Advances in Clinical Medicine
Vol. 13  No. 12 ( 2023 ), Article ID: 78483 , 7 pages
10.12677/ACM.2023.13122894

他汀类药物与新发糖尿病的风险、机制及 研究进展

王慧1,刘苗苗1,李南方2*

1新疆医科大学研究生院,新疆 乌鲁木齐

2新疆维吾尔自治区人民医院高血压中心,新疆高血压研究所,国家卫生健康委高血压诊疗研究重点实验室,新疆维吾尔自治区重点实验室“新疆高血压病研究实验室”,新疆高血压(心脑血管)疾病临床医学研究中心,新疆 乌鲁木齐

收稿日期:2023年11月27日;录用日期:2023年12月21日;发布日期:2023年12月29日

摘要

他汀类药物是3-羟基-3-甲基戊二酰辅酶A (3-hydroxy-3methylglutaryl-coenzyme A, HMG-CoA)还原酶抑制剂,通过降低低密度脂蛋白胆固醇,发挥对心脑血管的保护作用,目前主要用于心血管疾病的一级和二级预防。但是随着他汀类药物的广泛应用,其长期服用的安全性也日益引起人们的重视,近年来,研究发现他汀治疗有增加新发糖尿病的风险。本文主要综述了他汀类药物致新发糖尿病的可能机制及研究进展,旨在为临床用药提供参考。

关键词

他汀,2型糖尿病

Statins and the Risk, Mechanism and Research Progress of New Onset Diabetes Mellitus

Hui Wang1, Miaomiao Liu1, Nanfang Li2*

1School of Graduate, Xinjiang Medical University, Urumqi Xinjiang

2Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region “Hypertension Research Laboratory”, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi Xinjiang

Received: Nov. 27th, 2023; accepted: Dec. 21st, 2023; published: Dec. 29th, 2023

ABSTRACT

Statins are a kind of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, which play a protective role on cardiocerebrovascular by reducing low-density lipoprotein cholesterol (LDL-C) and have been widely utilized in the primary and secondary prevention of coronary atherosclerotic heart disease (ASCVD). However, with the widespread use of statins, the safety of long-term treatment with statins is also receiving increasing attention. Recent clinical studies have demonstrated that statin treatment increases the risk of new-onset type 2 diabetes. This article mainly reviews the possible mechanism and research progress on the risk of new-onset diabetes induced by statins, aiming to provide reference for clinical medication.

Keywords:Statins, Type 2 Diabetes

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

他汀类药物是3-羟基3-甲基戊二酰辅酶A (3-hydroxy-3-methyl lutaryl coenzyme A, HMG CoA)还原酶抑制剂,是治疗血脂异常的主要药物 [1] [2] ,除抑制血脂合成外,他汀类药物还具有抑制炎症反应、减轻血管重塑、改善血管内皮功能和稳定动脉粥样硬化斑块等多重作用,可以显著降低心血管疾病发生风险,研究表明,他汀类药物可以降低心肌梗死(优势比:0.66~0.78)、卒中(优势比:0.72~0.89)以及心血管疾病导致的死亡(优势比:0.76~0.91)的风险。据估计,他汀类药物在每1万名患者中大约可预防19例(15~23例)心肌梗死、9例(5~12例)中风和8例(4~12例)心血管疾病死亡 [3] 。一项meta分析提示他汀类药物治疗与主要血管事件发生率降低15%相关(HR 0.85,95%可信区间:0.73~0.98) [4] 故他汀目前已被广泛应用于冠状动脉粥样硬化性心血管疾病的一级预防和二级预防 [5] [6] 。然而近年来,随着他汀类药物的广泛使用,其长期服用的安全性也日益引起了人们的重视,多项研究指出他汀类药物有增加新发糖尿病(new-onset diabetes mellitus, NODM)的风险 [7] [8] ,2012年美国食品和药品监督管理局(FDA)、欧洲药品管理局明确将诱发新发糖尿病纳为他汀类药物的不良反应,警告他汀类药物治疗可以升高糖化血红蛋白A1c (glycosylated hemoglobin 1c, HbA1c)和空腹血糖,能增加糖尿病高危人群NODM风险。因此有关他汀类药物应用安全性问题引起人们的关注 [9] 。但目前他汀类药物对血糖的影响报道仍不一致,现就他汀类药物与糖尿病关系的研究进展及其相关机制做综述,旨在为临床合理选用该类药物提供依据。

2. 队列研究依据

Freeman等人在WOSCOPS试验(West of Scotland Coronary Prevention Study)中首次发现普伐他汀治疗与降低糖尿病发病风险之间具有重要的临床相关性。研究纳入6595例45~64岁的非糖尿病男性患者,每天给予普伐他汀40 mg,随访3.5~6.1年后,基线时没有糖尿病的5974名参与者中有139人患糖尿病,研究发现普伐他汀治疗能够降低糖尿病发生风险的30% (HR = 0.7, 95% CI: 0.50, 0.99, P = 0.042) [10] 。然而JUPITER (Justification for Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin)试验得出了与之截然相反的结论,JUPITER试验是第一个正式报告糖尿病风险增加的随机、双盲、安慰剂对照的他汀类药物研究,研究纳入17,802人,随机给予瑞舒伐他汀20 mg或安慰剂,随访5年后,在有一个或多个糖尿病危险因素(代谢综合征、空腹血糖受损、体重指数(BMI) ≥ 30 kg/m2、糖化血红蛋白A1c (HbA1c)在>6%的个体中,他汀类药物与糖尿病增加28% (HR = 1.28, 95% CI: 1.07~1.54, P = 0.01)相关。对于没有上述糖尿病危险因素的试验参与者,他汀类药物组糖尿病没有增加(HR = 0.99, 95% CI: 0.45~2.21, P = 0.99) [11] 。Dukyong Yoon、Nobuhiro Ooba、Hailong Li等人分别在韩国、日本及中国人群中,采用队列研究的方式探索他汀使用与新发糖尿病之间的关系,结果均表明暴露组糖尿病发病率高于非暴露组 [12] [13] [14] 。其中,Nobuhiro Ooba还将他汀类药物进一步分为低效力他汀类药物(辛伐他汀、氟伐他汀和普伐他汀)和高效力他汀类药物(阿托伐他汀、瑞舒伐他汀和匹伐他汀),研究结果提示两组他汀均增加糖尿病发病率,但高效力他汀更显著(HR = 2.61, 95% CI: 3.11~3.23, HR = 1.91, 95% CI: 1.38~2.64) [13] 。Fahim Abbasi团队开展了一项开放标签临床试验,观察大剂量阿托伐他汀(40 mg/天)治疗是否会增加胰岛素抵抗和/或减少胰岛素分泌。结果显示,与基线相比,阿托伐他汀使胰岛素抵抗(SSPG)中位数增加8% (P = 0.01),胰岛素分泌(ISRAUC)中位数增加9% (P < 0.001) [15] 。提示他汀可以通过增加胰岛素抵抗、减少胰岛素分泌导致糖尿病的发生。一项基于人群的男性代谢综合征(METSIM)队列的回顾性研究,旨在研究他汀类药物治疗与2型糖尿病风险相关的机制,纳入了2005~2010年在芬兰东部库奥皮奥的人口登记中随机选择的8749名基线未患糖尿病的中老年男性,随访5.9年后,得出他汀类药物通过降低胰岛素敏感性和胰岛素分泌使2型糖尿病的风险增加46%,其中辛伐他汀和阿托伐他汀以剂量依赖的方式降低胰岛素敏感性和胰岛素分泌 [16] 。

3. 循证依据

他汀类药物根据结构可分为亲水性和亲脂性他汀,亲水性他汀类药物包括普伐他汀、瑞舒伐他汀,亲脂性他汀类药物包括辛伐他汀、洛伐他汀及阿托伐他汀。研究结果表明,与亲水性他汀类药物相比,亲脂性他汀类药物导致新发糖尿病的风险略高,Sattar等于2010年首次发表他汀类药物诱发新发糖尿病相关研究的meta分析,这项meta分析基于13个随机对照试验,共91140名参与者,结果提示,他汀类药物致T2D事件的风险增加了9%。其中,亲脂性他汀(OR 1.10, 0.99~1.22, I2 = 0%)致糖尿病风险略高于较亲水性(OR 1.08, 0.98~1.20, I2 = 36%)他汀类药物 [17] 。Preiss和Thakker等人的meta分析也表明他汀类药物可使空腹血糖水平显著增加,致糖尿病风险增加12%。Preiss还在研究中表明高强度的他汀(阿托伐他汀、瑞舒伐他汀、辛伐他汀)较中等强度的他汀类药物(普伐他汀、匹伐他汀)更常与T2D事件相关 [18] [19] 。Erqou等人在meta分析发现,与对照组相比,服用他汀组在随访3.6年后HbA1c增加了0.12% [20] 。Alvarez-Jimenez等人也观察到了类似结果 [21] 。J.Y.Cui等人在糖尿病患者中对他汀类药物治疗对血糖控制的影响进行meta分析,结果显示与安慰剂相比,他汀类药物与HbA1c的增加有关。在2型糖尿病(T2DM)患者中,中等强度的匹伐他汀改善了血糖控制,而高强度的阿托伐他汀则恶化了血糖控制 [22] 。由此可见,他汀类药物既可以影响既往诊断糖尿病患者的血糖控制情况,也可以增加原本未患糖尿病人群的糖尿病发病风险。Swerdlow等人对15项研究进行了meta分析,共包括96,418名接受标准剂量他汀类药物治疗和接受安慰剂的受试者,以及4项研究包括32,752名接受高剂量他汀类药物治疗的受试者与中等剂量他汀类药物治疗的受试者。研究发现与安慰剂4.7%相比,接受他汀类药物的NODM发生率为5.3%,高剂量他汀类药物的NODM发生率为6.4%,而中等剂量他汀的NODM发生率为5.7% [23] 。基于以上研究结果,目前基本认为他汀类药物与新发糖尿病风险增加有关。

4. 他汀类药物致新发糖尿病的可能机制

关于他汀类药物增加糖尿病风险的机制还没有明确的共识,大多解释落入以下两个不同的方面。第一个涉及胰腺自身特有的机制,如胰岛素分泌的改变,离子通道电流的操纵,信号通路的调节,细胞内的炎症和氧化应激,以及β细胞功能障碍的遗传易感性。第二个涉及胰腺以外的关系,包括通过心肌细胞、肝细胞和脂肪细胞功能的改变而导致的胰岛素敏感性的变化,以及其他流行病学因素 [24] 。

4.1. 他汀影响胰岛素分泌

低密度脂蛋白受体(Low-Density Lipoprotein Receptor, LDLR)在胰腺B细胞功能障碍中起重要作用。他汀类药物通过HMG-CoA还原酶途径减少胆固醇的合成,导致胆固醇进入并积累在胰腺B细胞中,并通过葡萄糖诱导的钙信号通路损害B细胞的功能,同时较高浓度的低密度脂蛋白本身对胰岛B细胞也有毒性,导致胰腺胰岛素分泌受损,最终导致高血糖和T2D [25] [26] [27] 。也有研究表明,辛伐他汀可以通过多种机制减少正常糖浓度下葡萄糖刺激的MIN6b细胞的胰岛素分泌,包括抑制乙酰胆碱酯酶和GPR40通路 [28] 。在另一项研究辛伐他汀对小鼠MIN6细胞胰岛素分泌的影响中也得到了类似的结果,即高浓度的辛伐他汀显著减少了胰岛素的合成和分泌 [29] 。辅酶Q10是参与三磷酸腺苷(ATP)生成过程的电子传输链的一个组成部分,他汀类药物还可以通过减少辅酶Q10的水平导致三磷酸腺苷产生延迟,从而减少胰岛素的释放 [30] 。细胞内Ca2+浓度主要受电压门控钙通道的开放控制,诱导胰岛细胞分泌胰岛素。这些通道的功能障碍或水平变化可显著影响葡萄糖稳态 [31] 。Yada等人的研究证明辛伐他汀可直接抑制L型Ca2+通道,从而阻断葡萄糖诱导的大鼠胰岛细胞Ca2+信号。进而影响胰岛素分泌 [32] 。

尽管他汀类药物具有广为人知的抗炎作用,但它们破坏胆固醇的从头合成和脂类平衡被认为在胰岛β细胞内具有有害的炎症后果。有人认为,抑制HMG-CoA诱导低密度脂蛋白受体上调以补充耗尽的细胞内存储,这可能矛盾地导致细胞内胆固醇浓度增加 [33] 。在对这一概念的新探索中,研究人员对这一概念进行了一项新的研究,发现家族性高胆固醇血症(FH)患者的2型DM患病率显著低于他们未受影响的亲属(1.75%比2.93%;P < 0.001) [34] 。由于FH的高胆固醇血症与LDL受体胆固醇转运受损有因果关系,它与他汀类药物治疗相反,他汀类药物同时促进细胞内胆固醇摄取。因此得出,低密度脂蛋白受体介导的β细胞胆固醇内化增加与继发于这些病理性氧化过程的胰岛素分泌受损之间可能存在直接关系。

原蛋白转化酶枯草杆菌素/kexin9型(PCSK9)是一种主要由肝脏合成和分泌的蛋白质,LDLR已被确定为PCSK9的主要靶点;缺乏PCSK9的小鼠肝脏LDLR表达增加,导致循环低密度脂蛋白清除增加和低胆固醇血症,而PCSK9过表达导致血浆胆固醇水平增加两倍。PCSK9严格控制胰腺中LDLR的表达,可能有助于维持适当的生理平衡,以限制细胞中的胆固醇超载。反过来,PCSK9缺失导致胰岛中LDLR表达增加和胆固醇酯积累,从而损害胰岛素分泌 [35] 。

4.2. 增加胰岛素抵抗、降低胰岛素敏感性

胰岛素抵抗被认为是2型糖尿病发生发展的重要病理生理机制之一 [36] 。研究表明,骨骼肌是胰岛素刺激葡萄糖摄取的主要部位。葡萄糖转运蛋白GLUT4介导骨骼肌对葡萄糖的摄取。Grundwald等人研究了接受他汀类药物治疗的患者骨骼肌组织中GLUT4介导的葡萄糖摄取相关蛋白的表达,他们证明他汀类药物治疗会影响人骨骼肌原代肌管中AMPKA和AKT的活性,增加胰岛素抵抗 [37] 。此外,脂肪细胞释放脂联素,是一种血浆蛋白,可影响肝脏和肌肉细胞中碳水化合物和脂肪酸的新陈代谢。这种效应可以通过减少肝脏的糖异生和增加肌肉中葡萄糖的摄取和β-氧化来间接增加胰岛素抵抗,已有研究表明,他汀类药物引起的线粒体功能障碍会导致脂联素分泌受损,进而导致胰岛素抵抗 [24] 。Larsen等人(2013)研究了辛伐他汀治疗个体的口服糖耐量试验和解偶联蛋白3(UCP3),他们发现辛伐他汀治疗的受试者的葡萄糖耐受不良和UCP3降低同时发生,并假设他汀诱导的胰岛素抵抗是他汀诱导的UCP3降低的结果 [38] 。在空腹和餐后状态下,胰岛α细胞的功能对血糖调节也至关重要。事实上,α细胞中葡萄糖或胰岛素对胰高血糖素的抑制缺陷也被认为是2型糖尿病患者观察到的高血糖血症的潜在机制之一。研究表明,长期暴露于阿托伐他汀的胰腺α细胞表现出对胰高血糖素分泌的抑制显著受损,导致葡萄糖负荷后不受控制的高血糖血症,并伴随胰岛素不敏感 [24] [39] [40] 。METSIM研究也提示,他汀类药物使用者的胰岛素敏感性平均下降24%,且呈剂量依赖性 [16] 。

5. 结论

他汀类药物致新发糖尿病的相关研究已持续多年,随着研究不断深入越来越多的证据显示新发糖尿病存在一定相关性,这些研究大多认为他汀类药物通过使胰岛素分泌受损、加强胰岛素抵抗以及降低胰岛素敏感性这些途径进而导致糖尿病的发生。但长期以来,作为心血管疾病的一级预防和二级预防的一线用药,他汀类药物对心血管的保护作用也不容忽视,因此,临床医师在给予患者他汀类药物治疗前,需要根据患者自身是否有糖尿病危险因素分析判定,再谨慎选择药物和给药剂量,同时还要加强患者血糖的监测,依据血糖情况调整用药方案。患者也可以通过加强锻炼,改变生活方式,定期监测等方式来预防糖尿病或控制血糖水平。当然,随着研究的进展他汀诱导2型糖尿病的确切机制也会得到进一步揭示 ,这样可以实现治疗方案的个体化,更有效地为临床工作提供帮助。因此,目前仍需设计严格的试验进行进一步研究。

文章引用

王 慧,刘苗苗,李南方. 他汀类药物与新发糖尿病的风险、机制及研究进展
Statins and the Risk, Mechanism and Research Progress of New Onset Diabetes Mellitus[J]. 临床医学进展, 2023, 13(12): 20578-20584. https://doi.org/10.12677/ACM.2023.13122894

参考文献

  1. 1. Keni, R., Sekhar, A., Gourishetti, K., Nayak, P.G., Kinra, M., Kumar, N., et al. (2021) Role of Statins in New-Onset Diabetes Mellitus: The Underlying Cause, Mechanisms Involved, and Strategies to Combat. Current Drug Targets, 22, 1121-1128. https://doi.org/10.2174/1389450122666210120125945

  2. 2. Seo, W.W., Seo, S.I., Kim, Y., Yoo, J.J., Shin, W.G., Kim, J., et al. (2022) Impact of Pitavastatin on New-Onset Diabetes Mellitus Compared to Atorvastatin and Rosuvastatin: A Distributed Network Analysis of 10 Real-World Databases. Cardiovascular Diabetology, 21, Article No. 82. https://doi.org/10.1186/s12933-022-01524-6

  3. 3. Cai, T., Abel, L., Langford, O., Monaghan, G., Aronson, J.K., Stevens, R.J., et al. (2021) Associations between Statins and Adverse Events in Primary Prevention of Cardiovas-cular Disease: Systematic Review with Pairwise, Network, and Dose-Response Meta-Analyses. BMJ, 374, n1537. https://doi.org/10.1136/bmj.n1537

  4. 4. Strandberg, T.E. (2019) Role of Statin Therapy in Primary Prevention of Cardiovascular Disease in Elderly Patients. Current Atherosclerosis Reports, 21, Article No. 28. https://doi.org/10.1007/s11883-019-0793-7

  5. 5. Zhou, Q. and Liao, J.K. (2010) Pleiotropic Effects of Statins. Basic Research and Clinical Perspectives. Circulation Journal, 74, 818-826. https://doi.org/10.1253/circj.CJ-10-0110

  6. 6. Chamani, S., Kooshkaki, O., Moossavi, M., Rastegar, M., Soflaei, S.S., McCloskey, A.P., Banach, M. and Sahebkar, A. (2022) The Effects of Statins on the Function and Differentiation of Blood Cells. Archives of Medical Science, 19, 1314-1326. https://doi.org/10.5114/aoms/158546

  7. 7. Yang, G. and Schooling, C.M. (2023) Statins, Type 2 Diabetes, and Body Mass Index: A Univariable and Multivariable Mendelian Randomization Study. The Journal of Clinical Endocrinology & Metabolism, 108, 385-396. https://doi.org/10.1210/clinem/dgac562

  8. 8. Mansi, I.A., Chansard, M., Lingvay, I., Zhang, S., Halm, E.A. and Alvarez, C.A. (2021) Association of Statin Therapy Initiation with Diabetes Progression: A Retrospective Matched-Cohort Study. JAMA Internal Medicine, 181, 1562-1574. https://doi.org/10.1001/jamainternmed.2021.5714

  9. 9. Chogtu, B., Magazine, R. and Bairy, K.L. (2015) Statin Use and Risk of Diabetes Mellitus. World Journal of Diabetes, 6, 352-357. https://doi.org/10.4239/wjd.v6.i2.352

  10. 10. Freeman, D.J., Norrie, J., Sattar, N., Neely, R.D., Cobbe, S.M., Ford, I., et al. (2001) Pravastatin and the Development of Diabetes Mellitus: Evidence for a Protective Treatment Effect in the West of Scotland Coronary Prevention Study. Circulation, 103, 357-362. https://doi.org/10.1161/01.CIR.103.3.357

  11. 11. Ridker, P.M., Pradhan, A., MacFadyen, J.G., Libby, P. and Glynn, R.J. (2012) Cardiovascular Benefits and Diabetes Risks of Statin Therapy in Primary Prevention: An Analysis from the JUPITER Trial. The Lancet, 380, 565-571. https://doi.org/10.1016/S0140-6736(12)61190-8

  12. 12. Yoon, D., Sheen, S.S., Lee, S., Choi, Y.J., Park, R.W. and Lim, H.S. (2016) Statins and Risk for New-Onset Diabetes Mellitus: A Real-World Cohort Study Using a Clinical Re-search Database. Medicine (Baltimore), 95, e5429. https://doi.org/10.1097/MD.0000000000005429

  13. 13. Ooba, N., Setoguchi, S., Sato, T. and Kubota, K. (2017) Li-pid-Lowering Drugs and Risk of New-Onset Diabetes: A Cohort Study Using Japanese Healthcare Data Linked to Clin-ical Data for Health Screening. BMJ Open, 7, e015935. https://doi.org/10.1136/bmjopen-2017-015935

  14. 14. Li, H., Lin, H., Zhao, H., Xu, Y., Cheng, Y., Shen, P. and Zhan, S. (2018) Statins Use and Risk of New-Onset Diabetes in Hypertensive Patients: A Population-Based Retrospec-tive Cohort Study in Yinzhou District, Ningbo City, People’s Republic of China. Therapeutics and Clinical Risk Man-agement, 14, 823-832. https://doi.org/10.2147/TCRM.S158850

  15. 15. Abbasi, F., Lamendola, C., Harris, C.S., Har-ris, V., Tsai, M.S., Tripathi, P., et al. (2021) Statins Are Associated with Increased Insulin Resistance and Secretion. Ar-teriosclerosis, Thrombosis, and Vascular Biology, 41, 2786-2797. https://doi.org/10.1161/ATVBAHA.121.316159

  16. 16. Cederberg, H., Stančáková, A., Yaluri, N., Modi, S., Kuu-sisto, J. and Laakso, M. (2015) Increased Risk of Diabetes with Statin Treatment Is Associated with Impaired Insulin Sensitivity and Insulin Secretion: A 6 Year Follow-Up Study of the METSIM Cohort. Diabetologia, 58, 1109-1117. https://doi.org/10.1007/s00125-015-3528-5

  17. 17. Sattar, N., Preiss, D., Murray, H.M., Welsh, P., Buckley, B.M., de Craen, A.J.M., et al. (2010) Statins and Risk of Incident Diabetes: A Collaborative Meta-Analysis of Randomised Statin Trials. The Lancet, 375, 735-742. https://doi.org/10.1016/S0140-6736(09)61965-6

  18. 18. Preiss, D., Seshasai, S.R., Welsh, P., Murphy, S.A., Ho, J.E., Waters, D.D., et al. (2011) Risk of Incident Diabetes with Intensive-Dose Compared with Moderate-Dose Statin Therapy: A Meta-Analysis. JAMA, 305, 2556-2564. https://doi.org/10.1001/jama.2011.860

  19. 19. Thakker, D., Nair, S., Pagada, A., Zamdade, V. and Malik, A. (2016) Statin Use and the Risk of Developing Diabetes: A Network Meta-Analysis. Pharmacoepidemiology and Drug Safety, 25, 1131-1149. https://doi.org/10.1002/pds.4020

  20. 20. Erqou, S., Lee, C.C. and Adler, A.I. (2014) Statins and Gly-caemic Control in Individuals with Diabetes: A Systematic Review and Meta-Analysis. Diabetologia, 57, 2444-2452. https://doi.org/10.1007/s00125-014-3374-x

  21. 21. Alvarez-Jimenez, L., Morales-Palomo, F., Moreno-Cabañas, A., Ortega, J.F. and Mora-Rodrıguez, R. (2023) Effects of Statin Therapy on Glycemic Control and Insulin Resistance: A Systematic Review and Meta-Analysis. European Journal of Pharmacology, 947, Article ID: 175672. https://doi.org/10.1016/j.ejphar.2023.175672

  22. 22. Cui, J.Y., Zhou, R.R., Han, S., Wang, T.S., Wang, L.Q. and Xie, X.H. (2018) Statin Therapy on Glycemic Control in Type 2 Diabetic Patients: A Network Meta-Analysis. Journal of Clinical Pharmacy and Therapeutics, 43, 556-570. https://doi.org/10.1111/jcpt.12690

  23. 23. Swerdlow, D.I., Preiss, D., Kuchenbaeker, K.B., et al. (2015) HMG-Coenzyme Reductase Inhibition, Type 2 Diabetes, and Bodyweight: Evidence from Genetic Analysis and Ran-domised Trials. The Lancet, 385, 351-361. https://doi.org/10.1016/S0140-6736(14)61183-1

  24. 24. Guber, K., Pemmasani, G., Malik, A., Aronow, W.S., Yandrapalli, S. and Frishman, W.H. (2021) Statins and Higher Diabetes Mellitus Risk: Incidence, Proposed Mechanisms, and Clinical Implications. Cardiology in Review, 29, 314-322. https://doi.org/10.1097/CRD.0000000000000348

  25. 25. Perego, C., Da Dalt, L., Pirillo, A., Galli, A., Catapano, A.L. and Norata, G.D. (2019) Cholesterol Metabolism, Pancreaticb-Cell Function and Diabetes. BBA Molecular Basis of Dis-ease, 1865, 2149-2156. https://doi.org/10.1016/j.bbadis.2019.04.012

  26. 26. Takei, S., Nagashima, S., Takei, A., Yamamuro, D., Waka-bayashi, T., Murakami, A., et al. (2020) b-Cell-Specific Deletion of HMG-CoA (3-Hydroxy-3-methylglutaryl-coenzyme A) Reductase Causes Overt Diabetes Due to Reduction of b-Cell Mass and Impaired Insulin Secretion. Diabetes, 69, 2352-2363. https://doi.org/10.2337/db19-0996

  27. 27. Mbikay, M., Sirois, F., Mayne, J., Wang, G.-S., Chen, A., Dewpura, T., et al. (2010) PCSK9-Deficient Mice Exhibit Impaired Glucose Tolerance and Pancreatic Islet Abnormalities. FEBS Letters, 584, 701-706. https://doi.org/10.1016/j.febslet.2009.12.018

  28. 28. Yaluri, N., Modi, S., Lopez Rodrıguez, M., Stancakova, A., Kuusisto, J., Kokkola, T., et al. (2015) Simvastatin Impairs Insulin Secretion by Multiple Mechanisms in MIN6 Cells. PLOS ONE, 10, e0142902. https://doi.org/10.1371/journal.pone.0142902

  29. 29. Zhou, J., Li, W., Xie, Q., Hou, Y., Zhan, S., Yang, X., et al. (2014) Effects of Simvastatin on Glucose Metabolism in Mouse MIN6 Cells. Journal of Diabetes Research, 2014, Arti-cle ID: 376570. https://doi.org/10.1155/2014/376570

  30. 30. Yandrapalli, S., Malik, A., Guber, K., Rochlani, Y., Pemmasani, G., Jasti, M. and Aronow, W.S. (2019) Statins and the Potential for Higher Diabetes Mellitus Risk. Expert Review of Clinical Pharmacology, 12, 825-830. https://doi.org/10.1080/17512433.2019.1659133

  31. 31. Paseban, M., Butler, A.E. and Sahebkar, A. (2019) Mecha-nisms of Statin-Induced New-Onset Diabetes. Journal of Cellular Physiology, 234, 12551-12561. https://doi.org/10.1002/jcp.28123

  32. 32. Yada, T., Nakata, M., Shiraishi, T. and Kakei, M. (1999) Inhibition by Simvastatin, but Not Pravastatin, of Glucose-Induced Cytosolic Ca2+ Signalling and Insulin Secretion Due to Blockade of L-Type Ca2+ Channels in Rat Islet Beta-Cells. British Journal of Pharmacology, 126, 1205-1213. https://doi.org/10.1038/sj.bjp.0702397

  33. 33. Donath, M.Y., Böni-Schnetzler, M., Ellingsgaard, H., et al. (2009) Islet Inflammation Impairs the Pancreatic Beta-Cell in Type 2 Diabetes. Physiology (Bethesda), 24, 325-331. https://doi.org/10.1152/physiol.00032.2009

  34. 34. Besseling, J., Kastelein, J.J., Defesche, J.C., et al. (2015) Associ-ation between Familial Hypercholesterolemia and Prevalence of Type 2 Diabetes Mellitus. JAMA, 313, 1029-1036. https://doi.org/10.1001/jama.2015.1206

  35. 35. Da Dalt, L., Ruscica, M., Bonacina, F., Balzarotti, G., Dhyani, A., Di Cairano, E., et al. (2019) PCSK9 Deficiency Reduces Insulin Secretion and Promotes Glucose Intolerance: The Role of the Low-Density Lipoprotein Receptor. European Heart Journal, 40, 357-368. https://doi.org/10.1093/eurheartj/ehy357

  36. 36. Sattar, N. (2023) Statins and Diabetes: What Are the Connections? Best Practice & Research Clinical Endocrinology & Metabolism, 37, Article ID: 101749. https://doi.org/10.1016/j.beem.2023.101749

  37. 37. Grunwald, S.A., Haafke, S., Grieben, U., Kassne, U., Steinha-gen-Thiessen, E. and Spuler, S. (2022) Statins Aggravate the Risk of Insulin Resistance in Human Muscle. International Journal of Molecular Sciences, 23, Article No. 2398. https://doi.org/10.3390/ijms23042398

  38. 38. Larsen, S., Stride, N., Hey-Mogensen, M., Hansen, C.N., Bang, L.E., Bundgaard, H., et al. (2013) Simvastatin Effects on Skeletal Muscle: Relation to Decreased Mitochondrial Function and Glucose Intolerance. Journal of the American College of Cardiology, 61, 44-53. https://doi.org/10.1016/j.jacc.2012.09.036

  39. 39. Ahrén, B. (2015) Glucagon-Early Breakthroughs and Recent Dis-coveries. Peptides, 67, 74-81. https://doi.org/10.1016/j.peptides.2015.03.011

  40. 40. Urbano, F., Di Pino, A., Scicali, R., et al. (2019) Impaired Glucagon Suppression and Reduced Insulin Sensitivity in Subjects with Prediabetes Undergoing Atorvastatin Therapy. European Journal of Endocrinology, 181, 579-590. https://doi.org/10.1530/EJE-19-0173

  41. NOTES

    *通讯作者。

期刊菜单