Advances in Clinical Medicine
Vol. 14  No. 01 ( 2024 ), Article ID: 78770 , 7 pages
10.12677/ACM.2024.141027

EGFR-TKIs耐药与EGFR突变非小细胞肺癌中PD-L1表达的研究进展

温雅婷1,高俊珍2*

1内蒙古医科大学研究生院,内蒙古 呼和浩特

2内蒙古医科大学附属医院呼吸与危重症医学科,内蒙古 呼和浩特

收稿日期:2023年12月4日;录用日期:2023年12月28日;发布日期:2024年1月8日

摘要

表皮生长因子受体酪氨酸激酶抑制剂可改善EGFR突变的非小细胞肺癌患者生存期。然而部分患者表现出原发性/获得性耐药,疗效间存在差异。PD-L1表达水平可作为免疫检查点抑制剂治疗的预测性生物标志物,PD-1/PD-L1抑制剂已被批准用于晚期NSCLC的一线治疗。研究表明,部分EGFR突变NSCLC患者免疫治疗效果欠佳,可能与其肿瘤微环境相关。本文就EGFR突变患者的肿瘤微环境与PD-L1的联系、PD-L1在EGFR突变的非小细胞肺癌患者中表达率及与EGFR-TKIs疗效等方面的研究进行综述。

关键词

EGFR,肿瘤微环境,PD-L1,EGFR-TKIs耐药,信号通路

Research Progress of EGFR-TKIs Resistance and PD-L1 Expression in EGFR-Mutant Non-Small Cell Lung Cancer

Yating Wen1, Junzhen Gao2*

1Gradute School, Inner Mongolia Medical University, Hohhot Inner Mongolia

2Pulmonary and Critical Care Medicine Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot Inner Mongolia

Received: Dec. 4th, 2023; accepted: Dec. 28th, 2023; published: Jan. 8th, 2024

ABSTRACT

Epidermal growth factor receptor tyrosine kinase inhibitors improve survival in patients with EGFR-mutated non-small cell lung cancer. However, some patients exhibit primary/acquired resistance and efficacies are different. PD-L1 expression level can be used as a predictive biomarker for treatment with immune checkpoint inhibitors, and PD-1/PD-L1 inhibitors have been approved for first-line treatment of advanced NSCLC. Studies have shown that some EGFR mutant NSCLC patients have poor immunotherapy outcomes, which may be related to their tumor microenvironment. In this article, we review the studies on the association between tumor microenvironment and PD-L1 in patients with EGFR mutations, the expression rate of PD-L1 in patients with EGFR-mutated NSCLC, and the efficacy with EGFR-TKIs.

Keywords:EGFR, Tumor Microenvironment, PD-L1, EGFR-TKIs Resistance, Signaling Pathway

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

肺癌是最常见的癌症类型,也是中国癌症死亡的主要原因 [1] 。非小细胞肺癌(non-small cell lung cancer, NSCLC)约占肺癌的85%。亚洲人群肺腺癌患者表皮生长因子受体(epidermal growth factor receptor, EGFR)突变率高达51% [2] 。EGFR-TKIs是EGFR突变晚期非小细胞肺癌患者治疗的首选。程序性死亡配体1 (programmed death ligand 1, PD-L1)能够与T细胞上的程序性死亡受体1 (programmed death receptor 1, PD-1)结合,抑制T细胞的活性和促进调节性T细胞的分化,抑制免疫反应 [3] 。EGFR-TKIs在治疗后不可避免出现耐药,耐药机制包括靶基因修饰、旁路激活和表型转化等多种机制,但仍有部分机制不明。肿瘤免疫微环境的变化也被认为可能是耐药机制之一 [4] [5] 。本综述就EGFR突变患者肿瘤微环境及变化、EGFR突变与PD-L1信号传导通路及二者联系,以探讨PD-L1表达水平与EGFR突变晚期非小细胞肺癌患者之间的联系,为临床治疗提供参考。

2. EGFR突变非小细胞肺癌中PD-L1表达与EGFR-TKIs耐药的联系

研究发现,EGFR-TKIs耐药时可诱导PD-L1的高表达 [6] 。奥希替尼治疗后,循环肿瘤细胞中PD-L1的表达水平在疾病进展时倾向于显著升高(34.6%) [7] ,表明PD-L1在EGFR-TKIs耐药时上调。EGFR-TKIs耐药可能上调PD-L1表达来改变肿瘤微环境(tumor microenviroment, TME) [8] [9] 。这种免疫微环境变化可能使EGFR-TKIs耐药。目前EGFR突变非小细胞肺癌患者肿瘤免疫微环境的研究处在探索阶段,需进一步探索。

3. EGFR突变患者不同阶段的TME特征

3.1. EGFR突变的TME特征及临床意义

肿瘤微环境是肿瘤细胞赖以生存和发展的内环境,由癌细胞、微血管、淋巴管、免疫细胞和细胞因子等多种因素共同组成,存在错综复杂的相互作用,同一肿瘤内的免疫状态、营养、PH和间质压力的水平可变,因此TME在癌症的发生、发展和转移中起重要作用 [10] [11] 。

EGFR突变患者的肿瘤微环境表现较为复杂。目前研究结果显示其为一种非炎性、免疫抑制性TME,其中肿瘤突变负荷(Tumor mutation burden, TMB)较低、缺乏CD8+肿瘤浸润淋巴细胞(Tumor infiltratinglym-phocycte, TIL)、调节性T细胞(Tregs)浸润、骨髓来源的抑制细胞(MDSCs)增加、多种促肿瘤炎性细胞因子增加和PD-L1表达上调,为肿瘤细胞增殖创造了有利的微环境 [12] 。

广东省人民医院团队通过单细胞测序探索发现EGFR突变的肺腺癌组织中缺乏组织常驻记忆CD8+ T细胞,主要是由于缺失肿瘤相关巨噬细胞(Tumor-associated macrophage, TAM)和肿瘤相关成纤维细胞(Cancer-associated fibroblast, CAF),导致无法招募、驻留和扩增CD8+ T记忆细胞。与EGFR野生型相比,EGFR突变型肺腺癌的T细胞和其他细胞类型之间的多种免疫检查点(如PD-1和PD-L1)相关作用显著减少 [13] 。

一项回顾性研究观察到携带EGFR突变的NSCLC肿瘤的PD-L1表达水平低,CD8+ TILs也很少。相反,其他研究检测到EGFR突变的肿瘤中PD-L1的高表达 [14] 。临床前研究表明,EGFR激活可上调PD-L1表达,诱导T细胞凋亡、免疫逃逸。在携带EGFR突变的肺腺癌小鼠模型中,观察到巨噬细胞MHC-II表达减少,巨噬细胞IL1RA表达增强,吞噬活性增加,归因于M2表型巨噬细胞增加。EGFR突变的NSCLC特点是CD8+ T细胞和免疫抑制细胞的水平较低,但Tregs数量和PD-L1表达水平都有所增加,这导致效应性T细胞活性降低,有利于免疫逃逸和癌症进展 [15] [16] 。因此,EGFR突变在细胞生长、生存和免疫逃逸机制的发展中起着关键作用。

3.2. EGFR-TKIs治疗后的TME特征

EGFR-TKIs抑制EGFR通路激活,并通过多种途径调节肿瘤免疫微环境,诱导抗肿瘤反应,促进T细胞介导的抗癌作用,减少T细胞凋亡,提高CD8+ T细胞和DCs水平,增加MHC I类和II类分子的表达,增强抗原呈递对IFN-γ的反应,并提高IL-10、CCL2和IFN-γ水平,减少FOXP3+ Tregs,抑制巨噬细胞极化为M2表型,并减少PD-L1的表达 [17] 。

日本的Yoshiya教授团队,回顾性分析EGFR突变患者的TME,依据PD-L1肿瘤比例和CD8+评分,将TME分为四种类型:(a) 高/高(13.5%, n = 7);(b) 低/低(42.3%, n = 22);(c) 高/低(17.3%, n = 9)和(d) 低/高(26.9%, n = 14),结果显示无进展生存期在(a)型中最短,在(d)型中最长(mPFS 2.4 vs 11.3 vs 8.4 vs 17.5个月;P = 0.0000077),反映出EGFR-TKIs的疗效根据TME的不同而有所不同,具有低PD-L1和高CD8+表达的表型可能是从这种治疗中最大获益的类型 [18] 。Kohsuke等在EGFR-TKIs治疗进展后再次活检,结果显示部分患者PD-L1表达水平升高,治疗后CD8+和FOXP3+ TIL密度显着降低(中位数292.8→224.0/mm2,P = 0.0274和249.6→150.4/mm2,P < 0.0001),但在高PD-L1表达肿瘤中CD8+ TIL密度保持不变。结果表明,EGFR-TKIs治疗可以改善EGFR突变阳性NSCLC的肿瘤免疫微环境,增加肿瘤浸润CD8+ T细胞数量并上调PD-L1表达。这些发现有助于解释为什么EGFR-TKIs治疗可以改善患者的预后 [19] 。但周彩存教授团队研究EGFR-TKIs对EGFR驱动的肺癌模型TME中发现,使用敏感的EGFR-TKIs后,增加的CD8+ T细胞和DCs驱散了FOXP3+ Tregs,并抑制了巨噬细胞的M2极化。然而随着治疗的继续,这种变化消失了 [20] 。因此,TKI治疗可重建一个健康的免疫微环境,诱导肿瘤消退,但其作用是不断变化的。

3.3. EGFR-TKIs耐药后的TME特征

在EGFR突变非小细胞肺癌中,EGFR-TKIs耐药TME出现免疫抑制性改变。与EGFR-TKIs敏感的肿瘤相比,EGFR-TKIs药肿瘤中免疫抑制细胞数量增多,免疫活化细胞数量减少,并且免疫抑制因子更活跃。此外,EGFR-TKIs耐药的癌细胞表现出上皮–间质转化 [21] 。同济大学研究团队使用单细胞测序分析显示,EGFR-TKIs耐药后患者的细胞成分出现变化。短TKI-PFS患者较长TKI-PFS患者的CD3+淋巴细胞、CD8+效应T细胞和INF-γ + CD8+ T细胞在TME中浸润的比例明显更高,M2样巨噬细胞比例较低,促炎细胞增多的一致性加强了TKI-PFS短的患者更可能从联合免疫疗法中获益的理论基础。更重要的是,通过流式细胞技术,CD4+ T细胞中FOXP3+的比例在短TKI-PFS患者中明显升高,这可能是效应性T细胞激活增加的反馈结果 [22] 。

4. EGFR突变及PD-L1表达的信号传导通路及其联系

EGFR突变后激活酪氨酸激酶,并激活其下游信号通路:RAS/RAF/MEK、PI3K/AKT/mTOR等通路,参与肿瘤细胞的增殖、生长、侵袭、转移及血管生成。此外,EGFR可促进肿瘤细胞从宿主抗肿瘤免疫中逃逸:通过激活ERK、AKT-mTOR和STAT3上调PD-L1表达;增加乳酸的排泄抑制CTL活性;激活GSK-3β/FOXP3来增加Tregs的数量和活性,并抑制CIITA的诱导降低MHC I和MHC II的表达 [23] 。

EGFR突变NSCLC细胞系中PD-L1的表达水平显著高于EGFR野生型 [24] 。通过EGFR-TKIs (如吉非替尼或厄洛替尼)抑制EGFR活性,减少细胞系中PD-L1表达水平 [23] [25] 。小鼠模型中,EGFR突变上调PD-L1表达,而EGFR-TKIs治疗下调PD-L1表达 [23] 。因此,EGFR信号可以直接或间接地驱动PD-L1的上调 [26] [27] 。研究表明AKT/mTOR通路与EGFR突变介导的PD-L1表达相关 [28] 。MTOR激活诱导PD-L的翻译而非转录上调PD-L表达。IFN-γ介导的PD-L表达也依赖于mTOR。AKT-STAT3途径也可能在有EGFR突变的NSCLC细胞系上的调节PD-L1表达中起作用 [29] [30] [31] ,因为抑制AKT或STAT3活性可以下调PD-L1的表达。还有研究表明,EGFR突变可通过ERK1/2途径上调PD-L1表达。因此,EGFR-TKIs治疗中PD-L1表达的机制是复杂的,这可能取决于基因的突变状态及不同的信号通路。

5. EGFR突变非小细胞肺癌中PD-L1表达水平

日本一项研究中肺腺癌患者PD-L1肿瘤阳性比例分数(tumor proportion score, TPS) ≥ 50%的患者占29.6% [32] 。欧美报道中,EGFR突变NSCLC患者中PD-L1 TPS ≥ 50%占11% [33] 。东亚人群中EGFR突变合并PD-L1表达的比例较欧美人群偏高,但总体EGFR突变合并PD-L1表达率偏低 [34] 。PD-L1表达水平与EGFR突变的关系尚无定论。

6. PD-L1表达水平与EGFR-TKIs耐药的联系

研究中PD-L1表达的临床研究产生了相互矛盾的结果。一些研究显示,PD-L1阳性表达与EGFR-TKIs治疗后更大的DCR和更长的PFS和OS明显相关 [35] [36] [37] 。另一项研究发现PD-L1表达与疗效之间没有明显相关性 [38] [39] 。部分研究表明,接受EGFR-TKIs治疗的EGFR突变患者中,PD-L1的表达与不良预后有关 [40] [41] [42] [43] [44] 。

D’Incecco等人的研究显示,在意大利56名EGFR突变并使用吉非替尼或厄洛替尼治疗的晚期NSCLC患者中,PD-L1阳性患者的TTP (11.7月vs 5.7月,P < 0.0001)和OS (21.9月vs 12.5月,P = 0.09)较PD-L1阴性患者显著延长 [35] 。一项中国回顾性研究显示,PD-L1阳性与EGFR-TKIs治疗后更长的无进展生存期、更高的疾病控制率相关 [36] 。韩国一项研究中,在66例EGFR突变EGFR-TKIs治疗的患者中,PD-L1阳性的进展期比PD-L1阴性组短2个月,但未达到统计学意义 [37] 。

一项中国研究中,在99名EGFR突变组中,PD-L1阳性患者的PFS和OS与PD-L1阴性患者相比没有明显差异 [38] 。另一项研究中,一线EGFR-TKIs治疗EGFR突变转移性NSCLC,不同PD-L1表达状态组是PFS无统计学差异。对于PD-L1 < 1%,1%~49%和≥50%的组,中位PFS分别为13.6,18.4和15.7个月(P = 0.738)。OS也观察到类似的结果,分别为33.6,30.1和48.6个月(P = 0.769) [39] 。

Hsu等人研究包括123名EGFR突变的肺腺癌患者,在PD-L1 ≥ 50%患者中,EGFR-TKIs的中位PFS和OS分别为1.6个月(95% CI, 1.1~2.0)和10.1个月(95% CI, 6.4~13.8),明显短于PD-L1 < 1%的患者(中位PFS,7.3个月;95% CI,2.7~12.0;中位OS,38.2个月;95% CI,26.1~50.3) [41] 。EGFR突变患者被分为原发性耐药和疾病控制组,原发性耐药组中分别有22.7%和30.3%的患者PD-L1 TPS ≥ 50或≥25%,而在疾病控制组中,其频率分别只有1.8%和3.5% (均为P < 0.001)。这些结果显示较高的PD-L1表达水平与较高的原发性EGFR-TKI耐药发生率有关。Yoneshima等人发现PD-L1表达与接受EGFR-TKIs治疗的EGFR突变型NSCLC患者较短的PFS明显相关 [42] 。另外部分研究显示,PD-L1高表达不仅预示着对EGFR-TKIs的反应不佳,而且还与这些药物的原发性耐药有关 [40] [41] [42] [43] 。一项针对101名EGFR突变型NSCLC患者的研究中,与弱PD-L1表达相比,强PD-L1表达与ORR下降和PFS缩短显著相关(ORR,35.7% vs. 63.2% vs. 67.3%;P = 0.002;PFS,3.8 vs. 6.0 vs. 9.5个月;P < 0.001) [43] 。Yang等人对153名EGFR突变的肺腺癌患者进行了一项研究,EGFR-TKIs的ORR和PFS在PD-L1表达<50%的患者中更好,且多变量分析中PD-L1 < 50%是延长PFS的独立预后因素(HR, 0.433; 95% CI, 0.250~0.751; P = 0.003)。此外,在TPS ≥ 50%的患者中,有相当一部分对EGFR-TKIs产生了原发性耐药(44.4%) [44] 。治疗前EGFR突变的晚期NSCLC的PD-L1表达水平可能与一线EGFR-TKIs耐药相关,但仍不明确,需要继续深入研究。

7. 总结与展望

由于有关EGFR突变的非小细胞肺癌中PD-L1状态的研究存在矛盾,可能还有其他机制导致免疫抑制。TME在调节肿瘤进展中起着重要作用,显著影响患者的免疫应答效率。EGFR突变可能增加PD-L1表达并促进EGFR-TKIs耐药NSCLC肿瘤的免疫逃逸水平,但是它并不表明对免疫检查点抑制剂有效。最近,IMpower150试验结果显示阿替利珠单抗、贝伐珠单抗、卡铂和紫杉醇(ABCP)四药联合与贝伐单抗加卡铂加紫杉醇(BCP)在EGFR突变患者中可改善总生存率,这显示了抗血管生成药物在增强EGFR突变患者免疫治疗的功效中的潜在作用。因此,EGFR-TKIs耐药患者是否能够最终从检查点治疗中获益,及免疫检查点治疗、化疗和靶向治疗的开始时间及顺序、治疗持续时间、与其他治疗的结合方式和优势人群的确定,这些机制应该被进一步探究。综上所述,PD-L1表达与EGFR突变非小细胞肺癌患者的EGFR-TKIs疗效有一定的关联。然而仍需要进一步的研究来证实这种关系,并确定最佳治疗方案,以实现精准治疗。

文章引用

温雅婷,高俊珍. EGFR-TKIs耐药与EGFR突变非小细胞肺癌中PD-L1表达的研究进展
Research Progress of EGFR-TKIs Resistance and PD-L1 Expression in EGFR-Mutant Non-Small Cell Lung Cancer[J]. 临床医学进展, 2024, 14(01): 183-189. https://doi.org/10.12677/ACM.2024.141027

参考文献

  1. 1. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global Cancer Sta-tistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660

  2. 2. Shi, Y., Au, J.S., Thongpra-sert, S., Srinivasan, S., Tsai, C.M., Khoa, M.T., Heeroma, K., Itoh, Y., Cornelio, G. and Yang, P.C. (2014) A Prospec-tive, Molecular Epidemiology Study of EGFR Mutations in Asian Patients with Advanced Non-Small-Cell Lung Cancer of Adenocarcinoma Histology (PIONEER). Journal of Thoracic Oncology, 9, 154-162. https://doi.org/10.1097/JTO.0000000000000033

  3. 3. Nan, X., Xie, C., Yu, X. and Liu, J. (2017) EGFR TKI as First-Line Treatment for Patients with Advanced EGFR Mutation-Positive Non-Small-Cell Lung Cancer. Oncotarget, 8, 75712-75726. https://doi.org/10.18632/oncotarget.20095

  4. 4. Santaniello, A., Napolitano, F., Servetto, A., et al. (2019) Tumour Microenvironment and Immune Evasion in EGFR Addicted NSCLC: Hurdles and Possibilities. Cancers (Basel), 11, 1419. https://doi.org/10.3390/cancers11101419

  5. 5. 刘丽萍, 刘苓霜. 程序性死亡蛋白1/程序性死亡蛋白配体1抑制剂在表皮生长因子受体突变晚期肺癌中的应用进展[J]. 中华肿瘤防治杂志, 2023, 30(1): 54-60.

  6. 6. Jiang, L., Guo, F., Liu, X., et al. (2019) Continuous Targeted Kinase Inhibitors Treatment Induces Upregu-lation of PD-L1 in Resistant NSCLC. Scientific Reports, 9, Article No. 3705. https://doi.org/10.1038/s41598-018-38068-3

  7. 7. Ntzifa, A., Strati, A., Kallergi, G., Kotsakis, A., Georgoulias, V. and Lianidou, E. (2021) Gene Expression in Circulating Tumor Cells Reveals a Dynamic Role of EMT and PD-L1 dur-ing Osimertinib Treatment in NSCLC Patients. Scientific Reports, 11, Article No. 2313. https://doi.org/10.1038/s41598-021-82068-9

  8. 8. Peng, S., Wang, R., Zhang, X., et al. (2019) EGFR-TKI Re-sistance Promotes Immune Escape in Lung Cancer via Increased PD-L1 Expression. Molecular Cancer, 18, Article No. 165. https://doi.org/10.1186/s12943-019-1073-4

  9. 9. Chen, N., Fang, W., Zhan, J., et al. (2015) Upregulation of PD-L1 by EGFR Activation Mediates the Immune Escape in EGFR-Driven NSCLC: Implication for Optional Immune Targeted Therapy for NSCLC Patients with EGFR Mutation. Journal of Thoracic Oncology, 10, 910-923. https://doi.org/10.1097/JTO.0000000000000500

  10. 10. Osipov, A., Saung, M.T., Zheng, L. and Murphy, A.G. (2019) Small Molecule Immunomodulation: The Tumor Microenvironment and Overcoming Immune Escape. Journal for ImmunoTherapy of Cancer, 7, 224. https://doi.org/10.1186/s40425-019-0667-0

  11. 11. Altorki, N.K., Markowitz, G.J., Gao, D., et al. (2019) The Lung Microenvironment: An Important Regulator of Tumour Growth and Metastasis. Nature Reviews Cancer, 19, 9-31. https://doi.org/10.1038/s41568-018-0081-9

  12. 12. 郑玉军, 姜巍, 李晶, 代璐璐, 陈东妍, 李颜君, 黄磊, 王明吉. 免疫检查点抑制剂在EGFR突变型晚期非小细胞肺癌中的应用[J]. 中国肺癌杂志, 2022, 25(9): 671-677.

  13. 13. Yang, L., He, Y.T., Dong, S., et al. (2022) Single-Cell Transcriptome Analysis Revealed a Suppressive Tumor Immune Microenvironment in EGFR Mutant Lung Adenocarcinoma. Journal for ImmunoTherapy of Cancer, 10, e003534. https://doi.org/10.1136/jitc-2021-003534

  14. 14. Tuminello, S., Veluswamy, R., Lieberman-Cribbin, W., Gnjatic, S., Petralia, F., Wang, P., Flores, R. and Taioli, E. (2019) Prognostic Value of Immune Cells in the Tumor Mi-croenvironment of Early-Stage Lung Cancer: A Meta-Analysis. Oncotarget, 10, 7142-7155. https://doi.org/10.18632/oncotarget.27392

  15. 15. Sugiyama, E., Togashi, Y., Takeuchi, Y., et al. (2020) Blockade of EGFR Improves Responsiveness to PD-1 Blockade in EGFR-Mutated Non-Small Cell Lung Cancer. Science Immunol-ogy, 5, eaav3937. https://doi.org/10.1126/sciimmunol.aav3937

  16. 16. Lin, A., Wei, T., Meng, H., Luo, P. and Zhang, J. (2019) Role of the Dynamic Tumor Microenvironment in Controversies Regarding Immune Checkpoint Inhibitors for the Treatment of Non-Small Cell Lung Cancer (NSCLC) with EGFR Mutations. Molecular Cancer, 18, Article No. 139. https://doi.org/10.1186/s12943-019-1062-7

  17. 17. Madeddu, C., Donisi, C., Liscia, N., Lai, E., Scartozzi, M. and Macciò, A. (2022) EGFR-Mutated Non-Small Cell Lung Cancer and Resistance to Immunotherapy: Role of the Tumor Microenvironment. International Journal of Molecular Sciences, 23, Article 6489. https://doi.org/10.3390/ijms23126489

  18. 18. Matsumoto, Y., Sawa, K., Fukui, M., et al. (2019) Impact of Tumor Microenvironment on the Efficacy of Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Patients with EGFR-Mutant Non-Small Cell Lung Cancer. Cancer Science, 110, 3244-3254. https://doi.org/10.1111/cas.14156

  19. 19. Isomoto, K., Haratani, K., Hayashi, H., et al. (2020) Impact of EGFR-TKI Treatment on the Tumor Immune Microenvironment in EGFR Mutation-Positive Non-Small Cell Lung Cancer. Clinical Cancer Research, 26, 2037-2046. https://doi.org/10.1158/1078-0432.CCR-19-2027

  20. 20. Jia, Y., Li, X., Jiang, T., et al. (2019) EGFR-Targeted Therapy Alters the Tumor Microenvironment in EGFR-Driven Lung Tumors: Implications for Combination Therapies. International Journal of Cancer, 145, 1432-1444. https://doi.org/10.1002/ijc.32191

  21. 21. Liu, L., Wang, C., Li, S., Bai, H. and Wang, J. (2021) Tumor Immune Mi-croenvironment in Epidermal Growth Factor Receptor-Mutated Non-Small Cell Lung Cancer before and after Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment: A Narrative Review. Translational Lung Cancer Research, 10, 3823-3839. https://doi.org/10.21037/tlcr-21-572

  22. 22. Liu, S., Wu, F., Li, X., et al. (2021) Patients with Short PFS to EGFR-TKIs Predicted Better Response to Subsequent Anti-PD-1/PD-L1 Based Immunotherapy in EGFR Common Mutation NSCLC. Frontiers in Oncology, 11, Article 639947. https://doi.org/10.3389/fonc.2021.639947

  23. 23. Akbay, E.A., Koyama, S., Carretero, J., et al. (2013) Activation of the PD-1 Pathway Contributes to Immune Escape in EGFR-Driven Lung Tumors. Cancer Discovery, 3, 1355-1363. https://doi.org/10.1158/2159-8290.CD-13-0310

  24. 24. Azuma, K., Ota, K., Kawahara, A., et al. (2014) Association of PD-L1 Overexpression with Activating EGFR Mutations in Surgically Resected Nonsmall-Cell Lung Cancer. Annals of Oncology, 25, 1935-1940. https://doi.org/10.1093/annonc/mdu242

  25. 25. 石岩, 吕望, 汪路明, 等. 肺癌驱动基因与PD-1/PD-L1信号通路相互作用在非小细胞肺癌发生发展中的研究进展[J]. 中国肺癌杂志, 2017, 20(11): 781-786.

  26. 26. Lu, J., Li, J., Lin, Z., et al. (2023) Reprogramming of TAMs via the STAT3/CD47-SIRPα Axis Promotes Acquired Resistance to EGFR-TKIs in Lung Cancer. Cancer Letters, 564, Article ID: 216205. https://doi.org/10.1016/j.canlet.2023.216205

  27. 27. Li, X., Lian, Z., Wang, S., Xing, L. and Yu, J. (2018) Interac-tions between EGFR and PD-1/PD-L1 Pathway: Implications for Treatment of NSCLC. Cancer Letters, 418, 1-9. https://doi.org/10.1016/j.canlet.2018.01.005

  28. 28. Lastwika, K.J., Wilson III., W., Li, Q.K., et al. (2016) Control of PD-L1 Expression by Oncogenic Activation of the AKT-mTOR Pathway in Non-Small Cell Lung Cancer. Cancer Research, 76, 227-238. https://doi.org/10.1158/0008-5472.CAN-14-3362

  29. 29. Abdelhamed, S., Ogura, K., Yokoyama, S., Saiki, I. and Hayakawa, Y. (2016) AKT-STAT3 Pathway as a Downstream Target of EGFR Signaling to Regulate PD-L1 Expression on NSCLC Cells. Journal of Cancer, 7, 1579-1586. https://doi.org/10.7150/jca.14713

  30. 30. Zhang, N., Zeng, Y., Du, W., et al. (2016) The EGFR Pathway Is Involved in the Regulation of PD-L1 Expression via the IL-6/JAK/STAT3 Signaling Pathway in EGFR-Mutated Non-Small Cell Lung Cancer. International Journal of Oncology, 49, 1360-1368. https://doi.org/10.3892/ijo.2016.3632

  31. 31. Concha-Benavente, F., Srivastava, R.M., Trivedi, S., et al. (2016) Iden-tification of the Cell-Intrinsic and -Extrinsic Pathways Downstream of EGFR and IFNγ That Induce PD-L1 Expression in Head and Neck Cancer. Cancer Research, 76, 1031-1043. https://doi.org/10.1158/0008-5472.CAN-15-2001

  32. 32. Rangachari, D., VanderLaan, P.A., Shea, M., et al. (2017) Correlation between Classic Driver Oncogene Mutations in EGFR, ALK, or ROS1 and 22C3-PD-L1 ≥ 50% Expression in Lung Adenocarcinoma. Journal of Thoracic Oncology, 12, 878-883. https://doi.org/10.1016/j.jtho.2016.12.026

  33. 33. Gainor, J.F., Shaw, A.T., Sequist, L.V., et al. (2016) EGFR Muta-tions and ALK Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non-Small Cell Lung Cancer: A Retrospective Analysis. Clinical Cancer Research, 22, 4585-4593. https://doi.org/10.1158/1078-0432.CCR-15-3101

  34. 34. Dong, Z.Y., Zhang, J.T., Liu, S.Y., et al. (2017) EGFR Mutation Correlates with Uninflamed Phenotype and Weak Immunogenicity, Causing Impaired Response to PD-1 Blockade in Non-Small Cell Lung Cancer. Oncoimmunology, 6, e1356145. https://doi.org/10.1080/2162402X.2017.1356145

  35. 35. D’Incecco, A., Andreozzi, M., Ludovini, V., et al. (2015) PD-1 and PD-L1 Expression in Molecularly Selected Non-Small-Cell Lung Cancer Patients. British Journal of Cancer, 112, 95-102. https://doi.org/10.1038/bjc.2014.555

  36. 36. Lin, C., Chen, X., Li, M., et al. (2015) Programmed Death-Ligand 1 Expression Predicts Tyrosine Kinase Inhibitor Response and Better Prognosis in a Cohort of Patients with Epidermal Growth Factor Receptor Mutation-Positive Lung Adenocarcinoma. Clinical Lung Cancer, 16, E25-E35. https://doi.org/10.1016/j.cllc.2015.02.002

  37. 37. Kim, T., Cha, Y.J. and Chang, Y.S. (2020) Correlation of PD-L1 Expression Tested by 22C3 and SP263 in Non-Small Cell Lung Cancer and Its Prognostic Effect on EGFR Muta-tion-Positive Lung Adenocarcinoma. Tuberculosis and Respiratory Diseases, 83, 51-60. https://doi.org/10.4046/trd.2019.0026

  38. 38. Tang, Y., Fang, W., Zhang, Y., et al. (2015) The Association between PD-L1 and EGFR Status and the Prognostic Value of PD-L1 in Advanced Non-Small Cell Lung Cancer Patients Treated with EGFR-TKIs. Oncotarget, 6, 14209- 14219. https://doi.org/10.18632/oncotarget.3694

  39. 39. Chang, C.Y., Lai, Y.C., Wei, Y.F., Chen, C.Y. and Chang, S.C. (2021) PD-L1 Expression and Outcome in Patients with Metastatic Non-Small Cell Lung Cancer and EGFR Mutations Receiving EGFR-TKI as Frontline Treatment. OncoTargets and Therapy, 14, 2301-2309. https://doi.org/10.2147/OTT.S290445

  40. 40. Yoon, B.W., Chang, B. and Lee, S.H. (2020) High PD-L1 Expression Is Associated with Unfavorable Clinical Outcome in EGFR-Mutated Lung Adenocarcinomas Treated with Targeted Therapy. OncoTargets and Therapy, 13, 8273-8285. https://doi.org/10.2147/OTT.S271011

  41. 41. Hsu, P.C., Wang, C.W., Kuo, S.C., et al. (2020)The Co-Expression of Programmed Death-Ligand 1 (PD-L1) in Untreated EGFR-Mutated Metastatic Lung Adenocarcinoma. Biomedicines, 8, Article 36. https://doi.org/10.3390/biomedicines8020036

  42. 42. Yoneshima, Y., Ijichi, K., Anai, S., et al. (2018) PD-L1 Expres-sion in Lung Adenocarcinoma Harboring EGFR Mutations or ALK Rearrangements. Lung Cancer, 118, 36-40. https://doi.org/10.1016/j.lungcan.2018.01.024

  43. 43. Su, S., Dong, Z.Y., Xie, Z., et al. (2018) Strong Programmed Death Ligand 1 Expression Predicts Poor Response and De Novo Resistance to EGFR Tyrosine Kinase Inhibitors among NSCLC Patients with EGFR Mutation. Journal of Thoracic Oncology, 13, 1668-1675. https://doi.org/10.1016/j.jtho.2018.07.016

  44. 44. Yang, C.Y., Liao, W.Y., Ho, C.C., et al. (2020) Association be-tween Programmed Death-Ligand 1 Expression, Immune Microenvironments, and Clinical Outcomes in Epidermal Growth Factor Receptor Mutant Lung Adenocarcinoma patients Treated with Tyrosine Kinase Inhibitors. European Journal of Cancer, 124, 110-122. https://doi.org/10.1016/j.ejca.2019.10.019

  45. NOTES

    *通讯作者。

期刊菜单