Advances in Clinical Medicine
Vol. 10  No. 03 ( 2020 ), Article ID: 34732 , 7 pages
10.12677/ACM.2020.103054

Relationship between Plasma Homocysteine and Estimated Glomerular Filtration Rate in Elderly Patients

Chunxiao Fei, Song Hu, Xinyue Hou, Junqing Zhang, Yongjun Mao, Ang Xing*

Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao Shandong

Received: Mar. 3rd, 2020; accepted: Mar. 18th, 2020; published: Mar. 25th, 2020

ABSTRACT

Objective: To investigate the relationship between homocysteine (Hcy) and estimated glomerular filtration rate (eGFR) in elderly patients. Methods: From January 1, 2017 to December 31, 2018, a total of 399 elderly patients were admitted to the Affiliated Hospital of Qingdao University. They were divided into eGFR ≥ 60 mL/(min∙1.73 m2) group (n = 287) and eGFR < 60 mL/(min∙1.73 m2) group (n = 112), age, eGFR, Hcy, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) were compared between the two groups. The correlation between serum Hcy level and eGFR in elderly patients was analyzed by Pearson’s correlation. Elderly patients were divided into 4 groups according to the interquartile range of Hcy, and Logistic regression analysis was used to analyze the odd ratio of elevated Hcy levels and decreased eGFR. Results: The average level of eGFR was (66.47 ± 13.08) mL/(min∙1.73 m2) and Hcy was (13.36 ± 6.91) umol/L. Pearson correlation analysis showed that Hcy was negatively correlated with eGFR (r = −0.215, P = 0.000). Logistic regression analysis showed that with the increase of the level of Hcy, the risk of the decline of eGFR also increased. Compared with group 1 (Hcy < 9.4 umol/L), group 2 (9.4 umol/L ≤ Hcy < 11.66 umol/L), group 3 (11.66 umol/L ≤ Hcy < 14.28 umol/L) and group 4 (Hcy ≥ 14.28 umol/L) were more likely to have eGFR decline with ORs of 2.752 (95%CI: 1.051 - 7.209), 7.444 (95%CI: 2.885 - 19.211) and 16.488 (95%CI: 6.150 - 44.203). Conclusion: Elevated Hcy is associated with decreased eGFR and increases the risk of kidney injury in elderly patients.

Keywords:Elderly, Homocysteine, Estimated Glomerular Filtration Rate

老年患者同型半胱氨酸与估算肾小球滤过率的相关性研究

费春晓,胡松,侯新月,张俊青,毛拥军,邢昂*

青岛大学附属医院老年医学科,山东 青岛

收稿日期:2020年3月3日;录用日期:2020年3月18日;发布日期:2020年3月25日

摘 要

目的:探讨老年患者同型半胱氨酸(Hcy)与估算肾小球滤过率(eGFR)的关系。方法:选择2017年01月01日至2018年12月31日于青岛大学附属医院老年住院患者(n = 399),根据eGFR水平是否低于60 mL/(min·1.73 m2)分为eGFR ≥ 60 mL/(min·1.73 m2)组(n = 287)及eGFR < 60 mL/(min·1.73 m2)组(n = 112),比较两组间年龄、eGFR、Hcy、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)等指标。采用Pearson相关性分析老年人群Hcy与eGFR的相关性。按照Hcy水平四分位间距分为4组,采用Logistic回归分析Hcy水平升高与eGFR下降的风险程度。结果:研究对象eGFR平均(66.47 ± 13.08) mL/(min·1.73m2),Hcy平均(13.36 ± 6.91) umol/L。Pearson相关性分析显示Hcy与eGFR呈负相关(r = −0.215, P = 0.000)。Logistic回归分析表明,随着Hcy值增高,发生eGFR下降的风险呈增高趋势,校正多因素后,与Hcy第1组(Hcy < 9.4 umol/L)相比,第2组(9.4 umol/L ≤ Hcy < 11.66 umol/L)、第3组(11.66 umol/L ≤ Hcy < 14.28 umol/L)及第4组(Hcy ≥ 14.28 umol/L)发生eGFR下降OR (95%CI)分别为2.752 (1.051~7.209)、7.444 (2.885~19.211)和16.488 (6.150~44.203)。结论:老年人群中,Hcy升高与eGFR下降相关,增加了肾损伤风险。

关键词 :老年人,同型半胱氨酸,估算肾小球滤过率

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

同型半胱氨酸(homocysteine, Hcy)是甲硫氨酸与半胱氨酸代谢过程中的重要产物 [1],也是甲基化、再甲基化和转硫途径交叉的关键代谢产物,通过维生素B12和叶酸依赖的甲硫氨酸合成酶或β-同型半胱氨酸甲基转移酶反应合成甲硫氨酸 [2]。研究发现Hcy升高不仅与心血管疾病如内皮功能障碍、动脉粥样硬化等密切相关 [3] [4] [5] [6],也能影响肾脏疾病的产生与发展 [7] [8]。近年国内外多项研究表明Hcy与以血清肌酐(serum creatinine, Scr)得到的估算肾小球滤过率(estimated glomerular filtration rate, eGFR)定义的肾功能呈负相关性 [9] [10] [11]。然而目前针对老年人群Hcy水平与肾功能损伤关系的研究较少,本研究为此探讨65岁及以上人群两者的相关性。

2. 对象与方法

2.1. 研究对象

选取2017年01月01日至2018年12月31日青岛大学附属医院老年住院患者399例。纳入标准:1) 年龄 ≥ 65岁;2) 签署知情同意书。排除恶性肿瘤、全身感染性疾病、原发性肾脏病及其他疾病引起的继发性肾脏病患者。本研究入选患者资料及血样的采集获得受试者的知情同意,并在我院伦理委员会备案。

2.2. 研究方法

2.2.1. 一般临床资料

自患者入院后,记录患者基本临床资料包括性别、年龄、生命体征、既往病史(高血压、糖尿病、冠心病等),嘱患者空腹8~12小时次日抽取静脉血,完善相关血清学指标如血常规、肝肾功、Hcy、电解质等。

2.2.2. 颈部血管超声检查

采用HITACHI日立ARIETTA 70型号彩色多普勒超声仪,探头频率为4~9 MHz,由经验丰富的超声科医师专门负责。患者取仰卧位,头部偏向检查对侧。充分暴露颈部,探头取长轴切面,自颈总动脉开始,分别于双侧颈内、外动脉水平上下1.0~1.5 cm范围观察颈部血管解剖结构并测量颈动脉内膜中层厚度(intima media thickness, IMT)。IMT ≥ 1.0 mm被定义为颈动脉内–中膜增厚 [12]。

2.2.3. eGFR的计算

根据改善全球肾脏病预后组织(Kidney Disease: Improving Global Outcomes, KDIGO) 2012年发布的慢性肾脏病评估及管理临床实践指南,建议以Scr和肾小球滤过率(glomerular filtration rate, GFR)估算公式进行初步评估,使用CKD-EPI肌酐方程估算GFR,见表1

Table 1. CKD-EPI equation [13]

表1. CKD-EPI计算方程 [13]

注:Scr:血清肌酐;Age:年龄。

2.2.4. 分组方法

根据KDIGO指南对CKD定义 [13],将老年患者根据eGFR水平是否低于60 mL/(min·1.73 m2)分为两组,其中eGFR ≥ 60 mL/(min·1.73 m2)组287例,eGFR < 60 mL/(min·1.73 m2)组112例。根据Hcy水平四分位间距分为4组,其中第1组100例(Hcy < 9.4 umol/L),第2组100例(9.4 umol/L ≤ Hcy < 11.66 umol/L)、第3组100例(11.66 umol/L ≤ Hcy < 14.28 umol/L),第4组99例(Hcy ≥ 14.28 umol/L)。

2.3. 统计学方法

所有数据采用SPSS22.0统计软件进行统计学处理。计量资料以均数 ± 标准差( ±s)表示,计数资料以百分比(%)表示。两组间比较,计量资料采用独立样本t检验分析,计数资料采用χ2检验。采用Pearson相关性分析评估Hcy与eGFR的相关性。采用二元Logistic回归分析评估Hcy水平与eGFR下降的风险。以P < 0.05为差异具有统计学意义。

3. 结果

3.1. 老年患者不同eGFR组临床资料比较

老年患者人群平均年龄(75.32 ± 6.97)岁,其中男性199例(49.9%),平均年龄(75.64 ± 6.83)岁,女性200例(50.1%),平均年龄(75.01 ± 7.10)岁。平均Hcy (13.36 ± 6.91) umol/L,平均eGFR (66.47 ± 13.08) mL/(min·1.73 m2)。按照eGFR水平分为两组,相比于eGFR ≥ 60 mL/(min·1.73 m2)组,eGFR < 60 mL/(min·1.73 m2)组患者年龄更大(P < 0.01),收缩压(systolic blood pressure, SBP)、Hcy、血尿素氮(blood urea nitrogen, BUN)、胱抑素C(cystatin C, CysC)、尿酸(uric acid, URIC)、Scr数值更高(均P < 0.05)。而性别构成、舒张压(diastolic blood pressure, DBP)、IMT、高密度脂蛋白胆固醇(high density lipoprotein cholesterol, HDL-C)、低密度脂蛋白胆固醇(low density lipoprotein cholesterol, LDL-C)、总胆固醇(Total cholesterol, TC)及三酰甘油(Triacylglycerol, TG)比较,差异无统计学意义(P > 0.05)。见表2

Table 2. Comparison of clinical data of patients with different eGFR levels

表2. 不同eGFR水平患者临床资料比较

注:SBP:收缩压;DBP:舒张压;IMT:颈动脉内膜中层厚度;Hcy:同型半胱氨酸;BUN:血尿素氮;CysC:胱抑素C;URIC:尿酸;Scr:肌酐;eGFR:估算肾小球滤过率;HDL-C:高密度脂蛋白胆固醇;LDL-C:低密度脂蛋白胆固醇;TC:总胆固醇;TG:三酰甘油。

3.2. 老年患者eGFR与年龄、Hcy水平的相关性分析

对老年患者eGFR与年龄及Hcy水平进行Pearson相关性分析,结果显示两者均与eGFR呈负相关性(r = −0.377, P < 0.01; r = −0.215, P< 0.01)。见表3

Table 3. Correlation analysis of eGFR with Hcy and age

表3. eGFR与Hcy及年龄的相关性分析

注:r为相关系数。

3.3. 老年患者Hcy与eGFR下降风险的Logistic回归分析

将老年患者以eGFR < 60 mL/(min·1.73 m2)与否为因变量,以Hcy分组为协变量进行Logistic回归分析,回归方程中变量赋值为:性别,男性 = 1,女性 = 2;吸烟,是 = 1,否 = 0;高血压,是 = 1,否 = 0;冠心病,是 = 1,否 = 0。结果显示,校正年龄、性别、高血压、冠心病及吸烟后,相比于第一组,后三组发生eGFR下降风险的OR分别为2.983 (95%CI: 1.157, 7.693, P < 0.05)、7.689 (95%CI: 3.025, 19.544, P < 0.01)、17.270 (95%CI:6.601, 45.183, P < 0.01)。继续校正收缩压、舒张压、IMT、HDL-C、LDL-C、TC及TG后,OR仍呈上述增高趋势,差异具有统计学意义(P < 0.05)。见表4

Table 4. Logistic regression analysis of Hcy level and eGFR in elderly patients

表4. 老年患者Hcy水平与eGFR的Logistic回归分析

模型1:校正年龄、性别、高血压、冠心病、吸烟;模型2:在模型1的基础上校正收缩压、舒张压、IMT、HDL-C、LDL-C、TC、TG。

4. 讨论

2012年KDIGO发布了CKD评估及管理临床实践指南 [14],指出可以根据GFR对CKD进行诊断及分期,并建议使用CKD-EPI公式计算得到eGFR。Hcy作为一种含硫氨基酸,是半胱氨酸的同源物。高同型半胱氨酸血症(hyperhomocysteinimia, HHcy)定义为血同型半胱氨酸浓度超过15 μmol/L [15],甲硫氨酸代谢过程中酶和辅因子的缺乏、营养不良、甲硫氨酸过多摄入、肾脏清除能力受损、恶性肿瘤等因素可导致HHcy [15] [16]。国内外多项研究在不同人群中发现Hcy与eGFR密切相关,Hcy或成为肾功能下降的预测因素。其中国内一项前瞻性研究 [17] 定义eGFR < 60 mL/(min·1.73 m2)为CKD,根据Hcy水平四分位数将研究对象分为四组,CKD发病率随着Hcy水平升高逐渐升高(P<0.001)。在调整年龄、性别、高血压、LDL-C等因素后,Hcy与eGFR降低的风险呈独立相关性(OR = 1.07, 95%CI: 1.04~1.10),与CKD发生的风险也呈独立相关性(OR = 1.04, 95%CI: 1.02~1.07)。FU等人 [18] 纳入1499例人群,排除eGFR < 60 mL/(min·1.73 m2)人群,年龄范围(25~96)岁,使用MDRD公式计算eGFR,eGFR范围(79.27~96.89) mL/(min·1.73 m2),eGFR每年下降超过3 mL/(min·1.73 m2)被定义为肾功能快速下降。线性回归分析显示Hcy对肾功能快速下降具有独立预测作用(OR = 1.048, 95%CI: 1.024~1.072, P < 0.001)。Chen等人 [9] 在平均年龄34岁的台湾人群中经过线性回归分析后,发现Hcy水平与eGFR有显著负相关性(P < 0.001)。另外在原发性肾小球肾炎、肾移植及高血压人群中 [19] [20] [21] 均能发现两者的密切联系。

本研究纳入老年人群平均年龄(75.64 ± 6.83)岁,将老年人群按照eGFR水平是否低于60 mL/(min·1.73 m2)分为两组,结果显示eGFR < 60 mL/(min·1.73 m2)组Hcy水平更高。Pearson相关性分析发现Hcy与eGFR呈负相关性(P < 0.001)。Logistic回归分析在调整年龄、性别、SBP、DBP等因素后,eGFR降低风险随Hcy水平升高(P < 0.05)。其中第4组Hcy水平(Hcy ≥ 14.28 umol/L)已经接近HHcy诊断标准,eGFR降低风险较前三组明显增高(OR = 16.488, 95%CI: 6.150~44.203)。

Hcy导致eGFR降低可能的机制如下:1) 氧化应激机制:Hcy发生自氧化增强活性氧的产生 [22],其中NADPH氧化酶是主要来源,Hcy能增加它的表达 [23]。氧化应激导致内皮功能障碍,改变肾小球滤过膜的通透性导致eGFR降低 [24]。有研究发现患有HHcy的大鼠接受NADPH氧化酶抑制剂的治疗之后,肾小球损伤减轻 [25]。2) 腺苷的降低:Hcy高浓度可能增强双向酶-S-腺苷-L-高半胱氨酸(S-Adenosyl-L-homocysteine, SAH)水解酶的活性,导致腺苷浓度降低 [26],腺苷水平减低与血管平滑肌的增殖及肾小球硬化相关 [27]。3) 蛋白质同型半胱氨酸化:血浆蛋白可通过不同机制被同型半胱氨酸化,其中某些同型半光氨酸化的蛋白质参与了肾小球的硬化过程 [28]。除此之外内质网应激 [29] 、足细胞相关肾素蛋白表达下降、转化生长因子β1 (transforming growth factor-β1, TGF-β1)的上调 [30] 、Hcy关键代谢酶-5、10亚甲基四氢叶酸还原酶(5,10-methylenetetrahydrofolate reductase, MTHFR) C677T基因多态性 [31] 等机制都可能参与Hcy导致的肾损伤过程中。

本研究也存在一些局限性:1) 本研究未单独纳入CKD人群、高血压人群或者糖尿病人群进一步分析Hcy与eGFR两者之间的联系。2) 本研究不是前瞻性研究,未能分析叶酸等药物降低Hcy水平是否能升高eGFR水平、延缓CKD的发生。

本研究显示老年人群中Hcy升高与eGFR下降密切相关,Hcy水平升高增加了老年人群肾损伤发生的风险。随着老龄化现象不断加重,慢性非传染性疾病如高血压、糖尿病、冠心病及慢性肾脏病等疾病越来越常见,老年人群又常存在共病现象,多种因素可导致肾功能下降。早期进行HHcy的筛查并进行治疗干预,减少慢性肾脏病及其并发症的发生,提升老年人的生活质量是需要被目前社会所重视的。

基金项目

山东省卫计委:老年综合评估技术在三甲保健定点医院住院患者中的应用研究(2015BJYB21);国家科技部:国家重点研发计划(2018YFC2002100)。

文章引用

费春晓,胡 松,侯新月,张俊青,毛拥军,邢 昂. 老年患者同型半胱氨酸与估算肾小球滤过率的相关性研究
Relationship between PlasmaHomocysteine and Estimated Glomerular Filtration Rate in Elderly Patients[J]. 临床医学进展, 2020, 10(03): 339-345. https://doi.org/10.12677/ACM.2020.103054

参考文献

  1. 1. Karmin, O. and Siow, Y.L. (2018) Metabolic Imbalance of Homocysteine and Hydrogen Sulfide in Kidney Disease. Current Medicinal Chemistry, 25, 367-377. https://doi.org/10.2174/0929867324666170509145240

  2. 2. Hannibal, L. and Blom, H.J. (2017) Homocysteine and Disease: Causal Associations or Epiphenomenons? Molecular Aspects of Medicine, 53, 36-42. https://doi.org/10.1016/j.mam.2016.11.003

  3. 3. Katsiki, N., Perez-Martinez, P. and Mikhailidis, D.P. (2017) Homocysteine and Non-Cardiac Vascular Disease. Current Pharmaceutical Design, 23, 3224-3232. https://doi.org/10.2174/1381612823666170317124913

  4. 4. Mccully, K.S. (2015) Homocysteine and the Pathogenesis of Atherosclerosis. Expert Review of Clinical Pharmacology, 8, 211-219. https://doi.org/10.1586/17512433.2015.1010516

  5. 5. Mccully, K.S. (2015) Homocysteine Metabolism, Athero-sclerosis, and Diseases of Aging. Comprehensive Physiology, 6, 471-505. https://doi.org/10.1002/cphy.c150021

  6. 6. Zhao, J., Chen, H., Liu, N., et al. (2017) Role of Hyperhomocysteinemia and Hyperuricemia in Pathogenesis of Atherosclerosis. Journal of Stroke and Cerebrovascular Diseases, 26, 2695-2699. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.10.012

  7. 7. Cianciolo, G., De Pascalis, A., Di Lullo, L., et al. (2017) Folic Acid and Homocysteine in Chronic Kidney Disease and Cardiovascular Disease Progression: Which Comes First? Cardiorenal Medicine, 7, 255-266. https://doi.org/10.1159/000471813

  8. 8. 战晓丽, 金惠敏. 同型半胱氨酸与慢性肾脏病的研究进展[J]. 中国中西医结合肾病杂志, 2018, 19(4): 357-359.

  9. 9. Chen, J.Y., Tsai, Y.W., Chen, S.Y., et al. (2015) The Association of Leptin and Homocysteine with Renal Function Impairment in a Population of Taiwanese Adults. Clinical Nutrition, 34, 943-950. https://doi.org/10.1016/j.clnu.2014.10.001

  10. 10. Cohen, E., Margalit, I., Shochat, T., et al. (2019) The Relationship between the Concentration of Plasma Homocysteine and Chronic Kidney Disease: A Cross Sectional Study of a Large Cohort. Journal of Nephrology, 32, 783-789.https://doi.org/10.1007/s40620-019-00618-x

  11. 11. Park, J.H., Song, J.S. and Choi, S.T. (2019) Increased Carotid Intima-Media Thickness (IMT) in Hyperuricemic Individuals May Be Explained by Hyperhomocysteinemia Associated with Renal Dysfunction: A Cross-Sectional Study. Journal of Korean Medical Science, 34, e237. https://doi.org/10.3346/jkms.2019.34.e237

  12. 12. 中国医师协会超声医师分会. 血管超声检查指南[J]. 中华超声影像学杂志, 2009, 18(10): 911-920.

  13. 13. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group (2013) KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney International, Supplements 3: 1-150.

  14. 14. Khwaja, A. (2012) KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Clinical Practice, 120, c179-c184. https://doi.org/10.1159/000339789

  15. 15. Kim, J., Kim, H., Roh, H., et al. (2018) Causes of Hyperhomocysteinemia and Its Pathological Significance. Archives of Pharmacal Research, 41, 372-383. https://doi.org/10.1007/s12272-018-1016-4

  16. 16. Pushpakumar, S., Kundu, S. and Sen, U. (2014) Endothelial Dysfunction: The Link Between Homocysteine and Hydrogen Sulfide. Current Medicinal Chemistry, 21, 3662-3672. https://doi.org/10.2174/0929867321666140706142335

  17. 17. Kong, X., Ma, X., Zhang, C., et al. (2017) Hyperhomocysteinemia Increases the Risk of Chronic Kidney Disease in a Chinese Middle-Aged and Elderly Population-Based Cohort. International Urology and Nephrology, 49, 661-667.https://doi.org/10.1007/s11255-016-1452-3

  18. 18. Fu, S., Liu, C., Luo, L., et al. (2017) Predictive Abilities of Car-diovascular Biomarkers to Rapid Decline of Renal Function in Chinese Community-Dwelling Population: A 5-Year Prospective Analysis. BMC Nephrol, 18, 331. https://doi.org/10.1186/s12882-017-0743-y

  19. 19. 叶增纯, 黎燕, 张俊, 等. 原发性肾小球肾炎患者高同型半胱氨酸血症的发生率及与靶器官损害之间的关系[J]. 中山大学学报(医学科学版), 2016, 37(6): 869-874+880.

  20. 20. 肖滢, 胡晓峰, 王笑峰, 等. 老年高血压患者血同型半胱氨酸水平与肾功能损伤的相关性[J]. 同济大学学报(医学版), 2018, 39(4): 66-71.

  21. 21. Huang, Y.C., Huang, S.C., Chung, P.S., et al. (2019) Plasma Homocysteine and Glu-tathione Are Independently Associated with Estimated Glomerular Filtration Rates in Patients with Renal Transplants. Transplantation Proceedings, 51, 2667-2670. https://doi.org/10.1016/j.transproceed.2019.02.053

  22. 22. Faverzani, J.L., Hammerschmidt, T.G., Sitta, A., et al. (2017) Oxidative Stress in Homocystinuria Due to Cystathionine-Synthase Deficiency: Findings in Patients and in Animal Models. Cellular and Molecular Neurobiology, 37, 1477-1485. https://doi.org/10.1007/s10571-017-0478-0

  23. 23. Chan, S.H., Hung, C.H., Shih, J.Y., et al. (2018) Exercise Inter-vention Attenuates Hyperhomocysteinemia-Induced Aortic Endothelial Oxidative Injury by Regulating SIRT1 through Mitigating NADPH Oxidase/LOX-1 Signaling. Redox Biology, 14, 116-125. https://doi.org/10.1016/j.redox.2017.08.016

  24. 24. Deen, W.M. (2004) What Determines Glomerular Capillary Permeability? Journal of Clinical Investigation, 114, 1412-1414. https://doi.org/10.1172/JCI23577

  25. 25. Yi, F., Dos Santos, E.A., Xia, M., et al. (2007) Podocyte Injury and Glomerulosclerosis in Hyperhomocysteinemic Rats. American Journal of Nephrology, 27, 262-268. https://doi.org/10.1159/000101471

  26. 26. Yi, F. and Li, P.L. (2008) Mechanisms of Homocysteine-Induced Glomerular Injury and Sclerosis. American Journal of Nephrology, 28, 254-264. https://doi.org/10.1159/000110876

  27. 27. Cramer, D.V., Wu, G.D., Chapman, F.A., et al. (1997) 2-Chlorodeoxyadenosine in Combination with Cyclosporine Inhibits the Development of Transplant Arteriosclerosis in Rat Cardiac Allografts. Transplantation Proceedings, 29, 616.https://doi.org/10.1016/S0041-1345(97)82533-X

  28. 28. Perna, A.F., Satta, E., Acanfora, F., et al. (2006) Increased Plasma Protein Homocysteinylation in Hemodialysis Patients. Kidney International, 69, 869-876. https://doi.org/10.1038/sj.ki.5000070

  29. 29. Long, Y. and Nie, J. (2016) Homocysteine in Renal Injury. Kidney Disease, 2, 80-87. https://doi.org/10.1159/000444900

  30. 30. Cao, L., Lou, X., Zou, Z., et al. (2013) Folic Acid Attenuates Hyperhomocysteinemia-Induced Glomerular Damage in Rats. Microvascular Research, 89, 146-152. https://doi.org/10.1016/j.mvr.2013.07.002

  31. 31. Yun, L., Xu, R., Li, G., et al. (2015) Homocysteine and the C677T Gene Polymorphism of Its Key Metabolic Enzyme MTHFR Are Risk Factors of Early Renal Damage in Hypertension in a Chinese Han Population. Medicine, 94, e2389.https://doi.org/10.1097/MD.0000000000002389

期刊菜单