﻿ 基于经典电磁理论的光子质量理论分析 Theoretical Analysis of Photon Quality Based on Classical Electromagnetic Theory

Modern Physics
Vol. 08  No. 06 ( 2018 ), Article ID: 27390 , 7 pages
10.12677/MP.2018.86031

Theoretical Analysis of Photon Quality Based on Classical Electromagnetic Theory

Yu Wang1, Guotong Sun2, Hao Wang1, Fuyun Ji1, Zuozhi Liu1, Yong Wan1*

1College of Physics Science, Qingdao University, Qingdao Shandong

2Qingdao No. 58 High School, Qingdao Shandong

Received: Oct. 12th, 2018; accepted: Oct. 25th, 2018; published: Nov. 1st, 2018

ABSTRACT

Photon is a gauge particle which has mass, energy and momentum. It has very high research value. Starting from the special theory of relativity, the relationship between mass and velocity, the relationship between mass and energy and the light quantum hypothesis of Einstein, this paper analyzes the concept of photons and the nature of the photon quality, and then finds that the rest mass of photons is zero while the movement quality is non-zero and the nature of the photon quality is the electromagnetic mass movement quality. In addition, this paper also gives two kinds of representation of photon energy and momentum in the vacuum and analyzes the difference and relationship between these two kinds of representation. Finally, this paper uses a new analysis method from the perspective of relationship between energy and momentum to discuss the changes of mass, momentum and energy when photons move from vacuum to the transparent medium, which makes it more comprehensive to discuss the quality of photons.

Keywords:Photon Quality, The Special Theory of Relativity, The Light Quantum Hypothesis, Energy, Momentum

1青岛大学物理科学学院，山东 青岛

2青岛58中学，山东 青岛

1. 引言

2. 光子的电磁理论基础

$m=\frac{{m}_{0}}{\sqrt{1-\frac{{V}^{2}}{{c}^{2}}}}$ (1)

$E=\frac{{m}_{0}{c}^{2}}{\sqrt{1-{\left(\frac{V}{c}\right)}^{2}}}={m}_{\gamma }{c}^{2}$ (2)

$E=h\nu$ (3)

3. 讨论

3.1. 光子静止质量为零的理论论证

$P=\frac{{m}_{0}V}{\sqrt{1-{\left(\frac{V}{c}\right)}^{2}}}$ (4)

${V}^{\prime }=\frac{V-U}{1-\frac{UV}{{c}^{2}}}$ (5)

${E}^{\prime }=\frac{{m}_{0}{c}^{2}\left(1-\frac{UV}{{c}^{2}}\right)}{\sqrt{\left(1-\frac{{U}^{2}}{{V}^{2}}\right)\left(1-\frac{{V}^{2}}{{c}^{2}}\right)}}=\frac{E-UP}{\sqrt{1-\frac{{U}^{2}}{{c}^{2}}}}$ (6)

$h{\nu }^{\prime }=\frac{h\nu -UP}{\sqrt{1-\frac{{U}^{2}}{{c}^{2}}}}$ (7)

$h{\nu }^{\prime }=h\nu \sqrt{\frac{c-U}{c+U}}$ (8)

$P=\frac{h\nu }{c}=\frac{E}{c}$ (9)

${E}^{2}={\left(\frac{E}{c}\right)}^{2}{c}^{2}+{m}_{0}^{2}{c}^{4}$ (10)

3.2. 光子运动质量的本质及分析

${m}_{\gamma }=\frac{{m}_{0}}{\sqrt{1-\frac{{V}^{2}}{{c}^{2}}}}$ (11)

${m}_{\gamma }=\frac{h\nu }{{c}^{2}}$ (12)

3.3. 光子在真空中的能量、动量表示方式

3.4. 光子在透明介质中的运动质量、能量和动量

$P=\frac{h}{\lambda }$ (13)

$\lambda =n{\lambda }_{0}$ ；另一种是Minkowski定义的： $\lambda =\frac{{\lambda }_{0}}{n}$ 。最近的研究表明，这两种情况都是正确的，而前者与动

${P}^{\prime }=\frac{h}{{\lambda }^{\prime }}=\frac{h}{n\lambda }$ (14)

${m}^{\prime }=\frac{h\nu }{{c}^{2}}\sqrt{1-\frac{1}{{n}^{2}}}=\frac{h}{\lambda c}\sqrt{1-\frac{1}{{n}^{2}}}$ (15)

3.5. 实验检验光子静止质量的研究进展

${m}_{0}\approx \frac{\hslash }{\Delta t\cdot {c}^{2}}\approx {10}^{-61}\text{\hspace{0.17em}}\text{kg}$ ，上面的估算式中 $\Delta t$ 取宇宙的年龄，即1010年。显然实验探测如此小的质量十分困

3.6. 关于光子静止质量的另一点讨论

Table 1. Representative testing results and methods of photon rest mass experiments

${w}^{2}-{k}^{2}{c}^{2}=0$ (16)

${w}^{2}-{w}_{0}^{2}={k}^{2}{c}^{2}$ (17)

${w}_{0}=\sqrt{\frac{4\text{π}{e}^{2}n}{{m}_{e}}}$ (18)

4. 结论

Theoretical Analysis of Photon Quality Based on Classical Electromagnetic Theory[J]. 现代物理, 2018, 08(06): 277-283. https://doi.org/10.12677/MP.2018.86031

1. 1. 郭硕鸿. 电动力学[M]. 第2版. 北京: 高等教育出版社, 1997.

2. 2. 黄志洵. 光子是什么[J]. 前沿科学, 2016, 10(3): 75-96.

3. 3. 王成艳. 光子静止质量的分析[J]. 黄冈师范学院学报, 2004(3): 71-93.

4. 4. 吕军. 光的物理性质[J]. 教育学文摘, 2016, 12.

5. 5. 赵坚. 光子在真空和透明介质中的能量和动量问题[J]. 物理通报, 2014(12): 105-108.

6. 6. 涂良成, 罗俊. 实验检验光子静止质量的研究进展[J]. 物理, 2006, 35(9).

7. 7. 吴齐全. 光子静止质量上限的实验检测[J]. 物理教师, 2008, 29(1): 58.

8. 8. 刘华. 光子静止质量和能量特性的相对论证明[J]. 广西教育学院学报, 2007(5): 79-80.

9. 9. Tu, L.C., Luo, J. and Gillies, G.T. (2005) The Mass of the Photon. Reports on Progress in Physics, 68, 77-130.

10. 10. Arbab, A.I. (2016) Propagation of Photons in a Medium and Refractive Index. OPTIK, International Journal for Light and Electron Optics, 127, 10758-10765. https://doi.org/10.1016/j.ijleo.2016.08.084

11. 11. Eddington, A.S. (1931) Preliminary Note on the Masses of the Electron, the Proton, and the Universe. Mathematical Proceedings of the Cambridge Philosophical Society, 27, 15-19. https://doi.org/10.1017/S0305004100009269

12. 12. Arbab, A.I. (2015) Derivation of Dirac, Klein-Gordon, Schrodinger, Diffusion and Quantum Heat Transport Equations from a Universal Quantum Wave Equation. EPL, 92, 2333-2358.

13. 13. Arbab, A.I. (2015) The Quaternionic Quantum Mechanics. Applied Physics Research, 3, 160.

14. 14. Tan, C.Z. (2015) Imaginary Rest Mass of a Photon in a Dispersive Medium. OPTIK, International Journal for Light and Electron Optics, 126, 5304-5306. https://doi.org/10.1016/j.ijleo.2015.09.009

15. NOTES

*通讯作者。