Advances in Clinical Medicine
Vol. 12  No. 09 ( 2022 ), Article ID: 55645 , 9 pages
10.12677/ACM.2022.1291191

中国矮小儿童和青少年尿酸与高密度脂蛋白 胆固醇之比和收缩压的关系

李广欣1,张梅2,3*

1济宁医学院,山东 济宁

2济宁医学院附属医院内分泌科,山东 济宁

3中国生长发育行为医学研究中心,山东 济宁

收稿日期:2022年8月7日;录用日期:2022年8月29日;发布日期:2022年9月9日

摘要

目的:本研究旨在探讨身材矮小的儿童和青少年尿酸与高密度脂蛋白胆固醇比值(UHR)和收缩压(SBP)的关系。方法:在这项横断面分析中,选择了2013年3月1日至2021年12月31日在济宁医学院附属医院内分泌科接受评估的1510名矮小症儿童和青少年的临床数据,收集其基线临床资料,分析UHR与SBP之间的关系。结果:单因素分析结果显示,UHR与SBP呈正相关(β 0.75, P < 0.0001)。此外,在调整了可能的混杂因素后,通过平滑曲线拟合发现UHR和SBP之间存在非线性关系,经多元分段线性回归分析,拐点为6.33%。当UHR大于6.33%时,SBP随UHR升高而增加(β 0.33, 95% CI 0.12, 0.54; P = 0.0019),然而,当UHR小于6.33% (P = 0.0736)时,我们没有观察到显著的相关性。结论:我们的研究发现,在身材矮小的儿童和青少年中,UHR和SBP之间存在非线性关系,并表明当UHR达到拐点时,SBP水平与UHR的升高呈正相关。这一发现表明UHR可能与SBP水平的调节有关,这种关系值得进一步研究。

关键词

矮小症,尿酸,高密度脂蛋白胆固醇,血压

Association between the Uric Acid to High Density Lipoprotein Cholesterol Ratio and Systolic Pressure in Chinese Short Stature Children and Adolescents

Guangxin Li1, Mei Zhang2,3*

1Jining Medical University, Jining Shandong

2Department of Endocrinology, The Affiliated Hospital of Jining Medical University, Jining Shandong

3Chinese Center for Behavioral Medicine Research in Growth and Development, Jining Shandong

Received: Aug. 7th, 2022; accepted: Aug. 29th, 2022; published: Sep. 9th, 2022

ABSTRACT

Objective: This study aims to investigate the relationship between the uric acid to high density lipoprotein cholesterol ratio (UHR) and systolic blood pressure (SBP) in children and adolescents with short stature. Methods: In this cross-sectional analysis, clinical data of 1510 children and adolescents were evaluated in the Department of Endocrinology, Affiliated Hospital of Jining Medical College from 1 March 2013 to 31 December 2021, their baseline clinical data were collected and the relationship between UHR and SBP was analyzed. Results: In the univariate analysis, UHR was positively associated with SBP (β 0.75, P < 0.0001). Furthermore, after adjusting for possible confounders, a non-linear relationship between UHR and SBP was found by smoothing curve fitting, and the inflection point was 6.33% by multiple piecewise linear regression analysis. When the UHR is greater than 6.33%, SBP increases with increasing UHR (β 0.33, 95% CI 0.12, 0.54; P = 0.0019). However, we did not observe a significant correlation when the UHR was less than 6.33% (P = 0.0736). Conclusions: Our study found a nonlinear relationship between UHR and SBP in short stature children and adolescents, and showed that SBP levels are positively associated with increased UHR when UHR reaches an inflection point. This finding suggests that the UHR may be related to the regulation of SBP levels, and this relationship warrants further investigation.

Keywords:Short Stature, Uric Acid, High Density Lipoprotein Cholesterol, Blood Pressure

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

矮个子的定义是,与相应年龄和性别的平均身高相比,个体身高低于2个标准差(-2SD)者 [1]。身材矮小的儿童和青少年不仅有心理、情感、行为问题,更重要的是他们未来发生心血管事件的几率大大增加 [2] [3]。已有大量的研究表明身高与心血管疾病(cardiovascular disease, CVD)患病率之间的负相关关系 [4] [5] [6] [7]。其中,血压升高是CVD的主要危险因素 [8]。先前的队列研究发现高血压脑血管病的起源可追溯到童年,儿童和青春期血压越高,成年后患高血压的风险会增加 [9] [10] [11] [12]。因此,及早关注矮小症人群中血压水平并对其进行积极干预是非常必要的。

尿酸与高密度脂蛋白比值(the uric acid to high density lipoprotein cholesterol ratio, UHR)是由UA和HDL-C衍生出的一种新的标志物,与代谢综合征、2型糖尿病、非酒精性脂肪肝有关 [13] [14] [15] [16]。研究发现UHR是代谢紊乱和炎症状态增加的标志,被用于各种代谢疾病的预测指标 [16] [17]。众所周知,代谢综合征与血压升高密切相关 [18]。并且近来研究表明炎症反应也是导致血压升高的潜在机制。那么,UHR与血压可能相关 [19]。最新的一项横断面队列研究便证实了这一点:Gulali Aktas等 [20] 通过对高血压患者进行分组并与健康组对比发现,高血压控制不佳组UHR显著升高,并得出UHR > 11%是预测血压控制不良的危险因素,UHR每升高一个单位,血压控制不良的风险增加7.3倍。

我们队列先前的研究表明,特发性矮小儿童和青少年的高水平的UA与收缩压(systolic pressure, SBP)升高有关 [21]。并且,近年来的医学文献中指出,高血压的患病风险与HDL-C水平呈负相关 [22]。韩国最近通过对2225名年龄在19岁至45岁以下的健康成年人的调查中发现健康受试者的HDL-C高于高血压前期受试者,而UA水平低于高血压前期受试者 [23]。UHR是UA和HDL-C的组合,比两者中的任何一种更有意义。然而,目前关于UHR与血压的关系研究较少,特别是在身材矮小、更容易患上心血管疾病的儿童中。因此,本研究探讨了矮小儿童和青少年UHR和SBP之间的关系。

2. 研究对象和方法

2.1. 研究对象

研究对象来自山东省生长发育疾病队列随访研究(http://www.chictr.org.cnChiCTR1900026510)。我们回顾了2013年1月1日至2021年12月31日在济宁医学院附属医院内分泌科就诊的矮小儿童和青少年的病历资料,并进行横断面分析。纳入标准为:与相应年龄和性别的平均身高相比,身高小于-2SD的个体。排除标准为:患有慢性疾病、骨骼发育不良、甲状腺功能障碍、小于胎龄和有其他已知原因的矮小包括努南综合征和特纳综合征,或接受生长激素(growth hormone, GH)治疗以及SBP、UA、HDL-C资料不全的患者。根据纳入和排除标准,1510名儿童青少年(男1029人,女481人),年龄10.38 ± 3.58岁入选。伦理审定由济宁医科大学附属医院伦理委员会批准。所有程序都是按照“赫尔辛基宣言”的道德标准进行。我们获得了代表我们研究参与者的监护人的书面知情同意。

2.2. 生物化学指标检测

2.2.1. 基本参数

所有参与者的身高由专门的人使用相同的身高测量仪(中国江苏南通百世实业有限公司)进行测量,允许误差范围为0.1 cm。每个参与者的身高都是在脱下帽子和鞋子后测量。根据中国同年龄同性别儿童身高中位数计算身高标准差积分(height standard deviation score, Height SDS) [24]。所有受试者的体重由专门的人使用相同的磅秤(中国广东香山衡器有限公司)测量,准确度在±0.1 kg以内。参与者的体重是穿着轻薄的衣服并在禁食状态下测量的。体重指数(body mass index, BMI)计算为体重(以公斤为单位)与身高(以米为平方)之比。青春期按Tanner分期进行体格检查。以下标准被用来定义青春期前:对于男孩,睾丸体积小于4毫升,没有阴毛;对于女孩,没有乳房发育,没有阴毛 [25] [26]。测量SBP和舒张压(diastolic pressure, DBP)的详细步骤如下:第1天早晨,受试者坐着休息至少5 min后,受训护士使用标准血压计在受试者坐着时测量两次血压,测量间隔不少于2 min,然后计算并记录SBP和DBP两次测量的平均值,如果两次测量之间的差值 > 5 mmHg,则再次测量,最后计算并记录SBP和DBP三次测量的平均值。

2.2.2. 激素测定及生化指标

实验室参数是从所有参与者采集的空腹血液样本中测量的。为了测量生长激素峰值,先后进行了两种类型的生长激素激发试验。第一项试验是左旋多巴激发试验,体重 < 30 kg的受试者口服0.25g,体重 ≥ 30 kg的受试者口服0.5 g。分别于0、30、60、90、120 min采血,并测定GH浓度。第二项试验是胰岛素低血糖试验,具体方法是皮下注射胰岛素0.1 U/kg,分别于0、15、30、60、90、120 min监测血糖和GH浓度。用化学发光法测定生长激素浓度(美国,Beckman Coulter,ACCESS2),灵敏度为0.010 μg/l。采用化学发光法(德国西门子(DPC IMMULITE 1000型分析仪)测定血清胰岛素样生长因子-1 (insulinlike growth factor, IGF-1)浓度,批内和批间变异系数分别为3.0%和6.2%。肾功能包括肌酐(creatinine, Cr)和UA、血脂指标包括总胆固醇(total cholesterol, TC)、HDL-C、低密度脂蛋白胆固醇(low density lipoprotein-cholesterol, LDL-C)、甘油三酯(trilaurate glycerin, TG)以及空腹血糖(fasting blood glucose, FBG)和肝功指标丙氨酸氨基转移酶(alanine aminotransferase, ALT)均采用发光免疫分析仪(Cobas e 602,罗氏,中国上海)测定。UHR为UA(mg/dl)/HDL-C(mg/dl)。

2.3. 统计学方法

所有分析均使用统计软件包R (http://www.R-project.org, R Foundation)和EmpowerStats (http://www.empowerstats.com,X & Y解决方案公司,波士顿,马萨诸塞州)进行。连续变量以平均值±标准差或中位数(四分位数范围)表示。分类变量显示为数字和百分比。采用单因素分析和多元回归分析探讨UHR与SBP的关系。我们使用单变量分析模型来确定UHR和SBP以及其他自变量之间的相关性的显著性。然后,在调整潜在混杂因素后,我们使用平滑曲线拟合研究了UHR和SBP之间的关系。最后,我们进一步应用多元分段线性回归模型来检验UHR和SBP之间的阈值关联性。P值 < 0.05 (双侧)有统计学意义。

3. 结果

3.1. 研究人群描述

表1描述了所有参与者的临床特征。我们共纳入1510名身材矮小的儿童和青少年,平均年龄在10.38岁 ± 3.58岁,其中男性1029名,女性481名;受试者UHR平均值为8.73% ± 3.31%,SBP平均值为105.75 ± 12.16 mmHg。

Table 1. A description of the study population

表1. 研究人群描述

3.2. 在受试者中,与SBP的相关因素

表2所示,采用一元线性回归分析临床参数与SBP的关系。在未调整模型中,UHR与SBP呈显著正相关(P < 0.0001)。与SBP呈显著相关的变量还有性别、年龄、Height SDS、体重、BMI、IGF-1、UA、Cr、TG、ALT和青春期(P < 0.05),SBP与GH峰值、FBG、HDL-C、LDL-C、TC无明显相关性(P > 0.05)。

Table 2. The univariate analysis related to SBP

表2. 与SBP有关的单因素分析

3.3. UHR与SBP的非线性关系

表3所示,通过阈值效应分析发现UHR的拐点为6.33%。当UHR ≥ 6.33%时,SBP水平随UHR增加而升高(β为0.33,95% CI为0.12,054;P = 0.0019)。当UHR < 6.33%时,SBP水平随UHR增加而降低(β为−0.85,95% CI为−1.78,0.08;P = 0.0736)。

Table 3. Analysis of the threshold effects of UHR versus SBP

表3. UHR与SBP的阈值效应分析

图1所示,在调整了性别、年龄、BMI和Tanner分期后,平滑曲线拟合显示UHR与SBP呈非线性关系。这条曲线有两个阶段的变化和一个拐点。当UHR水平小于拐点时,UHR与SBP呈负相关,但无统计学意义。当UHR大于拐点时,UHR与SBP呈正相关。

Figure 1. Relationship between UHR and SBP by smooth curve fitting

图1. UHR与SBP的平滑曲线拟合图

4. 讨论

在这项横断面研究中,我们观察到矮小儿童和青少年UHR与SBP之间存在非线性关系,UHR转折点为6.33%。当UHR大于6.33%时,UHR与SBP呈正相关。

在身材矮小的儿童和青少年中,我们观察到UHR与SBP呈正相关。这一结果与最新的临床研究结果一致,一项对高血压患者进行的横断面研究中表明,UHR水平升高可能与血压控制不良有关 [20]。此外,先前的研究表明,血压升高与慢性低度炎症有关,即使在儿童青少年中亦是如此,这说明,低度炎症在生命的早期便在动脉血压的调节中起重要作用 [27]。众所周知,高血压是代谢综合征的一个组成部分,换句话说,血压升高与代谢异常密切相关 [28] [29] [30]。因此,作为评估炎症和代谢状况的新指标UHR与SBP呈正相关是有意义的。

UA是嘌呤代谢的最终产物,主要由肾脏清除 [31]。饮食习惯在很大程度上影响UA的产生和代谢 [32]。在我们的研究过程中发现身材矮小的儿童和青少年存在许多不平衡的饮食习惯,如挑食、偏食和过量摄入高糖饮料,这都会导致UA水平升高。然而,儿童和青少年的高UA水平与SBP升高有关,这在我们先前的队列中也得到证实 [21] [33]。之前的动物实验证实,UA升高可通过阻断一氧化氮释放和肾素–血管紧张素系统的激活导致的内皮功能障碍,从而影响血压水平 [34]。为了评估童年高水平UA与成年后SBP的关系,韩国对449名儿童进行了至少2次随访观察,分别在3岁、5岁和7岁时评估UA、SBP,发现3岁和5岁UA水平都高的受试者在7岁时SBP最高 [35]。这提示从生命早期检测UA水平很重要,可以降低未来血压升高的风险。

UHR水平升高归因于UA水平升高和(或)HDL-C水平下降。HDL-C在保护心血管系统方面具有多效性,主要通过逆转胆固醇转运以减轻动脉粥样硬化负担 [36] [37]。除了在逆向转运胆固醇中起关键作用外,还具有一系列的功能特性,包括抗氧化、抗炎、血管扩张和调节葡萄糖稳态 [38]。在最近的医学文献研究中指出,高血压的发病风险与低水平的HDL-C有关 [39]。Setor K. Kunutsor等 [39] 对3988名无高血压病史的受试者进行平均10.7年的随访观察,HDL-C与高血压风险持续相反且独立相关。此外,最新的一项横断面研究发现,与健康受试者相比,高血压前期患者的HDL-C水平低,而UA水平较高 [23]。UHR是UA和HDL-C的组合,因此,血压随UHR的升高而升高。

UHR作为一种新的炎症和代谢指标,具有较高的敏感性和特异性 [17]。关于UHR与SBP之间的关系,目前文献报道较少,特别是在身材矮小、更容易出现代谢异常的儿童中。我们研究发现UHR和SBP之间存在非线性关系。通过阈值效应分析,我们发现UHR的拐点为6.33%,如果UHR值小于这个拐点,UHR和SBP之间的相关性不具有统计学意义。在拐点后,SBP随着UHR水平的升高而升高。至于为什么我们得出了与以前的文献不同的结论,我们推测种族异质性和不同的调整混杂因素也可能导致这种差异。我们的研究是基于身材矮小的儿童和青少年,因此我们应该仔细地将我们的结论推广到其他不同特征的群体。

这项研究也有一些局限性。首先,由于横断面研究设计,我们无法确定因果关系。其次,这项研究是在中国身材矮小的儿童和青少年中进行的,因此我们的结果不能外推到其他群体。第三,影响UHR及UA和HDL-C水平的因素很多,比如饮食状况,未来我们打算使用饮食问卷的方式来更好地评估身材矮小的儿童和青少年的饮食习惯。

综上所述,在调整了潜在的混杂因素后,我们描述了身材矮小的儿童和青少年UHR和SBP之间的非线性关系,当UHR水平达到拐点时,SBP与UHR水平的升高呈正相关,这一发现表明,在临床工作中我们应该关注UA和HDL-C水平,并为矮小儿童的诊疗提供重要依据。

文章引用

李广欣,张 梅. 中国矮小儿童和青少年尿酸与高密度脂蛋白胆固醇之比和收缩压的关系
Association between the Uric Acid to High Density Lipoprotein Cholesterol Ratio and Systolic Pressure in Chinese Short Stature Children and Adolescents[J]. 临床医学进展, 2022, 12(09): 8266-8274. https://doi.org/10.12677/ACM.2022.1291191

参考文献

  1. 1. Ji, Y.T., Li, L.L., Cai, S.Z., et al. (2022) Body Composition in Preschool Children with Short Stature: A Case-Control Study. BMC Pediatrics, 22, Article No. 98. https://doi.org/10.1186/s12887-022-03159-8

  2. 2. Aryayev, M., Sen-kivska, L. and Lowe, J.B. (2021) Psycho-Emotional and Behavioral Problems in Children with Growth Hormone Defi-ciency. Frontiers in Pediatrics, 9, Article ID: 707648. https://doi.org/10.3389/fped.2021.707648

  3. 3. Nelson, C.P., Hamby, S.E., Saleheen, D., et al. (2015) Genetically Determined Height and Coronary Artery Disease. The New England Journal of Medicine, 372, 1608-1618. https://doi.org/10.1056/NEJMoa1404881

  4. 4. Onat, A., Ornek, E., Can, G., et al. (2012) Short Stature Is an Independent Risk Marker for Mortality and Incident Coronary Heart Disease Only in Women: A Structural Relationship? Anadolu Kardiyoloji Dergisi, 12, 289-297. https://doi.org/10.5152/akd.2012.091

  5. 5. Park, C.S., Choi, E.K., Han, K.D., et al. (2018) Association between Adult Height, Myocardial Infarction, Heart Failure, Stroke and Death: A Korean Nationwide Population-Based Study. International Journal of Epidemiology, 47, 289-298. https://doi.org/10.1093/ije/dyx175

  6. 6. Moon, J., Hwang, I.C. and Han, S.H. (2020) Short Stature Is Associated with Higher Pulse Wave Velocity in Subjects without Overt Cardio-vascular Disease. Medicine (Baltimore), 99, e22219. https://doi.org/10.1097/MD.0000000000022219

  7. 7. Karhunen, P.J. and Meinander, T. (2015) Coronary Artery Disease: Complex Association between Height and CHD- Size Matters. Nature Reviews Cardiology, 12, 385-386. https://doi.org/10.1038/nrcardio.2015.80

  8. 8. Reges, O., Ning, H., Wilkins, J.T., et al. (2021) Association of Cu-mulative Systolic Blood Pressure with Long-Term Risk of Cardiovascular Disease and Healthy Longevity: Findings from the Lifetime Risk Pooling Project Cohorts. Hypertension, 77, 347-356. https://doi.org/10.1161/HYPERTENSIONAHA.120.15650

  9. 9. Yan, Y., Hou, D., Liu, J., et al. (2017) Childhood Body Mass Index and Blood Pressure in Prediction of Subclinical Vascular Damage in Adulthood: Beijing Blood Pres-sure Cohort. Journal of Hypertension, 35, 47-54. https://doi.org/10.1097/HJH.0000000000001118

  10. 10. Hao, G., Wang, X., Treiber, F.A., et al. (2017) Blood Pres-sure Trajectories from Childhood to Young Adulthood Associated with Cardiovascular Risk: Results from the 23-Year Longitudinal Georgia Stress and Heart Study. Hypertension, 69, 435-442. https://doi.org/10.1161/HYPERTENSIONAHA.116.08312

  11. 11. Urbina, E.M., Khoury, P.R., Bazzano, L., et al. (2019) Relation of Blood Pressure in Childhood to Self-Reported Hypertension in Adulthood. Hypertension, 73, 1224-1230. https://doi.org/10.1161/HYPERTENSIONAHA.118.12334

  12. 12. Azegami, T., Uchida, K., Arima, F., et al. (2021) Association of Childhood Anthropometric Measurements and Laboratory Parameters with High Blood Pressure in Young Adults. Hypertension Research, 44, 711-719. https://doi.org/10.1038/s41440-021-00615-3

  13. 13. Kosekli, M.A., Kurtkulagii, O., Kahveci, G., et al. (2021) The Association between Serum Uric Acid to High Density Lipoprotein-Cholesterol Ratio and Non-Alcoholic Fatty Liver Disease: The Abund Study. Revista da Associação Médica Brasileira (1992), 67, 549-554. https://doi.org/10.1590/1806-9282.20201005

  14. 14. Zhang, Y.N., Wang, Q.Q., Chen, Y.S., et al. (2020) Association between Serum Uric Acid to HDL-Cholesterol Ratio and Nonalcoholic Fatty Liver Disease in Lean Chinese Adults. In-ternational Journal of Endocrinology, 2020, Article ID: 5953461. https://doi.org/10.1155/2020/5953461

  15. 15. Aktas, G., Kocak, M.Z., Bilgin, S., et al. (2020) Uric Acid to HDL Cholesterol Ratio Is a Strong Predictor of Diabetic Control in Men with Type 2 Diabetes Mellitus. Aging Male, 23, 1098-1102. https://doi.org/10.1080/13685538.2019.1678126

  16. 16. Yazdi, F., Baghaei, M.H., Baniasad, A., et al. (2022) Inves-tigating the Relationship between Serum Uric Acid to High-Density Lipoprotein Ratio and Metabolic Syndrome. Endo-crinology, Diabetes & Metabolism, 5, e311. https://doi.org/10.1002/edm2.311

  17. 17. Kocak, M.Z., Aktas, G., Erkus, E., et al. (1992) Serum Uric Acid to HDL-Cholesterol Ratio Is A Strong Predictor of Metabolic Syndrome in Type 2 Diabetes Mellitus. Revista da Associ-ação Médica Brasileira, 65, 9-15. https://doi.org/10.1590/1806-9282.65.1.9

  18. 18. Safar, M.E., Balkau, B., Lange, C., et al. (2013) Hypertension and Vascular Dynamics in Men and Women with Metabolic Syndrome. Journal of the American College of Cardiology, 61, 12-19. https://doi.org/10.1016/j.jacc.2012.01.088

  19. 19. Palmu, J., Watrous, J.D., Mercader, K., et al. (2020) Eicosanoid In-flammatory Mediators Are Robustly Associated with Blood Pressure in the General Population. Journal of the American Heart Association, 9, e17598. https://doi.org/10.1161/JAHA.120.017598

  20. 20. Aktas, G., Khalid, A., Kurtkulagi, O., et al. (2022) Poorly Con-trolled Hypertension Is Associated with Elevated Serum Uric Acid to HDL-Cholesterol Ratio: A Cross-Sectional Cohort Study. Postgraduate Medicine, 134, 297-302. https://doi.org/10.1080/00325481.2022.2039007

  21. 21. Kou, S., Zhang, M., Ji, B., et al. (2021) Association between Systolic Blood Pressure and Uric Acid in Chinese Children and Adolescents with Idiopathic Short Stature: A Cross-Sectional Study. Journal of Human Hypertension, 35, 472-478. https://doi.org/10.1038/s41371-020-0362-0

  22. 22. Hwang, Y.C., Fujimoto, W.Y., Kahn, S.E., et al. (2019) Higher High Density Lipoprotein 2 (HDL2) to Total HDL Cholesterol Ratio Is Associated with a Lower Risk for Incident Hy-pertension. Diabetes & Metabolism Journal, 43, 114-122. https://doi.org/10.4093/dmj.2018.0053

  23. 23. Jang, I. (2021) Pre-Hypertension and Its Determinants in Healthy Young Adults: Analysis of Data from the Korean National Health and Nutrition Examination Survey VII. International Journal of Environmental Research and Public Health, 18, Article No. 9144. https://doi.org/10.3390/ijerph18179144

  24. 24. Li, H., Ji, C.Y., Zong, X.N., et al. (2009) Height and Weight Standardized Growth Charts for Chinese Children and Adolescents Aged 0 to 18 Years. Chinese Journal of Pediatrics, 47, 487-492.

  25. 25. Marshall, W.A. and Tanner, J.M. (1970) Variations in the Pattern of Pubertal Changes in Boys. Archives of Disease in Childhood, 45, 13-23. https://doi.org/10.1136/adc.45.239.13

  26. 26. Marshall, W.A. and Tanner, J.M. (1969) Variations in Pattern of Pubertal Changes in Girls. Archives of Disease in Childhood, 44, 291-303. https://doi.org/10.1136/adc.44.235.291

  27. 27. Syrenicz, A., Garanty-Bogacka, B., Syrenicz, M., et al. (2006) Rela-tion of Low-Grade Inflammation and Endothelial Activation to Blood Pressure in Obese Children and Adolescents. Neu-ro Enocrinology Letters, 27, 459-464.

  28. 28. Jung, J.Y., Oh, C.M., Choi, J.M., et al. (2019) Levels of Systolic and Dias-tolic Blood Pressure and Their Relation to Incident Metabolic Syndrome. Cardiology, 142, 224-231. https://doi.org/10.1159/000499867

  29. 29. Katsimardou, A., Imprialos, K., Stavropoulos, K., et al. (2020) Hyperten-sion in Metabolic Syndrome: Novel Insights. Current Hypertension Reviews, 16, 12-18. https://doi.org/10.2174/1573402115666190415161813

  30. 30. Lurbe, E. and Ingelfinger, J.R. (2016) Blood Pressure in Children and Adolescents: Current Insights. Journal of Hypertension, 34, 176-183. https://doi.org/10.1097/HJH.0000000000000790

  31. 31. Wang, Y., Hu, J.W., Lv, Y.B., et al. (2017) The Role of Uric Acid in Hypertension of Adolescents, Prehypertension and Salt Sensitivity of Blood Pressure. Medical Science Monitor, 23, 790-795. https://doi.org/10.12659/MSM.899563

  32. 32. Tang, O., Miller, E.R., Gelber, A.C., et al. (2017) DASH Diet and Change in Serum Uric Acid over Time. Clinical Rheumatology, 36, 1413-1417. https://doi.org/10.1007/s10067-017-3613-x

  33. 33. Lin, K.H., Yen, F.S., Chen, H.S., et al. (2021) Serum Uric Acid and Blood Pressure among Adolescents: Data from the Nutrition and Health Survey in Taiwan (NAHSIT) 2010-2011. Blood Pressure, 30, 118-125. https://doi.org/10.1080/08037051.2020.1848417

  34. 34. Mazzali, M., Hughes, J., Kim, Y.G., et al. (2001) Elevated Uric Acid Increases Blood Pressure in the Rat by a Novel Crystal-Independent Mechanism. Hypertension, 38, 1101-1106. https://doi.org/10.1161/hy1101.092839

  35. 35. Park, B., Lee, H.A., Lee, S.H., et al. (2017) Association between Serum Levels of Uric Acid and Blood Pressure Tracking in Childhood. American Journal of Hypertension, 30, 713-718. https://doi.org/10.1093/ajh/hpx037

  36. 36. Ouimet, M., Barrett, T.J. and Fisher, E.A. (2019) HDL and Re-verse Cholesterol Transport. Circulation Research, 124, 1505-1518. https://doi.org/10.1161/CIRCRESAHA.119.312617

  37. 37. Nagao, M., Nakajima, H., Toh, R., et al. (2018) Cardio-protective Effects of High-Density Lipoprotein beyond Its Anti-Atherogenic Action. Journal of Atherosclerosis and Thrombosis, 25, 985-993. https://doi.org/10.5551/jat.RV17025

  38. 38. Manandhar, B., Cochran, B.J. and Rye, K.A. (2020) Role of High-Density Lipoproteins in Cholesterol Homeostasis and Glycemic Control. Journal of the American Heart Association, 9, e13531. https://doi.org/10.1161/JAHA.119.013531

  39. 39. Kunutsor, S.K., Kieneker, L.M., Bakker, S., et al. (2017) The In-verse Association of HDL-Cholesterol with Future Risk of Hypertension Is Not Modified by Its Antioxidant Constituent, Paraoxonase-1: The PREVEND Prospective Cohort Study. Atherosclerosis, 263, 219-226. https://doi.org/10.1016/j.atherosclerosis.2017.06.353

  40. NOTES

    *通讯作者。

期刊菜单