Advances in Clinical Medicine
Vol. 11  No. 05 ( 2021 ), Article ID: 42529 , 7 pages
10.12677/ACM.2021.115319

肠道菌群与人体健康的研究进展

杨丽萍1,马臻棋2*,王学红2,马文霞1,李惠1

1青海大学研究生院,青海 西宁

2青海大学附属医院消化内科,青海 西宁

收稿日期:2021年4月21日;录用日期:2021年5月7日;发布日期:2021年5月25日

摘要

肠道菌群是在人体消化系统中蕴藏着的数万亿的微生物,其形成和增殖受多种因素的影响。近年来,随着宏基因组学研究的深入,人们对肠道菌群及其潜在作用的认识也日益加深。大量研究表明肠道菌群对人体健康有着很重要的作用,但当肠道菌群紊乱时可以改变肠道的通透性、消化和代谢以及免疫应答等,从而导致许多疾病的发生,本文阐明了影响肠道菌群的因素,并探讨了肠道菌群紊乱与人体健康、疾病之间的关系。

关键词

肠道菌群,影响因素,人体健康,疾病

Research Progress of Intestinal Flora and Health

Liping Yang1, Zhenqi Ma2*, Xuehong Wang2, Wenxia Ma1, Hui Li1

1Graduate School of Qinghai University, Xining Qinghai

2Department of Gastroenterology, Qinghai University Affiliated Hospital, Xining Qinghai

Received: Apr. 21st, 2021; accepted: May 7th, 2021; published: May 25th, 2021

ABSTRACT

Intestinal flora is a kind of trillions of microorganisms in human digestive system, whose formation and proliferation are affected by many factors. In recent years, with the development of metagenomics research, the understanding of intestinal flora and its potential role has been increasingly deepened. A large number of studies have shown that intestinal flora has a very important role to human body health, but when the intestinal flora disturbance can change the intestinal permeability, digestion and metabolism and the immune response, leading to many diseases, this paper expounds the factors that influence the intestinal flora and intestinal flora disturbance is discussed and the relationship between the human health and disease.

Keywords:Intestinal Flora, Influence Factor, Human Health, Disease

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

肠道菌群是生活在人类和动物消化道内的极为复杂的微生物群落,早在出生之前人类肠道菌群就开始建立了,且人类肠道中微生物的数量与人体其他部位微生物的数量相比,前者中是最多的,且物种的数量也最多的 [1],它们由数千种微生物组成,包括细菌、病毒和一些真核生物,出生后就在消化道内定植 [2]。肠道微生物群有1500余种,分布在50多个不同的门 [3],其多样性及丰度受到多种因素的影响,并且通过复杂的代谢、激素、免疫和神经等作用在调节宿主的生理过程中起着重要的作用,所以肠道菌群的组成或功能的改变可以对宿主产生很大的影响,有消极的,也有积极的。现很多学者通过对健康和患病患者的肠道菌群的研究揭示了人体的健康状态与肠道菌群之间的有着密切的关系。

2. 影响肠道菌群的因素

大量研究表明以下因素可以影响肠道菌群的组成和功能,这些因素包括宿主遗传、饮食、年龄 [4]、不良的生活习惯、出生方式 [5] 和抗生素 [6] 等。宿主遗传影响物种的多样性和个体的丰度,并有助于病原菌易感性的变异。饮食是微生物群的来源,据统计,饮食的改变对肠道菌群组成的影响是基因的五倍,而且是一个可以改变的因素 [7],饮食的多样性以及食用优质食物是肠道微生物群组成的必备条件,并且更优质和更多样化的饮食会促成更多样化以及更健康的肠道菌群 [8],植物食品尤其如此,因为它们含有各种膳食纤维,若纤维越多样化,微生物群就越多样化 [9]。在出生时肠道菌群的种类相对较少,随着时间的推移而逐渐增多 [10],但在老年人中微生物种类会减少,条件致病菌的数量会增加,产生短链脂肪酸的物种也会减少 [11]。

3. 肠道菌群与人体健康

人类肠道菌群的建立早在出生之前就开始了,大量研究表明肠道菌群在宿主机体的正常生理功能中起着重要的作用。它们可以通过合成各种代谢产物与宿主相互作用,并且在肠道表面生存和复制,创造一个稳定的系统,以防止病原微生物的入侵,从而对人体健康产生积极或消极的影响。

3.1. 肠道菌群与代谢

研究表明,肠道菌群对人体的代谢有很重要的作用。首先,肠道微生物群将人体摄入的食物代谢成具有生物活性的物质,如将纤维素、半纤维素、难消化的淀粉、低聚糖等不能消化的碳水化合物代谢成醋酸、丙酸和丁酸等短链脂肪酸,这些脂肪酸从上消化道的消化过程中逃逸,进入结肠对人体产生有利的作用 [12] [13],而这些代谢产物主要由厚壁菌门、拟杆菌门和一些厌氧肠道微生物产生 [14],若短链脂肪酸的生物合成受到干扰会给宿主造成许多不利的影响 [15]。并且肠道菌群也可以合成许多对人体有益的维生素,如钴胺素、生物素、硫胺素、核黄素、泛酸、尼古丁以及维生素B和维生素K等 [16]。此外,有报道肠道菌群可以合成一些影响外周和中枢神经系统的神经化学物质 [17],例如大脑中的一种重要的抑制性神经递质γ-氨基丁酸(GABA),许多神经精神疾病都与GABA功能障碍有关 [18],还有碳水化合物、支链氨基酸、胺、酚、吲哚和苯乙酸都是通过肠道微生物的作用产生的 [19]。并且现研究报道,肠道微生物群参与胆汁酸、胆固醇和共轭脂肪酸的合成 [20]。总之肠道菌群参与人体代谢从而对人体健康产生很重要的作用。

3.2. 肠道菌群与胃肠道

肠道菌群对胃肠道具有保护的作用,它们通过定植在肠道表面,并产生不同的抗菌物质,以防止病原微生物的入侵;此外,肠道微生物群通过分解非消化的化合物等代谢功能,产生短链脂肪酸等多种代谢产物作为肠上皮细胞的重要能量来源,从而加强黏膜屏障对人体的保护作用 [21]。因此,短链脂肪酸在改善人类健康方面的作用受到了很大的关注,据报道,短链脂肪酸具有很好的抗炎和化学预防的特性,因此,它们被视为肿瘤抑制因子 [22],如现已被证实的丙酸盐和丁酸盐通过降低结肠细胞和免疫细胞组蛋白去乙酰化酶的活性产生的抗癌和抗炎作用,且有研究将结肠癌患者与健康患者相比,结肠癌患者体内产生丁酸盐的微生物数量减少 [23]。所以肠道菌群通过其自身的作用及产生的代谢物对胃肠道有保护的作用。

3.3. 肠道菌群与骨骼

肠道菌群和骨骼之间的关系比较复杂,现有研究表明肠道菌群促进骨骼的生长,因为肠道菌群可以调节吸收饮食中的营养物质(钙和磷等),并且据报道,肠道菌群通过代谢产生的短链脂肪酸等物质对骨骼生长和发育有显著影响,短链脂肪酸可增加对钙等的吸收 [24],因此增强对钙和其他与骨骼相关的矿物质的吸收是肠道菌群促进骨骼发育的机制 [25],因为钙被吸收后,会以羟基磷灰石钙的形式沉积在牙齿和骨骼中,促进和诱导组织的增生及缺损组织的修复 [26]。另外,肠道微生物群如嗜酸乳杆菌、鼠李糖乳杆菌、植物乳杆菌、副干酪乳杆菌等还可作为破骨–成骨细胞介导的骨重塑过程的重要免疫调节剂,从而对骨骼的生长产生重要的作用 [27]。

3.4. 肠道菌群与脑肠轴

肠脑轴被定义为一个双向通信系统,使肠道与大脑相互通信,大量研究表明,其主要功能是通过肠反射、肠通透性、免疫激活、肠内分泌信号等机制协调肠道的功能并影响大脑情感中心等 [28] [29]。肠道菌群产生的短链脂肪酸通过增加产生紧密连接蛋白影响血脑屏障的完整性,而血脑屏障完整性的提高会阻止不良代谢物进入脑组织 [30]。另外,肠道菌群产生的化合物如脂蛋白和脂多糖等通过刺激免疫细胞释放细胞因子来实现自身免疫功能,并且这些细胞因子可以穿过血脑屏障,激活神经元,改变神经功能,导致情绪和行为的改变 [31]。所以肠道菌群对脑肠轴也起着重要的作用。

4. 肠道菌群与疾病

人体与肠道菌群之间存在着一种复杂的共生关系,如果这种共生关系被破坏,对双方都会产生不利的影响,也就是说肠道菌群的失调对人体健康是不利的。许多研究通过比较不同个体间肠道菌群的多样性及丰度,确定其与不同病理状态相关联,并且描述了某种微生物物种的存在和(或)缺失与疾病的发生发展密切相关。

4.1. 肠道菌群与代谢性疾病

近来由于人们生活方式的改变,如过度食用能量过高的加工食品、久坐、缺乏锻炼等,从而使代谢性疾病的患病率逐年增高,包括肥胖、糖尿病等多种疾病 [32]。研究表明肠道菌群与肥胖有着密切的关系,因为肥胖个体的微生物群能使食物的发酵能力增强,从而获得更多的能量;而且他们体内肠道菌群的紊乱使负责短链脂肪酸产生的酶和负责碳水化合物代谢的酶的编码基因的表达增加,从而增加了短链脂肪酸的水平和碳水化合物的代谢 [33]。现研究表明糖尿病也与肠道菌群的紊乱有明显的关系,糖尿病患者的肠道菌群中某些门如变形菌门、拟杆菌门和厚壁菌门的繁殖量高于健康个体 [34],由此推测,革兰氏阴性菌外膜中提取的脂多糖可以通过促进促炎细胞因子的分泌来增强代谢性内毒素血症。此外,肠道微生物群代谢产生的短链脂肪酸作为肝脏脂肪生成和糖异生的底物影响多糖和能量的代谢 [35] [36],而且丁酸通过阻断来自肠道微生物群的内毒素化合物的转位,从而对胰岛素敏感性产生有益影响,所以肠道菌群与糖尿病有着密切的关系。另外肠道菌群的紊乱与甲状腺疾病、血脂异常等许多代谢性疾病密切相关。

4.2. 肠道菌群与心血管疾病

众所周知糖尿病、肥胖等是导致心血管疾病发生发展的传统危险因素 [37],但现大量研究表明肠道菌群与心血管疾病也有着密切的关系,肠道菌群的失调导致肠道屏障功能障碍、脂多糖和毒素的积累,加速主动脉内皮细胞炎症、动脉粥样硬化和血栓形成。此外,有些微生物消化食物中的胆碱和肉碱也增加心血管疾病的危险 [38],这些化合物的代谢产生三甲胺(TMA),并在肝脏中氧化为三甲胺-N-氧化物(TMAO),它是一种与动脉粥样硬化发展密切相关的物质 [39],且TMAO还会以不同水平影响肝脏中胆汁酸的代谢,包括抑制胆汁酸合成酶和胆固醇转运体 [40]。还有其他一些肠道微生物衍生代谢物,如吲哚酚硫酸酯和对甲酚硫酸酯,显示出与心血管疾病的相关性。研究表明适度的体育锻炼可以调节肠道微生物群的多样性,增加产生丁酸的细菌群的丰度,减轻氧化损伤,从而改善心血管健康。

4.3. 肠道菌群与消化系统疾病

现有大量研究表明肠道菌群与人体健康有关,但大多数讨论的都与消化系统有关,如肠易激综合征、炎症性肠病、结直肠肿瘤、肝病等。有报道炎症性肠病患者肠道菌群中某些菌群会减少,如拟杆菌门和厚壁菌门 [41],且该类患者的消化道粘液层受损,因此肠腔内的菌群穿透上皮细胞导致增殖和炎症过程 [42]。现有大量证据支持肠道菌群参与肠易激综合征的病理生理过程,在此类患者中观察到肠道菌群的多样性及丰度均发生变化,目前认为肠道菌群失调是肠易激综合征的发病机制之一,与健康人群相比,该类患者的厚壁菌门,尤其是瘤胃球菌、梭状芽孢杆菌会增加,脆弱拟杆菌、白色瘤胃球菌和树状芽孢杆菌会减少 [43]。现研究表明肠道菌群的紊乱在代谢性脂肪性肝病的发生发展中起着重要的作用,且一些研究指出厚壁菌门和拟杆菌的低水平、大肠杆菌的显著水平与脂肪肝的发生密切相关,因为大量的SCFAs和拟杆菌门与厚壁菌门比值的降低促进了能量的吸收,从而启动肝脏中的糖异生和脂肪生成,并且肠道菌群的失调减少了丁酸盐的生成,导致脂蛋白脂肪酶的激活,从而使肝脏中甘油三酯堆积 [44]。另外,肠道菌群可以将胆碱催化生成有毒的甲胺,肝脏对这些有害代谢物的吸收会导致炎症的增强 [45]。

5. 结语

近年来,对人体肠道微生物群的研究越来越多,肠道菌群影响宿主的生理功能以及代谢等,但肠道微生物群的形成受到多种因素的影响,如宿主遗传、饮食、年龄、药物和生活方式等。肠道微生物群的改变对人体健康有直接影响,在多种疾病的发生中起着非常重要的作用,除以上疾病,还与其他疾病均有密切的关系,如肾脏疾病等。且现研究表明重新平衡肠道菌群在治疗这些疾病中是有效的,如粪便微生物群移植等治疗方法呈现出巨大的功效,因此继续研究肠道菌群和宿主之间的关系是必要的,然而目前这类研究仍较少,有望进一步研究。

基金项目

青海省消化系统疾病临床医学研究中心(2019-SF-L3)。

文章引用

杨丽萍,马臻棋,王学红,马文霞,李 惠. 肠道菌群与人体健康的研究进展
Research Progress of Intestinal Flora and Health[J]. 临床医学进展, 2021, 11(05): 2221-2227. https://doi.org/10.12677/ACM.2021.115319

参考文献

  1. 1. Quigley, E.M. (2013) Gut Bacteria in Health and Disease. Journal of Gastroenterology and Hepatology, 9, 560-569.

  2. 2. Passos, M.D.C.F. and Moraes-Filho, J.P. (2017) Intestinal Microbiota in Digestive Diseases. Arquivos de Gastroenterologia, 54, 255-262. https://doi.org/10.1590/s0004-2803.201700000-31

  3. 3. Robles-Alonso, V. and Guarner, F. (2013) Progreso en el conocimiento de la microbiota intestinal humana [Progress in the Knowledge of the Intestinal Human Microbiota]. Nutrición Hospitalaria, 28, 553-557. (In Spanish) https://doi.org/10.3305/nh.2013.28.3.6601

  4. 4. Odamaki, T., Kato, K., Sugahara, H., Hashikura, N., Takahashi, S., Xiao, J.-Z., et al. (2016) Age-Related Changes in Gut Microbiota Composition from Newborn to Centenarian: A Cross-Sectional Study. BMC Microbiology, 16, Article No. 90. https://doi.org/10.1186/s12866-016-0708-5

  5. 5. Nagpal, R., Tsuji, H., Takahashi, T., Nomoto, K., Kawashima, K., Nagata, S., et al. (2017) Ontogenesis of the Gut Microbiota Composition in Healthy, Full-Term, Vaginally Born and Breast-Fed Infants over the First 3 Years of Life: A Quantitative Bird’s-Eye View. Frontiers in Microbiology, 8, Article No. 1388. https://doi.org/10.3389/fmicb.2017.01388

  6. 6. Hasan, N. and Yang, H. (2019) Factors Affecting the Composition of the Gut Microbiota, and Its Modulation. PeerJ, 7, e7502. https://doi.org/10.7717/peerj.7502

  7. 7. Krajmalnik-Brown, R., Ilhan, Z.E., Kang, D.W. and DiBaise, J.K. (2012) Effects of Gut Microbes on Nutrient Absorption and Energy Regulation. Nutrition in Clinical Practice, 27, 201-214. https://doi.org/10.1177/0884533611436116

  8. 8. Harvard T.H. Chan School of Public Health (n.d.) The Best Diet: Quality Counts. https://www.hsph.harvard.edu/nutritionsource/healthy-weight/best-diet-quality-counts/#ref23

  9. 9. Holscher, H.D. (2017) Dietary Fiber and Prebiotics and the Gastrointestinal Microbiota. Gut Microbes, 8, 172-184. https://doi.org/10.1080/19490976.2017.1290756

  10. 10. Schanche, M., Avershina, E., Dotterud, C., Øien, T., Storrø, O., Johnsen, R., et al. (2015) High-Resolution Analyses of Overlap in the Microbiota between Mothers and Their Children. Current Microbiology, 71, 283-290. https://doi.org/10.1007/s00284-015-0843-5

  11. 11. Biagi, E., Rampelli, S., Turroni, S., Quercia, S., Rampelli, S., Quercia, S., et al. (2017) The Gut Microbiota of Centenarians: Signatures of Longevity in the Gut Microbiota Profile. Mechanisms of Ageing and Development, 165, 180-184. https://doi.org/10.1016/j.mad.2016.12.013

  12. 12. Lin, L. and Zhang, J. (2017) Role of Intestinal Microbiota and Metabolites on Gut Homeostasis and Human Diseases. BMC Immunology, 18, Article No. 2. https://doi.org/10.1186/s12865-016-0187-3

  13. 13. Thursby, E. and Juge, N. (2017) Introduction to the Human Gut Microbiota. Biochemical Journal, 474, 1823-1836. https://doi.org/10.1042/BCJ20160510

  14. 14. Louis, P. and Flint, H.J. (2017) Formation of Propionate and Butyrate by the Human Colonic Microbiota. Environ Environmental Microbiology, 19, 29-41. https://doi.org/10.1111/1462-2920.13589

  15. 15. Perry, R.J., Peng, L., Barry, N.A., Cline, G.W., Zhang, D., Cardone, R.L., et al. (2016) Acetate Mediates a Microbiome-Brain-β-Cell Axis to Promote Metabolic Syndrome. Nature, 534, 213-217. https://doi.org/10.1038/nature18309

  16. 16. LeBlanc, J.G., Milani, C., de Giori, G.S., Sesma, F., van Sinderen, D. and Ventura, M. (2013) Bacteria as Vitamin Suppliers to Their Host: A Gut Microbiota Perspective. Current Opinion in Biotechnology, 24, 160-168. https://doi.org/10.1016/j.copbio.2012.08.005

  17. 17. Forsythe, P., Sudo, N., Dinan, T., Taylor, V.H. and Bienenstock, J. (2010) Mood and Gut Feelings. Brain, Behavior, and Immunity, 24, 9-16. https://doi.org/10.1016/j.bbi.2009.05.058

  18. 18. Avoli, M. and Krnjević, K. (2016) The Long and Winding Road to Gamma-Amino-Butyric Acid as Neurotransmitter. Canadian Journal of Neurological Sciences, 43, 219-226. https://doi.org/10.1017/cjn.2015.333

  19. 19. Windey, K., De Preter, V. and Verbeke, K. (2012) Relevance of Protein Fermentation to Gut Health. Molecular Nutrition & Food Research, 56, 184-196. https://doi.org/10.1002/mnfr.201100542

  20. 20. Abdollahi-Roodsaz, S., Abramson, S.B. and Scher, J.U. (2016) The Metabolic Role of the Gut Microbiota in Health and Rheumatic Disease: Mechanisms and Interventions. Nature Reviews Rheumatology, 12, 446-455. https://doi.org/10.1038/nrrheum.2016.68

  21. 21. Bron, P.A., Kleerebezem, M., Brummer, R.J., Cani, P., Mercenier, A., MacDonald, T., et al. (2017) Can Probiotics Modulate Human Disease by Impacting Intestinal Barrier Function? British Journal of Nutrition, 117, 93-107. https://doi.org/10.1017/S0007114516004037

  22. 22. Morrison, D.J. and Preston, T. (2016) Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes, 7, 189-200. https://doi.org/10.1080/19490976.2015.1134082

  23. 23. Bindels, L.B., Porporato, P., Dewulf, E.M., Verrax, J., Neyrinck, A.M., Martin, J.C., et al. (2012) Gut Microbiota-Derived Propionate Reduces Cancer Cell Proliferation in the Liver. British Journal of Cancer, 107, 1337-1344. https://doi.org/10.1038/bjc.2012.409

  24. 24. Yan, J., Herzog, J.W., Tsang, K., Brennan, C.A., Bower, M.A., Garrett, W.S., et al. (2016) Gut Microbiota Induce IGF-1 and Promote Bone Formation and Growth. Proceedings of the National Academy of Sciences of the United States of America, 113, E7554-E7563. https://doi.org/10.1073/pnas.1607235113

  25. 25. Weaver, C.M. (2015) Diet, Gut Microbiome, and Bone Health. Current Osteoporosis Reports, 13, 125-130. https://doi.org/10.1007/s11914-015-0257-0

  26. 26. Zemel, B.S. (2017) Dietary Calcium Intake Recommendations for Children: Are They Too High? American Journal of Clinical Nutrition, 105, 1025-1026. https://doi.org/10.3945/ajcn.117.155705

  27. 27. Parvaneh, M., Karimi, G., Jamaluddin, R., Ng, M.H., Zuriati, I., Muhammad, S.I., et al. (2018) Lactobacillus helveticus (ATCC 27558) Upregulates Runx2 and Bmp2 and Modulates Bone Mineral Density in Ovariectomy-Induced Bone Loss Rats. Clinical Interventions in Aging, 13, 1555-1564. https://doi.org/10.2147/CIA.S169223

  28. 28. Chen, X., Eslamfam, S., Fang, L., Qiao, S. and Ma, X. (2017) Maintenance of Gastrointestinal Glucose Homeostasis by the Gut-Brain Axis. Current Protein & Peptide Science, 18, 541-547. https://doi.org/10.2174/1389203717666160627083604

  29. 29. Soty, M., Gautier-Stein, A., Rajas, F, and Mithieux, G. (2017) Gut-Brain Glucose Signaling in Energy Homeostasis. Cell Metabolism, 25, 1231-1242. https://doi.org/10.1016/j.cmet.2017.04.032

  30. 30. Mohajeri, M.H., La Fata, G., Steinert, R.E. and Weber, P. (2018) Relationship between the Gut Microbiome and Brain Function. Nutrition Reviews, 76, 481-496. https://doi.org/10.1093/nutrit/nuy009

  31. 31. Sampson, T.R. and Mazmanian, S.K. (2015) Control of Brain Development, Function, and Behavior by the Microbiome. Cell Host & Microbe, 17, 565-576. https://doi.org/10.1016/j.chom.2015.04.011

  32. 32. Jaacks, L.M., Vandevijvere, S., Pan, A., McGowan, C.J., Wallace, C., Imamura, F., et al. (2019) The Obesity Transition: Stages of the Global Epidemic. Lancet Diabetes & Endocrinology, 7, 231-240. https://doi.org/10.1016/S2213-8587(19)30026-9

  33. 33. Andoh, A., Nishida, A., Takahashi, K., Inatomi, O., Imaeda, H., Bamba, S., et al. (2016) Comparison of the Gut Microbial Community between Obese and Lean Peoples Using 16S Gene Sequencing in a Japanese Population. Journal of Clinical Biochemistry and Nutrition, 59, 65-70. https://doi.org/10.3164/jcbn.15-152

  34. 34. Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., et al. (2012) A Metagenome-Wide Association Study of Gut Microbiota in Type 2 Diabetes. Nature, 490, 55-60. https://doi.org/10.1038/nature11450

  35. 35. Zou, J., Chassaing, B., Singh, V., Pellizzon, M., Ricci, M., Fythe, M.D., et al. (2018) Fiber-Mediated Nourishment of Gut Microbiota Protects against Diet-Induced Obesity by Restoring IL-22-Mediated Colonic Health. Cell Host & Microbe, 23, 41-53.e4. https://doi.org/10.1016/j.chom.2017.11.003

  36. 36. Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y.Y., Wang, X., et al. (2018) Gut Bacteria Selectively Promoted by Dietary Fibers Alleviate Type 2 Diabetes. Science, 359, 1151-1156. https://doi.org/10.1126/science.aao5774

  37. 37. Garcia-Rios, A., Torres-Peña, J.D., Perez-Jimenez, F. and Perez-Martinez, P. (2017) Gut Microbiota: A New Marker of Cardiovascular Disease. Current Pharmaceutical Design, 23, 3233-3238. https://doi.org/10.2174/1381612823666170317144853

  38. 38. Estruch, R., Ros, E., Salas-Salvadó, J., Covas, M.-I., Corella, D., Arós, F., et al. (2018) Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. New England Journal of Medicine, 378, e34. https://doi.org/10.1056/NEJMoa1800389

  39. 39. Zhu, W., Gregory, J.C., Org, E., Buffa, J.A., Guptam N., Wang, Z., et al. (2016) Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell, 165, 111-124. https://doi.org/10.1016/j.cell.2016.02.011

  40. 40. Griffin, J.L., Wang, X. and Stanley, E. (2015) Does Our Gut Microbiome Predict Cardiovascular Risk? A Review of the Evidence from Metabolomics. Circulation: Cardiovascular Genetics, 8, 187-191. https://doi.org/10.1161/CIRCGENETICS.114.000219

  41. 41. Lane, E.R., Zisman, T.L. and Suskind, D.L. (2017) The Microbiota in Inflammatory Bowel Disease: Current and therapeutic Insights. Journal of Inflammation Research, 10, 63-73. https://doi.org/10.2147/JIR.S116088

  42. 42. Parekh, P.J., Balart, L.A. and Johnson, D.A. (2015) The Influence of the Gut Microbiome on Obesity, Metabolic Syndrome and Gastrointestinal Disease. Clinical and Translational Gastroenterology, 6, e91. https://doi.org/10.1038/ctg.2015.16

  43. 43. Bennet, S.M., Ohman, L. and Simren, M. (2015) Gut Microbiota as Potential Orchestrators of Irritable Bowel Syndrome. Gut and Liver, 9, 318-331. https://doi.org/10.5009/gnl14344

  44. 44. Leung, C., Rivera, L., Furness, J.B. and Angus, P.W. (2016) The Role of the Gut Microbiota in NAFLD. Nature Reviews Gastroenterology & Hepatology, 13, 412-425. https://doi.org/10.1038/nrgastro.2016.85

  45. 45. Pevsner-Fischer, M., Tuganbaev, T., Meijer, M., Zhang, S.-H., Zeng, Z.-R., Chen, M.-H., et al. (2016) Role of the Microbiome in Non-Gastrointestinal Cancers. World Journal of Clinical Oncology, 7, 200-213. https://doi.org/10.5306/wjco.v7.i2.200

  46. NOTES

    *通讯作者。

期刊菜单