﻿ 宽广温度压强下RbxC60 (x = 3,4,6)的热力学性质 Thermodynamic Properties of RbxC60 (x = 3,4,6) at Wide Temperature and Pressure

Applied Physics
Vol.07 No.11(2017), Article ID:22725,7 pages
10.12677/APP.2017.711039

Thermodynamic Properties of RbxC60 (x = 3,4,6) at Wide Temperature and Pressure

Wei Yang*, Hong Liu, Songhui Dai

School of Information Science and Engineering, Chengdu University, Chengdu Sichuan

*通讯作者。

Received: Oct. 29th, 2017; accepted: Nov. 10th, 2017; published: Nov. 20th, 2017

ABSTRACT

Based on the free volume theory (FVT), the thermodynamic properties of RbxC60 (x = 3,4,6) are studied by means of analytic mean field approximation. According to the double exponential potential model and the compression experimental data in the literature, three sets of potential parameters are obtained, and the corresponding potential function curves are compared and analyzed. The thermodynamic properties of three alkali metal doped fullerene RbxC60 (x = 3,4,6), including thermal expansion, bulk modulus, constant volume heat capacity and Helmholtz free energy, were calculated and analyzed under wide temperature and pressure. Our method is not only simple in calculation, but also in good agreement with the experimental data in the literature.

Keywords:Free Volume Theory, RbxC60 (x = 3,4,6), Exponential Potential, Thermodynamic Properties

1. 引言

2. 自由体积模型

$F=F\left(V,T\right)=-NkT\left[\frac{3}{2}\mathrm{ln}\left(2\pi \mu kT/{h}^{2}\right)+\mathrm{ln}{v}_{f}\right]$ (1)

${v}_{f}={v}_{f}\left(V,T\right)=4\pi {\int }_{\text{}0}^{\text{}{r}_{m}}\mathrm{exp}\left[-g\left(r,V\right)/kT\right]\text{}{r}^{2}dr$ (2)

$g\left(r,V\right)$ 表示某一分子漂移距中心分子为 $r$ 时的势能。基于物理意义上的考虑，用这种近似方法将平均势能用冷能来表示，可以很方便地建立RbxC60 (x = 3,4,6)的解析状态方程并对其热力学性质研究。

3. 势函数的选取

$\epsilon \left(s\right)={\epsilon }_{0}\cdot \left[{C}_{1}{e}^{{\lambda }_{1}\left(1-s\right)}+{C}_{2}{e}^{{\lambda }_{2}\left(1-s\right)}\right],s=r/{r}_{0}$ (3)

$\left\{\begin{array}{l}{C}_{1}={\lambda }_{2}/\left({\lambda }_{1}-{\lambda }_{2}\right)\hfill \\ {C}_{2}=-{\lambda }_{1}/\left({\lambda }_{1}-{\lambda }_{2}\right)\hfill \end{array}$ (4)

4. 计算结果分析

Figure 1. Compression curves at 296 K and 2800 K, experimental data [10] (small circle)

Figure 2. Potential function curves of RbxC60 (x = 3,4,6)

Figure 3. Variations of bulk modulus versus pressure

Figure 4. Variations of free energy versus density

Table 1. The nearest-neighbor distance a in nm, linear thermal expansion coefficient α in 10−5 K−1, the bulk modulus BT in GPa, the heat capacity CV in kJ∙mol−1∙K−1

5. 结论

Thermodynamic Properties of RbxC60 (x = 3,4,6) at Wide Temperature and Pressure[J]. 应用物理, 2017, 07(11): 313-319. http://dx.doi.org/10.12677/APP.2017.711039

1. 1. Stetzer, M.R., Heiney, P.A. and Stephens, P.W. et al. (2000) Structure and Phase Transitions of the 6,6-Cyclopropane Isomer of C61H2. Physical Review B, 62, 9305-9316. https://doi.org/10.1103/PhysRevB.62.9305

2. 2. Sundqvistm, B. (1995) Phase Diagram, Structure, and Disorder in C60 below 300 K. Solid State Communications, 93, 109-112. https://doi.org/10.1016/0038-1098(94)00750-0

3. 3. Yao, M.G., Sundqvist, B. and Wagberg, T. (2009) Reversible Pressure-Driven Nanoscale Phase Separation in Rb4C60. Physical Review B, 79, 081403-081406. https://doi.org/10.1103/PhysRevB.79.081403

4. 4. Kuntscher, C.A. and Bendele, G.M. (1997) Alkali-Metal Stoichiometry and Structure of K4C60 and Rb4C60. Physical Review B, 55, 3366-3369. https://doi.org/10.1103/PhysRevB.55.R3366

5. 5. Zhou, O., Vaughan, G.B.M., Zhu, Q. et al. (1992) Compressibility of M3C60 Fullerene Superconductors: Relation between Tc and Lattice Parameter. Science, 255, 833-835. https://doi.org/10.1126/science.255.5046.833

6. 6. Diederichs, J., Schilling, J.S., Herwig, K.W., et al. (1997) Dependence of the Superconducting Transition Temperature and Lattice Parameter on Hydrostatic Pressure for Rb3C60. Journal of Physics and Chemistry of Solids, 58, 123-132.

7. 7. Fietz, W.H., Ludwigand, H.A., Hornung, F.W., et al. (1994) The Compressibility of Rb3C60 Derived by X-Ray Experiments under High Pressure. Physica C, 234, 45-48. https://doi.org/10.1016/0921-4534(94)90052-3

8. 8. Kerkoud, R. Auban-Senzier, P., Jérome, D., et al. (1996) Insulator-Metal Transition in Rb4C60 under Pressure from 13C-NMR. Journal of Physics and Chemistry of Solids, 57, 143-152. https://doi.org/10.1016/0022-3697(95)00113-1

9. 9. Poloni, R., Fernandez-Serra, M.V., Le Floch, S., et al. (2008) Pressure-Induced Deformation of the C60 Fullerene in Rb6C60 and Cs6C60. Physical Review B, 77, 035429. https://doi.org/10.1103/PhysRevB.77.035429

10. 10. Sabouri-Dodaran, A.A., Marangolo, M., Bellin, C. et al. (2004) Equations of state of RbxC60 (x=3, 4, and 6). Physical Review B, 70, 174114. https://doi.org/10.1103/PhysRevB.70.174114

11. 11. 金家骏. 分子热力学[M]. 北京: 科学出版社, 1990: 255-264.

12. 12. Wang, Y., Chen, D. and Zhang, X. (2000) Calculated Equation of State of Al, Cu, Ta, Mo, and W to 1000 GPa. Physical Review Letter, 84, 3220-3223. https://doi.org/10.1103/PhysRevLett.84.3220

13. 13. Sun, J.X., Caiand, L.C., Wu, Q. et al. (2005) Equivalence of the Analytic Mean-Field Potential Approach with Free-Volume Theory and Verification of Its Applicability Based on the Vinet Equation of State. Physical Review B, 71, 024107. https://doi.org/10.1103/PhysRevB.71.024107

14. 14. Yang, W., Sun, J. and Yu, X.F. (2009) Thermodynamic Properties of Cubic Boron Nitride Based on an Analytic Mean Field Approach. The European Physical Journal B, 71, 211-217. https://doi.org/10.1140/epjb/e2009-00300-7

15. 15. Girifalco, L.A. (1992) Molecular Properties of C60 in the Gas and Solid Phases. Journal of Physical Chemistry, 96, 858-861. https://doi.org/10.1021/j100181a061