findings. JACC: Cardiovascular Imaging, 15, 126-137. https://doi.org/10.1016/j.jcmg.2021.03.008

  41. 41. Kang, S.J., Mintz, G.S., Kim, W.J., et al. (2011) Chang-es in Left Main Bifurcation Geometry after a Single-Stent Crossover Technique. Circulation: Cardiovascular Interven-tions, 4, 355-361. https://doi.org/10.1161/CIRCINTERVENTIONS.110.961045

  42. 42. Liu, X., Tsujita, K., Maehara, A., et al. (2009) Intravascular Ultrasound Assessment of the Incidence and Predictors of Edge Dissections after Drug-Eluting Stent Im-plantation. JACC: Cardiovascular Interventions, 2, 997-1004. https://doi.org/10.1016/j.jcin.2009.07.012

  43. 43. Liu, X., Doi, H., Maehara, A., et al. (2009) A Volumetric Intravas-cular Ultrasound Comparison of Early Drug-Eluting Stent Thrombosis versus Restenosis. JACC: Cardiovascular Inter-ventions, 2, 428-434. https://doi.org/10.1016/j.jcin.2009.01.011

  44. 44. Morino, Y., Tamiya, S., Masuda, N., et al. (2010) Intravascular Ul-trasound Criteria for Determination of Optimal Longitudinal Positioning of Sirolimus-Eluting Stents. Circulation Journal, 74, 1609-1616. https://doi.org/10.1253/circj.CJ-10-0025

  45. 45. Lee, Y.J., Zhang, J.J., Mintz, G.S., et al. (2021) Impact of Intravas-cular Ultrasound-Guided Optimal Stent Expansion on 3-Year Hard Clinical Outcomes. Circulation: Cardiovascular In-terventions, 14, e011124. https://doi.org/10.1161/CIRCINTERVENTIONS.121.011124

  46. 46. Maehara, A., Mintz, G., Serruys, P., et al. (2017) Impact of Final Minimal Stent Area by Ivus on 3-Year Outcome after Pci of Left Main Coronary Artery Disease: The Excel Trial. Journal of the American College of Cardiology, 69, 963. https://doi.org/10.1016/S0735-1097(17)34352-8

  47. 47. Watanabe, Y., Sakakura, K., Taniguchi, Y., et al. (2022) Im-pact of Intravascular Ultrasound-Incomplete Stent Apposition on Stent Failure. Catheterization and Cardiovascular In-terventions, 100, 1000-1009. https://doi.org/10.1002/ccd.30424

  48. 48. Hakim, D., Abdallah, M., Effat, M., et al. (2021) A New Intravascular Ul-trasound-Guided Stenting Strategy Compared with Angiography on Stent Expansion and Procedural Outcomes in Pa-tients with Positive Lesion Remodeling. Catheterization and Cardiovascular Interventions, 97, 237-244. https://doi.org/10.1002/ccd.28727

  49. 49. Kinnaird, T., Johnson, T., Anderson, R., et al. (2020) Intravascular Imaging and 12-Month Mortality after Unprotected Left Main Stem PCI. JACC: Cardiovascular Interventions, 13, 346-357. https://doi.org/10.1016/j.jcin.2019.10.007

  50. 50. Mintz, G.S., Lefèvre, T., Lassen, J.F., et al. (2018) Intravascular Ultrasound in the Evaluation and Treatment of Left Main Coronary Artery Disease: A Consensus Statement from the European Bifurcation Club. EuroIntervention, 14, e467-e474.

  51. 51. Mrevlje, B., McFadden, E., de la Torre Hernandez, J.M., et al. (2023) Intravascular Ultrasound-Guided versus Angiography-Guided Percutaneous Coronary Intervention in Unprotected Left Main Coronary Artery Disease: A Systematic Review. Cardiovascular Revascularization Medicine. https://doi.org/10.1016/j.carrev.2023.08.006

  52. 52. Case, B.C., Yerasi, C., Forrestal, B.J., et al. (2021) Intravascular Ultrasound Guidance in the Evaluation and Treatment of Left Main Coronary Artery Disease. International Journal of Cardiology, 325, 168-175. https://doi.org/10.1016/j.ijcard.2020.10.008

  53. 53. Vergallo, R., De Maria, G.L., Annibali, G., et al. (2020) [Use of Intravascular Ultrasound for the Assessment and Treatment of Left Main Disease]. Giornale Italiano di Cardiologia (Rome), 21, 22S-28S.

  54. NOTES

    *通讯作者。

期刊菜单