Advances in Clinical Medicine
Vol. 13  No. 12 ( 2023 ), Article ID: 78455 , 9 pages
10.12677/ACM.2023.13122886

酒精戒断所致脑损伤机制研究的新进展

孔祥齐1,李大江2,陈旭3*

1济宁医学院精神卫生学院,山东 济宁

2乳山市康宁医院精神科,山东 威海

3山东省精神卫生中心成瘾医学科,山东 济南

收稿日期:2023年11月27日;录用日期:2023年12月21日;发布日期:2023年12月29日

摘要

酒精是全球疾病和死亡的重要风险因素之一。饮酒会对多个器官造成损伤,过度饮酒可能会对大脑等器官造成损伤。酒精被认为是一种神经毒素和中枢神经系统抑制剂,酒精通过一系列直接或间接因素改变大脑关键区域的神经元兴奋性。长期饮酒者由于饮酒量的突然减少或停止而出现一系列症状和体征称为酒精戒断综合征(Alcohol Withdrawal Syndrome, AWS)。许多研究没有对使用酒精和酒精戒断(Ethanol Withdrawal, EW)各自产生的不同影响进行区分,因此尚不能明确EW患者损伤机制与酒精、EW之间的关系,亦或是在两者共同参与下造成的。对酒精与EW的影响进行区别很重要,因为EW导致的影响与酒精本身对于患者的影响相是不同的。研究发现,在酒精戒断对于患者产生的影响中食欲素存在重要意义,食欲素在药物渴求、戒断和复发中发挥重要作用。本文将从EW对大脑产生损伤的不同机制,以及雌激素如何发挥保护作用等方面综述近年研究情况,以期为进一步研究提供参考。

关键词

酒精戒断综合征,氧化应激,蛋白激酶,线粒体,炎症,17β-雌二醇,食欲素

Recent Advances in the Study of the Mechanism of Brain Injury Caused by Alcohol Withdrawal

Xiangqi Kong1, Dajiang Li2, Xu Chen3*

1School of Mental Health, Jining Medical University, Jining Shandong

2Department of Psychiatry, Rushan Kangning Hospital, Weihai Shandong

3Department of Addiction Medicine, Shandong Provincial Mental Health Center, Jinan Shandong

Received: Nov. 27th, 2023; accepted: Dec. 21st, 2023; published: Dec. 29th, 2023

ABSTRACT

Alcohol is one of the important risk factors for disease and death worldwide. Alcohol consumption can cause damage to multiple organs, among which the brain is an important organ harmed by alcohol, alcohol is considered a neurotoxin and central nervous system depressant, and alcohol produces various effects by altering neuronal excitability and reticular system activity in key areas of the brain leading to alcohol addiction and corresponding brain damage. Long-term drinkers develop Alcohol Withdrawal Syndrome (AWS) due to a sudden decrease or cessation of alcohol consumption. Many studies have not distinguished between the different effects of alcohol use and Ethanol Withdrawal (EW), so it is unclear whether the mechanism of injury in people with EW is related to alcohol or EW, or whether they are a combination of both. It is important to distinguish between the effects of alcohol and EW, as the effects of EW are different from the effects of alcohol itself on patients. In addition, orexins have been found to play an important role in drug craving, withdrawal, and relapse, and play an important role in the effects of alcohol withdrawal on patients. In this article, we will review the recent research from the different mechanisms of EW damage to the brain and how estrogen plays a protective role, in order to provide reference for further research.

Keywords:Alcohol Withdrawal Syndrome, Oxidative Stress, Protein Kinase, Mitochondria, Inflammation, 17β-Estradiol, Orexin

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 酒精、EW所致损伤机制

1.1. 酒精、EW对机体造成损伤

酒精通过直接或间接的方式造成线粒体损伤、活性氧(Reactive Oxygen Species, ROS)水平提高以及细胞炎性体激活显著增加,这些可能会对人体肝脏、神经系统、心血管系统等产生影响。 [1] [2] [3] [4] ,关于酒精造成脑损伤的机制有很多假说,目前主要有:乙醇通过血脑屏障对大脑造成的直接损害和间接损害,可干扰海马神经发生、降低突触可塑性,并可通过氧化应激、神经免疫信号传导启动、微生物–肠–脑轴诱导等路径促进神经炎症反应、抑制神经营养因子及内源性神经肽的表达 [5] 。此外酒精还通过干扰兴奋性神经递质谷氨酸能神经元的功能,产生一系列的反应。N-甲基-D-天冬氨酸受体(NMDAR)在酒精导致对谷氨酸的作用中也作为介导发挥作用,该受体介导谷氨酸的突触后兴奋作用,导致Ca2+流入。酒精通过抑制NMDAR对行为产生影响。

EW同样会导致神经系统症状、精神症状、心血管系统症状,AWS及其并发症的主要神经化学因素是缺乏γ-氨基丁酸(GABA)和谷氨酸活性过高 [6] ,GABA作为中枢神经系统中重要的抑制性神经递质在AWS中发挥重要作用。当重复饮酒和戒酒失败恶性循环时,AWS的严重程度增加,AWS的严重程度直接反映了谷氨酸能活性的高低 [7] 。长期饮酒形成对酒精的耐受性导致NMDA受体的敏感性上调,因此当EW会突然产生异常的兴奋状态,导致癫痫发作、震颤和神经元死亡 [8] ,其中中枢神经系统(CNS)过度兴奋是急性EW的临床显著特征之一 [9] 。Jung ME等人多项研究表明 [10] [11] [12] ,饮酒和戒酒(EW)对大鼠和细胞中的脂质和蛋白质均可以造成氧化损伤,但后者影响更为严重。这表明EW本身与饮酒直接引起的效应有所不同,可能涉及生理调整和戒断后的细胞修复。总体而言,戒酒可能引发更显著的氧化损伤。

1.2. 食欲素表达程度与酒精戒断程度存在关联

食欲素(orexin-A和orexin-B)是广泛分布在中枢神经系统和外周组织的兴奋性神经肽,食欲素信号的传导与各种代谢和神经系统疾病有关 [13] ,对药物渴求、戒断和复发发挥十分重要作用。然而,产生食欲素的神经元仅位于下丘脑外侧区域和附近区域,但这些神经元可以投射到许多大脑结构,并受许多神经递质系统的调节 [14] 。

食欲素A表达程度与酒精戒断的严重程度之间存在关联,食欲素能神经元对调节多巴胺能、氨基丁酸能和谷氨酸能神经元活动至关重要,会导致成瘾的发生,食欲素可能参与酒精摄入调节和酒精渴求的发生。研究发现,在戒酒开始时,Orexin mRNA水平较高,在戒酒期间,Orexin mRNA水平似乎下降 [15] 。在动物实验中,嗜酒大鼠长期饮酒显著增加了下丘脑外侧表达食欲素mRNA的神经元数量 [16] 。实验证明低剂量的Oxrein-A受体的选择性拮抗剂SB-334867可以显著减弱小鼠的强迫性饮酒,提示了Oxrein-A受体拮抗剂治疗酒依赖患者强迫性饮酒的可能 [17] ,这也从侧面证明了食欲素受体拮抗剂对于酒精戒断的正性作用。

2. EW和氧化应激

2.1. EW导致氧化应激反应

酒精在其代谢过程中直接产生ROS导致氧化应激反应,但过度摄入酒精会导致线粒体电子传输链对ROS的释放增加而导致损伤 [18] 。EW同样会导致氧化应激反应,观察发现EW会诱发全身和血管氧化应激,在EW后,在主动脉中检测到脂质过氧化和超氧阴离子(O2−)水平增加 [19] 。研究表明EW通过兴奋性神经递质系统或兴奋性分子,如Ca2+,间接产生氧化应激 [20] 。丙二醛水平作为一种氧化水平标记物,在EW后含量增加 [21] ,其含量增加与EW综合征的严重程度一致 [22] 。丙二醛(MDA)和超氧化物歧化酶的升高,过氧化氢酶降低,这些表明了EW期间氧化应激会增加 [23] 。

EW也会表现出对蛋白质的促氧化作用。EW产生的ROS攻击蛋白质,导致蛋白质羰基和随后的非活性蛋白质的形成。因此,羰基含量的增加已成为蛋白质氧化损伤的细胞标志物 [24] [25] 。酒依赖患者与酒精饲养大鼠和小鼠均显示出蛋白质羰基含量都会增加,但重要的是蛋白质羰基水平在EW期间进一步增加 [11] ,这表明EW过程中所导致的蛋白质氧化比酒精本身对蛋白质的氧化更严重。研究表明,在喂养24小时酒精后,进行4小时EW,小鼠海马神经元细胞(HT22)细胞出现过量的ROS生成和蛋白质羰基化。因此EW期间的氧化应激比酒精本身所导致的氧化应激更严重 [10] 。综上所述,这些发现均表明EW所产生的促氧化反应也会导致蛋白质的氧化水平提高,并且比直接酒精使用导致的氧化反应更严重。

此外,大脑结构特性使得其更易受氧化应激的损伤,中枢神经系统(CNS)由高含量的不饱和膜脂组成,这是ROS和脂质过氧化的首选靶点 [26] [27] 。大脑低水平的抗氧化酶 [28] 也为EW伤害提供了有利的条件。

2.2. 雌激素及食欲素的抗氧化机制

17β-E2作为一种甾体雌激素,属于类固醇激素的一种,除了对生殖器官的影响外,可以通过减轻氧化应激发挥神经保护作用 [29] 。17β-E2通过激活SIRT1信号通路使p53蛋白去乙酰化,从而对抗急性酒精诱导的氧化应激、神经炎症和神经退行性变 [30] 。此外,17β-E2还可以通过防止HT22细胞中过度产生ROS来发挥抗氧化作用 [31] 。雌激素可以作用于线粒体雌激素受体β (mtERβ),使mtERβ的N2A细胞株对凋亡和氧化刺激具有更强的抵抗力,从而发挥保护作用 [32] 。

酒精诱导小脑中的脂质过氧化,增加硫代巴比妥酸反应物(TBARS)水平并降低谷胱甘肽过氧化物酶水平。实验证明,通过17β-E2治疗显著减轻了由于酒精所导致的幼鼠的运动障碍、脂质过氧化并恢复了抗氧化剂的水平,证明了雌二醇治疗可以通过其抗氧化作用、抑制脂质过氧化和提高抗氧化酶活性来发挥作用 [33] ,这对于酒精及EW所导致的损伤的修复是有意义的。

食欲素可以对氧化应激造成的损伤起到保护作用。实验利用钴离子可以激活缺氧介导的信号通路和产生ROS这一特性来模拟缺氧环境下氧化应激水平的增高 [34] ,研究发现两种食欲素都将氯化钴诱导的ROS生成降低到基底水平。这表明在化学缺氧条件下,食欲素保护大脑皮质神经元免受氧化应激,有效提高神经元的生存能力。此项研究还发现食欲素A和B能够有效诱导大鼠原发性皮质神经元的蛋白激酶B (Akt)磷酸化。并且Orexin B比Orexin A更有效增加了Akt磷酸化。Akt激酶对神经元中食欲素的促生存作用中起着重要作用,这是食欲素诱导的神经保护的可能机制 [35] 。

3. EW导致炎症因子改变,食欲素对炎症反应的保护作用

3.1. EW导致炎症因子改变

酒精可以通过引起神经的炎症反应使神经系统功能紊乱,从而导致神经退行性变。此外炎症因素在酒精相关行为和情绪障碍的发展中也起着关键作用,可导致酗酒患者的认知改变以及强迫行为 [36] [37] 。饮酒使血液和脑对炎症反应的敏感度增加,并且在大脑中,酒精激活小胶质细胞并增加炎症介质,这些介质可能导致细胞死亡 [38] 。

研究表明无论使用酒精剂量如何,在戒酒后的第一个月内,各种促炎因子的水平发生了不同的变化,并且此后保持相对稳定 [39] 。在早期戒断期间,AD患者的细胞因子水平高于健康对照组。戒酒4周后,细胞因子表达减少,表现为Th1促炎细胞因子(IL-2、TNF-α和IFN)、Th2抗炎细胞因子(IL-4、IL-5、IL-6和IL-10)和其他没有确定为Th1或Th2炎症功能的细胞因子(IL-1b、IL-8和GM-CSF)的浓度显著降低,但戒酒4周后的细胞因子水平仍高于对照组 [37] 。抗炎细胞因子IL-10是炎症消退阶段释放的中心细胞因子,可有效防止感染和炎症引起的损伤,IL-10能够抑制促炎细胞因子如干扰素γ (IFN-γ)、IL-2、IL-3和TNFα的合成,戒酒后IL-10中心水平升高,可减缓促炎反应程度并促进炎症的消退。通过实验观察到,IL-10水平的增加构成了自我平衡过程的一部分,以修复炎症和酒精诱导的损伤 [39] 。总而言之,研究数据证明不同神经炎症介质发生变化的时间过程是不同的。

3.2. 食欲素对炎症反应的调节作用

食欲素对炎症具有调节作用。在结肠炎动物实验模型中,注射外源Orexin A可特异性改善结肠炎小鼠模型的炎症症状。研究发现Orexin A的抗炎作用是由于免疫细胞中促炎细胞因子的表达减少,特别是从结肠粘膜分离的T细胞,提示促食欲素在包括炎症性肠病等慢性炎症中的免疫调节作用 [40] 。研究还发现胃癌患者的Orexin-A表达显著增高,Orexin-A通过与OX1R/OX2R受体的相互作用,在胃癌患者的肿瘤组织中激活了pre-Orexin,从而与炎症发生了联系 [41] 。

此外在鼠模型中,大脑中动脉闭塞(MCAO)之后,与野生型小鼠相比,食欲素喂养鼠缺血核心(IC)中激活的巨噬细胞/小质细胞总数显著增加。重要的是,在小鼠脑中给予食欲素-A (Orexin-A),无论在MCAO之前或之后,野生小鼠和食欲素喂养小鼠的梗死大小都减少了 [42] 。在小鼠脑缺血48小时后,观察到食欲素A受体在神经元、星形胶质细胞和寡突细胞上的表达增加 [43] 。这些表明食欲素系统可能在炎症过程中发挥作用,内源性下丘脑泌素(Hcrt)系统可以防止小鼠的短暂MCAO ,部分原因也可能是Hcrt-1介导的抗炎作用 [44] 。

研究表明食欲素存在抗炎作用,但是食欲素对于酒精及EW产生的炎症能否直接发挥抗炎作用从而减少脑损伤的相关文献研究较少。这也是今后研究的重点内容。

4. 蛋白激酶调节

4.1. PKC调节作用

蛋白激酶C (protein kinase C, PKC)等信号蛋白激酶是参与不同细胞功能的关键信号分子,但过强的PKC活性可导致不利的下游事件 [45] 。PKC有11种不同的PKC同工酶,参与了多种激素和生长因子的信号转导反应 [46] ,在这些同工酶中蛋白激酶Cε (PKCε)主要参与了酒精依赖(AD)和EW的刺激效应 [10] 。

研究发现PKCε中有一个酒精结合位点,经过酒精培养的神经元显示PKCε水平明显升高 [47] ,这可能是由于中央杏仁核(CeA)中的PKCδ神经元可能对酒精的影响特别敏感 [48] 导致的。CeA中包含多种细胞群,包括多种的GABA能神经元亚型,特定的CeA细胞类型已被证明会影响依赖动物模型中的酒精代谢,并可能在EW期间产生负面影响。研究发现,PKCε可以减弱类固醇激素受体介导的胞吞过程,并且数据显示,这些激酶可能在调节雌激素受体β (ERβ)转录活性中起关键作用 [49] 。

γ-氨基丁酸A型受体(GABAARs)是酒精在大脑中的主要目标之一。EW通过PKCδ的激活快速调节突触外δ-GABAA受体,GABAA受体的短暂性变化可能是慢性酒精成瘾、耐受性和戒断症状的基础 [50] 。然而长期使用酒精会降低γ-氨基丁酸(GABA)A受体,α1 (Gabra1)的表达,Gabra1表达的减少会造成GABAARs功能低下,由于GABAARs的适应性与酒精的慢性影响有关,因此GABAARs低下会产生许多与AD相关的戒断症状 [51] 。

4.2. P38参与EW损伤

p38蛋白激酶是丝裂原活化蛋白激酶(MAPK)家族成员之一,是信号传导的纽带,也是控制炎症反应的最重要成员,此外P38还参与EW损伤。EW本质上具有兴奋毒性,可通过诱导谷氨酸上调,引起神经元损伤 [52] 。p38丝裂原活化蛋白激酶(p38 MAPK)的特异性抑制剂保护HT22细胞免受乙醇的侵害,同时抑制ROS的积累 [53] ,这表明P38可能参与EW的损伤。

雌激素E2通过对p38的调控,从而实现对EW损伤的保护作用。Valles等人 [54] 认为,E2可以防止氧化应激,而氧化应激反过来又可以抑制P38的激活,并保护神经元免受β-淀粉样蛋白毒性。研究表明,EW增加了含有激活状态的P38的小脑浦肯野神经元的数量,E2治疗将其降低到控制水平 [10] 。综上所述,E2可以调节P38的病理状况,使其朝着P38的稳态方向发展。

5. 酒精和EW对线粒体的损伤

线粒体的完整性受到膜通透性的密切影响,膜通透性由一组称为线粒体膜通透性转换孔(PTP)的蛋白质调节。氧化或凋亡应激导致PTP过度开放,使水和电解质扩散穿过线粒体膜,导致线粒体膜电位(Δψm)失衡,从而在线粒体发生的ATP氧化磷酸化失败 [55] 。EW后,兴奋性神经地质的过度释放会促进钙离子过度进入线粒体,导致小脑线粒体的功能损伤和神经元退化 [56] 。酒精代谢过程中产生的ROS会对线粒体的功能造成影响,并且与许多神经退行性疾病有关 [57] 。在大脑中,酒精激活小胶质细胞并增加炎症介质,这些介质可能会损害线粒体并引发细胞死亡 [38] 。研究表明,酒精或EW对PTP存在有害影响。与酒精本身相比,EW引起线粒体膜肿胀和Δψm塌陷更严重 [58] 。在EW条件下的小脑通过改变DNA甲基化、组蛋白乙酰化或微RNA表达表现出异常的基因修饰。重复EW的大鼠组蛋白乙酰化与无饮酒的对照组相比增加了2倍多,并伴有线粒体呼吸抑制 [59] 。

线粒体代谢和类固醇之间存在潜在调节,类固醇会影响线粒体的许多功能 [60] 。雌激素在减轻线粒体中的氧化或凋亡负担方面发挥作用 [61] ,17β-E2诱导线粒体对钙的摄取增加可以保护神经元免受过量细胞质钙的不良后果 [62] 。此外,雌激素还通过调节转录和细胞信号通路,以刺激线粒体的功能,包括线粒体生物能量学、线粒体融合和裂变、钙稳态和抗自由基的抗氧化防御等 [63] 。

为了研究Orexin-A是否对线粒体存在影响,实验通过电子显微镜观察了线粒体形态。在空载体细胞中,大多数线粒体是正常的,无论是否受Orexin-A处理。在使用一种淀粉样蛋白-β产生过量的阿尔兹海默症细胞模型时,使用Orexin-A处理后细胞中的大部分出现了线粒体异常,研究发现Olexin-A调节p38 MAPK通路,在老年痴呆小鼠模型(APPswe)细胞中产生细胞毒性作用 [64] ,但有关食欲素对于正常细胞线粒体的具体研究有待进一步深入。

6. 总结与展望

本文主要综述AWS直接或者间接的通过一系列反应对人体产生损伤以及E2对人体的保护作用。EW通过ROS的生成、蛋白激酶的激活、线粒体完整性的损伤以及相应的炎症因子的改变发挥作用。目前研究发现E2会改变EW诱导的氧化信号通路从而发挥保护作用,但是不能确定E2对于每个影响因素单独作用的结果,这也是下一步研究的难点。食欲素表达程度与酒精戒断的严重程度之间存在关联,食欲素通过多种调节机制发挥作用,但对于酒精及EW的直接关系的相关研究尚缺乏,这都将会成为今后研究重点。

致谢

感谢山东省精神卫生中心成瘾医学科陈旭对本文的指导与支持。在选题、规划及写作过程中给予我很多帮助,提供了很多宝贵的建议,这些对这篇文章的写作具有重要意义。

文章引用

孔祥齐,李大江,陈 旭. 酒精戒断所致脑损伤机制研究的新进展
Recent Advances in the Study of the Mechanism of Brain Injury Caused by Alcohol Withdrawal[J]. 临床医学进展, 2023, 13(12): 20522-20530. https://doi.org/10.12677/ACM.2023.13122886

参考文献

  1. 1. Sang, W., Chen, S., Lin, L., et al. (2022) Antioxidant Mitoquinone Ameliorates EtOH-LPS Induced Lung Injury by In-hibiting Mitophagy and NLRP3 Inflammasome Activation. Frontiers in Immunology, 13, Article 973108. https://doi.org/10.3389/fimmu.2022.973108

  2. 2. Siggins, R.W., Mcternan, P.M., Simon, L., et al. (2023) Mito-chondrial Dysfunction: At the Nexus between Alcohol-Associated Immunometabolic Dysregulation and Tissue Injury. International Journal of Molecular Sciences, 24, Article 8650. https://doi.org/10.3390/ijms24108650

  3. 3. Bellar, A., Welch, N., Dasarathy, J., et al. (2023) Peripheral Blood Mononuclear Cell Mitochondrial Dysfunction in Acute Al-cohol-Associated Hepatitis. Clinical and Translational Medicine, 13, e1276. https://doi.org/10.1002/ctm2.1276

  4. 4. Kołota, A., Głąbska, D., Oczkowski, M. and Gromadzka-Ostrowska, J. (2020) Oxidative Stress Parameters in the Liver of Growing Male Rats Receiving Various Alcoholic Beverages. Nutri-ents, 12, Article 158. https://doi.org/10.3390/nu12010158

  5. 5. 邱鲲羽, 黄延焱. 酒精性脑损伤作用机制的研究进展[J]. 老年医学与保健, 2022, 28(5): 1160-1163.

  6. 6. Sivolap, Y.P. (2021) [Treatment of Alcohol Withdrawal Syndrome]. Zhurnal nevrologii i psikhiatrii imeni SS Korsakova, 121, 139-144. https://doi.org/10.17116/jnevro2021121061139

  7. 7. Laniepce, A., Cabé, N., André, C., et al. (2020) The Effect of Alcohol Withdrawal Syndrome Severity on Sleep, Brain and Cognition. Brain Communications, 2, fcaa123. https://doi.org/10.1093/braincomms/fcaa123

  8. 8. Hansen, K.B., Yi, F., Perszyk, R.E., Menniti, F.S. and Traynelis, S.F. (2017) NMDA Receptors in the Central Nervous System. In: Burnashev, N. and Szepetowski, P., Eds., NMDA Re-ceptors, Humana Press, New York, 1-80. https://doi.org/10.1007/978-1-4939-7321-7_1

  9. 9. Barkley-Levenson, A.M., Lee, A. and Palmer, A.A. (2021) Genetic and Pharmacological Manipulations of Glyoxalase 1 Mediate Ethanol Withdrawal Seizure Susceptibility in Mice. Brain Sciences, 11, Article 127. https://doi.org/10.3390/brainsci11010127

  10. 10. Jung, M.E. and Metzger, D.B. (2010) Alcohol Withdrawal and Brain Injuries: Beyond Classical Mechanisms. Molecules, 15, 4984-5011. https://doi.org/10.3390/molecules15074984

  11. 11. Jung, M.E., Yan, L.J., Forster, M.J. and Simpkins, J.W. (2008) Ethanol Withdrawal Provokes Mitochondrial Injury in an Estrogen Preventable Manner. Journal of Bioenergetics and Biomembranes, 40, 35-44. https://doi.org/10.1007/s10863-008-9129-y

  12. 12. Jung, M.E., Ju, X., Metzger, D.B. and Simpkins, J.W. (2012) Ethanol Withdrawal Hastens the Aging of Cytochrome c Oxidase. Neurobiology of Aging, 33, 618.e21-618.e32. https://doi.org/10.1016/j.neurobiolaging.2011.02.002

  13. 13. Chatterjee, O., Gopalakrishnan, L., Pullimamidi, D., et al. (2022) A Molecular Network Map of Orexin-Orexin Receptor Signaling System. Journal of Cell Communication and Signaling, 17, 217-227. https://doi.org/10.1007/s12079-022-00700-3

  14. 14. Nambu, T., Sakurai, T., Mizukami, K., et al. (1999) Distribution of Orexin Neurons in the Adult Rat Brain. Brain Research, 827, 243-260. https://doi.org/10.1016/S0006-8993(99)01336-0

  15. 15. Bayerlein, K., Kraus, T., Leinonen, I., et al. (2011) Orexin A Expression and Promoter Methylation in Patients with Alcohol Dependence Comparing Acute and Protracted Withdrawal. Alcohol, 45, 541-547. https://doi.org/10.1016/j.alcohol.2011.02.306

  16. 16. Lawrence, A.J., Cowen, M.S., Yang, H.J., et al. (2006) The Orexin System Regulates Alcohol-Seeking in Rats. British Journal of Pharmacology, 148, 752-759. https://doi.org/10.1038/sj.bjp.0706789

  17. 17. Lei, K., Wegner, S.A., Yu, J.H. and Hopf, F.W. (2016) Orexin-1 Re-ceptor Blockade Suppresses Compulsive-Like Alcohol Drinking in Mice. Neuropharmacology, 110, 431-437. https://doi.org/10.1016/j.neuropharm.2016.08.008

  18. 18. Michalak, A., Lach, T. and Cichoż-Lach, H. (2021) Oxida-tive Stress—A Key Player in the Course of Alcohol-Related Liver Disease. Journal of Clinical Medicine, 10, Article 3011. https://doi.org/10.3390/jcm10143011

  19. 19. Gonzaga, N.A., Do Vale, G.T., Parente, J.M., et al. (2018) Etha-nol Withdrawal Increases Blood Pressure and Vascular Oxidative Stress: A Role for Angiotensin Type 1 Receptors. Journal of the American Society of Hypertension, 12, 561-573. https://doi.org/10.1016/j.jash.2018.03.012

  20. 20. Huang, M.C., Chen, C.H., Peng, F.C., et al. (2009) Alterations in Oxidative Stress Status during Early Alcohol Withdrawal in Alcoholic Patients. Journal of the Formosan Medical Asso-ciation, 108, 560-569. https://doi.org/10.1016/S0929-6646(09)60374-0

  21. 21. Mohebbi, E., Molavi, M., Mohammadzadeh, M., et al. (2020) Clavulanic Acid Improves Ethanol Withdrawal Symptoms in Rats. Iranian Journal of Basic Medical Sciences, 23, 730-736.

  22. 22. Sordi, A.O., Pechansky, F., Kessler, F.H., et al. (2014) Oxidative Stress and BDNF as Possible Markers for the Severity of Crack Cocaine Use in Early Withdrawal. Psychopharmacology, 231, 4031-4039. https://doi.org/10.1007/s00213-014-3542-1

  23. 23. Parthasarathy, R., Kattimani, S. and Sridhar, M.G. (2015) Oxida-tive Stress during Alcohol Withdrawal and Its Relationship with Withdrawal Severity. Indian Journal of Psychological Medicine, 37, 175-180. https://doi.org/10.4103/0253-7176.155617

  24. 24. Rauniyar, N., Stevens, S.M., Prokai-Tatrai, K. and Prokai, L. (2009) Characterization of 4-Hydroxy-2-Nonenal-Modified Peptides by Liquid Chromatography-Tandem Mass Spec-trometry Using Data-Dependent Acquisition: Neutral Loss-Driven MS3 versus Neutral Loss-Driven Electron Capture Dissociation. Analytical Chemistry, 81, 782-789. https://doi.org/10.1021/ac802015m

  25. 25. Prokai, L., Yan, L.J., Vera-Serrano, J.L., et al. (2007) Mass Spectrome-try-Based Survey of Age-Associated Protein Carbonylation in Rat Brain Mitochondria. Journal of Mass Spectrometry, 42, 1583-1589. https://doi.org/10.1002/jms.1345

  26. 26. Adachi, J. (2000) [Membrane Disorder and Free Radical]. Nihon Hoigaku Zasshi, 54, 356-360.

  27. 27. Lehotsky, J., Kaplan, P., Matejovicova, M., et al. (2002) Ion Transport Systems as Targets of Free Radicals during Ischemia Reperfusion Injury. General Physiology and Biophysics, 21, 31-37.

  28. 28. Shulman, R.G., Rothman, D.L., Behar, K.L. and Hyder, F. (2004) Energetic Basis of Brain Activity: Implications for Neuroimaging. Trends in Neurosciences, 27, 489-495. https://doi.org/10.1016/j.tins.2004.06.005

  29. 29. Ishihara, Y., Takemoto, T., Ishida, A. and Yamazaki, T. (2015) Protective Actions of 17β-Estradiol and Progesterone on Oxidative Neuronal Injury Induced by Organometallic Compounds. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 343706. https://doi.org/10.1155/2015/343706

  30. 30. Khan, M., Shah, S.A. and Kim, M.O. (2018) 17β-Estradiol via SIRT1/Acetyl-p53/NF-kB Signaling Pathway Rescued Postnatal Rat Brain against Acute Ethanol Intoxication. Molecular Neurobiology, 55, 3067-3078. https://doi.org/10.1007/s12035-017-0520-8

  31. 31. Sagara, Y. (1998) Induction of Reactive Oxygen Species in Neu-rons by Haloperidol. Journal of Neurochemistry, 71, 1002-1012. https://doi.org/10.1046/j.1471-4159.1998.71031002.x

  32. 32. Tsialtas, I., Georgantopoulos, A., Karipidou, M.E., et al. (2021) Anti-Apoptotic and Antioxidant Activities of the Mitochondrial Estrogen Receptor Beta in N2A Neuroblastoma Cells. International Journal of Molecular Sciences, 22, Article 7620. https://doi.org/10.3390/ijms22147620

  33. 33. Ramezani, A., Goudarzi, I., Lashkarbolouki, T., et al. (2011) Neuro-protective Effects of the 17β-Estradiol against Ethanol-Induced Neurotoxicity and Oxidative Stress in the Developing Male Rat Cerebellum: Biochemical, Histological and Behavioral Changes. Pharmacology Biochemistry and Behavior, 100, 144-151. https://doi.org/10.1016/j.pbb.2011.07.010

  34. 34. Stenger, C., Naves, T., Verdier, M., et al. (2011) The Cell Death Response to the ROS Inducer, Cobalt Chloride, in Neuroblastoma Cell Lines According to p53 Status. International Journal of Oncology, 39, 601-609.

  35. 35. Sokołowska, P., Urbańska, A., Biegańska, K., et al. (2014) Orexins Protect Neuronal Cell Cultures against Hypoxic Stress: An Involvement of Akt Signaling. Journal of Molecular Neuroscience, 52, 48-55. https://doi.org/10.1007/s12031-013-0165-7

  36. 36. Fernandez-Rodriguez, S., Cano-Cebrian, M.J., Rius-Perez, S., et al. (2022) Different Brain Oxidative and Neuroinflammation Status in Rats during Prolonged Abstinence Depending on Their Ethanol Relapse-Like Drinking Behavior: Effects of Ethanol Reintroduction. Drug and Alcohol Dependence, 232, Article ID: 109284. https://doi.org/10.1016/j.drugalcdep.2022.109284

  37. 37. Yen, C.H., Ho, P.S., Yeh, Y.W., et al. (2017) Differential Cytokine Levels between Early Withdrawal and Remission States in Patients with Alcohol Dependence. Psychoneuroen-docrinology, 76, 183-191. https://doi.org/10.1016/j.psyneuen.2016.10.015

  38. 38. Leon, B.E., Kang, S., Franca-Solomon, G., et al. (2021) Al-cohol-Induced Neuroinflammatory Response and Mitochondrial Dysfunction on Aging and Alzheimer’s Disease. Fron-tiers in Behavioral Neuroscience, 15, Article 778456. https://doi.org/10.3389/fnbeh.2021.778456

  39. 39. Girard, M., Malauzat, D. and Nubukpo, P. (2019) Serum Inflam-matory Molecules and Markers of Neuronal Damage in Alcohol-Dependent Subjects after Withdrawal. The World Jour-nal of Biological Psychiatry, 20, 76-90. https://doi.org/10.3389/fnbeh.2021.778456

  40. 40. Messal, N., Fernandez, N., Dayot, S., et al. (2018) Ectopic Ex-pression of OX1R in Ulcerative Colitis Mediates Anti-Inflammatory Effect of Orexin-A. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1864, 3618-3628. https://doi.org/10.1016/j.bbadis.2018.08.023

  41. 41. Hu, S., Niu, J., Zhang, R., et al. (2020) Orexin A Associates with Inflammation by Interacting with OX1R/OX2R Receptor and Activating Prepro-Orexin in Cancer Tissues of Gastric Cancer Patients. Gastroenterología y Hepatología, 43, 240-247. https://doi.org/10.1016/j.gastrohep.2019.10.006

  42. 42. Xiong, X., White, R.E., Xu, L., et al. (2013) Mitigation of Murine Focal Cerebral Ischemia by the Hypocretin/Orexin System Is Associated with Reduced Inflammation. Stroke, 44, 764-770. https://doi.org/10.1161/STROKEAHA.112.681700

  43. 43. Nakamachi, T., Endo, S., Ohtaki, H., et al. (2005) Orex-in-1 Receptor Expression after Global Ischemia in Mice. Regulatory Peptides, 126, 49-54. https://doi.org/10.1016/j.regpep.2004.08.037

  44. 44. Tunisi, L., Forte, N., Fernández-Rilo, A.C., et al. (2019) Orex-in-A Prevents Lipopolysaccharide-Induced Neuroinflammation at the Level of the Intestinal Barrier. Frontiers in Endo-crinology, 10, Article 219. https://doi.org/10.3389/fendo.2019.00219

  45. 45. Gorin, M.A. and Pan, Q. (2009) Protein Kinase C Epsilon: An Oncogene and Emerging Tumor Biomarker. Molecular Cancer, 8, Article No. 9. https://doi.org/10.1186/1476-4598-8-9

  46. 46. Kang, J.H., Toita, R., Kim, C.W. and Katayama, Y. (2012) Protein Ki-nase C (PKC) Isozyme-Specific Substrates and Their Design. Biotechnology Advances, 30, 1662-1672. https://doi.org/10.1016/j.biotechadv.2012.07.004

  47. 47. Zhou, H.Z., Karliner, J.S. and Gray, M.O. (2002) Moderate Alcohol Consumption Induces Sustained Cardiac Protection by Activating PKC-Epsilon and Akt. American Journal of Physiology-Heart and Circulatory Physiology, 283, H165-H174. https://doi.org/10.1152/ajpheart.00408.2001

  48. 48. Dilly, G.A., Kittleman, C.W., Kerr, T.M., et al. (2022) Cell-Type Specific Changes in PKC-Delta Neurons of the Central Amygdala during Alcohol Withdrawal. Translational Psychiatry, 12, Article No. 289. https://doi.org/10.1038/s41398-022-02063-0

  49. 49. Hernández-Rojas, R., Jiménez-Arellano, C., De La Fuente-Granada, M., et al. (2022) The Interplay between Estrogen Receptor β and Protein Kinase C, a Crucial Collabora-tion for Medulloblastoma Cell Proliferation and Invasion. Cellular Signalling, 92, Article ID: 110246. https://doi.org/10.1016/j.cellsig.2022.110246

  50. 50. Chen, J., He, Y., Wu, Y., et al. (2018) Single Ethanol With-drawal Regulates Extrasynaptic δ-GABAA Receptors via PKCδ Activation. Frontiers in Molecular Neuroscience, 11, Article 141. https://doi.org/10.3389/fnmol.2018.00141

  51. 51. Bohnsack, J.P., Hughes, B.A., O’buckley, T.K., et al. (2018) Histone Deacetylases Mediate GABAA Receptor Expression, Physiology, and Behavioral Maladaptations in Rat Models of Alcohol Dependence. Neuropsychopharmacology, 43, 1518-1529. https://doi.org/10.1038/s41386-018-0034-8

  52. 52. Jung, M.E., Metzger, D.B. and Das, H.K. (2016) The Role of Presenilin-1 in the Excitotoxicity of Ethanol Withdrawal. Journal of Pharmacology and Experimental Therapeutics, 358, 516-526. https://doi.org/10.1124/jpet.116.233361

  53. 53. Ku, B.M., Lee, Y.K., Jeong, J.Y., et al. (2007) Etha-nol-Induced Oxidative Stress Is Mediated by p38 MAPK Pathway in Mouse Hippocampal Cells. Neuroscience Letters, 419, 64-67. https://doi.org/10.1016/j.neulet.2007.03.049

  54. 54. Valles, S.L., Borras, C., Gambini, J., et al. (2008) Oestradiol or Genistein Rescues Neurons from Amyloid β-Induced Cell Death by Inhibiting Activation of p38. Aging Cell, 7, 112-118. https://doi.org/10.1111/j.1474-9726.2007.00356.x

  55. 55. Stuart, R. (2002) Insertion of Proteins in-to the Inner Membrane of Mitochondria: The Role of the Oxa1 Complex. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1592, 79-87. https://doi.org/10.1016/S0167-4889(02)00266-5

  56. 56. Jung, M.E. (2015) Alcohol Withdrawal and Cerebellar Mi-tochondria. Cerebellum, 14, 421-437. https://doi.org/10.1007/s12311-014-0598-8

  57. 57. Johnson, J., Mercado-Ayon, E., Mercado-Ayon, Y., et al. (2021) Mitochondrial Dysfunction in the Development and Progression of Neurodegenerative Diseases. Archives of Biochemis-try and Biophysics, 702, Article ID: 108698. https://doi.org/10.1016/j.abb.2020.108698

  58. 58. Jung, M.E., Wilson, A.M., Ju, X., et al. (2009) Ethanol Withdrawal Provokes Opening of the Mitochondrial Membrane Permeability Transition Pore in an Estrogen-Preventable Manner. Journal of Pharmacology and Experimental Therapeutics, 328, 692-698. https://doi.org/10.1124/jpet.108.146829

  59. 59. Jung, M.E. and Metzger, D.B. (2015) Aberrant Histone Acetylation Promotes Mitochondrial Respiratory Suppression in the Brain of Alcoholic Rats. Journal of Pharmacology and Experi-mental Therapeutics, 352, 258-266. https://doi.org/10.1124/jpet.114.219311

  60. 60. Gaignard, P., Frechou, M., Liere, P., et al. (2018) Sex Differences in Brain Mitochondrial Metabolism: Influence of Endogenous Steroids and Stroke. Journal of Neuroendocrinology, 30, e12497. https://doi.org/10.1111/jne.12497

  61. 61. Chen, J.Q. and Yager, J.D. (2004) Estrogen’s Effects on Mito-chondrial Gene Expression: Mechanisms and Potential Contributions to Estrogen Carcinogenesis. Annals of the New York Academy of Sciences, 1028, 258-272. https://doi.org/10.1196/annals.1322.030

  62. 62. Rettberg, J.R., Yao, J. and Brinton, R.D. (2014) Estrogen: A Master Regulator of Bioenergetic Systems in the Brain and Body. Frontiers in Neuroendocrinology, 35, 8-30. https://doi.org/10.1016/j.yfrne.2013.08.001

  63. 63. Klinge, C.M. (2017) Estrogens Regulate Life and Death in Mito-chondria. Journal of Bioenergetics and Biomembranes, 49, 307-324. https://doi.org/10.1007/s10863-017-9704-1

  64. 64. Li, M., Meng, Y., Chu, B., et al. (2020) Orexin-A Aggravates Cytotoxicity and Mitochondrial Impairment in SH-SY5Y Cells Transfected with APPswe via p38 MAPK Pathway. An-nals of Translational Medicine, 8, Article 5. https://doi.org/10.21037/atm.2019.11.68

  65. NOTES

    *通讯作者。

期刊菜单