﻿ 搅拌摩擦焊接过程搅拌头几何对搅拌头受力的影响 The Influence of Tool Geome-try on the Force Exerted on the Tool in Friction Stir Welding

Applied Physics
Vol. 09  No. 04 ( 2019 ), Article ID: 29736 , 8 pages
10.12677/APP.2019.94021

The Influence of Tool Geometry on the Force Exerted on the Tool in Friction Stir Welding

Wei Zhang1, Yang Pan2, Rui Han2, Qipeng Liu1*, Yuehua Gao2

1School of Civil Engineering, Dalian Jiaotong University, Dalian Liaoning

2College of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian Liaoning

Received: Mar. 28th, 2019; accepted: Apr. 10th, 2019; published: Apr. 17th, 2019

ABSTRACT

Based on DEFORM-3D software, a fully coupled thermo-mechanical modeling of friction stir welding for AZ91 magnesium alloy plate is established, and tool forces in friction stir welding is simulated. The simulation results are compared with the experimental results to verify the rationality of the modeling. The influences of concave angle of shoulder and cone angle of pin, as well as welding parameters on the tool forces during friction stir welding were analyzed in detail. The results show that the geometrical shape and welding parameters have a significant influence on the tool forces during friction stir welding. Shoulder concave angle will reduce the forces and pin cone angle will increase the forces on the tool. The forces increase with the increase of welding speed, and decrease with the increase of rotating speed.

Keywords:Friction Stir Welding, Tool Geometry, Welding Parameters, Tool Force

1大连交通大学，土木工程学院，辽宁 大连

2大连交通大学，机车车辆工程学院，辽宁 大连

1. 引言

2. 模型介绍

2.1. 有限元模型

Figure 1. The geometrical characteristics of the different tools

Table 1. The parameter of tool geometry

Figure 2. Mesh of the tool and workpiece

2.2. 材料模型

$\stackrel{˙}{\stackrel{¯}{\epsilon }}=A{\left[\mathrm{sinh}\left(\alpha {\stackrel{¯}{\sigma }}_{y}\right)\right]}^{n}{e}^{\left(-\Delta H/R{T}_{abs}\right)}$ (1)

AZ91镁铝合金板材的热容为2.12 N/mm2/℃，热导率为84 W/m/℃。搅拌头的热容为4.5 N/mm2/℃，热导率为24.5 W/m/℃。

2.3. 边界条件

$f=m\stackrel{¯}{\tau }$ (2)

3. 结果分析

3.1. 模型验证

Figure 3. Comparison of temperature value in stimulation and experiment

Figure 4. Comparison of tool force in axial direction between simulation and experiment

3.2. 不同形状搅拌头受力分析

Figure 5. Forces of different tools in axial direction

Figure 6. Forces of different tools in longitudinal direction

Figure 7. Forces of different tools in transverse direction

Figure 8. The maximum temperature of workpiece under different tools in welding process

3.3. 不同焊接参数条件下搅拌头受力分析

Figure 9. Tool Forces in the axial direction with different rotational speed in stimulation

Figure 10. Tool forces in axial direction with different welding speed

4. 结论

1) 采用全热力耦合的方法对搅拌头受力进行预测是可行的；

2) 搅拌头几何形状是影响搅拌头受力的重要因素，相较于平轴肩圆柱形搅拌头，采用带锥角的搅拌针会使搅拌头受力增加，而采用带凹角的轴肩会使搅拌头受力减小；

3) 焊接工艺参数的改变会影响搅拌头受力，焊速升高，搅拌头受力增大；转速升高，搅拌头受力减小。

The Influence of Tool Geome-try on the Force Exerted on the Tool in Friction Stir Welding[J]. 应用物理, 2019, 09(04): 169-176. https://doi.org/10.12677/APP.2019.94021

1. 1. Thomas, W.M., Nicholas, E.D., Needham, J.C., et al. (1991) Friction Stir Butt Welding: International Patent Application No. PCT/GB92102203 and Great Britain Patent. Application No.9125978.8.

2. 2. 万震宇, 张昭. 基于网格重剖分的搅拌摩擦焊接数值模拟及搅拌头受力分析[J]. 塑性工程学报, 2012, 19(2): 107-112.

3. 3. 谭治军, 吴奇, 张昭. 搅拌摩擦焊中不同搅拌头形状对搅拌头疲劳与损伤影响的数值模拟[J]. 热加工工艺, 2016, 45(19): 171-178.

4. 4. 谭治军, 吴奇, 张昭. 不同铝合金搅拌摩擦焊搅拌头磨损的数值模拟[J]. 热加工工艺, 2017,46(7): 206-213.

5. 5. Pashazadeh, H., Teimournezhad, J. and Masoumi, A. (2014) Numerical Investigation on the Mechanical, Thermal, Metallurgical and Material Flow Characteristics in Friction Stir Welding of Copper Sheets with Experimental Verification. Materials and Design, 55, 619-632.

6. 6. Jain, R., Pal, S.K. and Singh, S.B. (2014) Finite Element Simu-lation of Temperature and Strain Distribution in Al2024 Aluminum Alloy by Friction Stir Welding. 5th International & 26th All India Manufacturing Technology Design and Research Conference (AIMTDR 2014), Guwahati, 12-14 De-cember 2014.

7. 7. Jain, R., Pal, S.K. and Singh, S.B. (2016) A Study on the Variation of Forces and Temperature in a Friction Stir Welding Process: A Finite Element Approach. Journal of Manufacturing Processes, 23, 278-286.

8. 8. Su, H., Wu, C.S., Pittner, A., et al. (2013) Simultaneous Measurement of Tool Torque, Traverse Force and Axial Force in Friction Stir Welding. Journal of Manufacturing Processes, 15, 495-500.

9. 9. Sibalic, N., Vukcevic, M., Janjic, M., et al. (2016) A Study on Friction Stir Welding of AlSi1MgMn Aluminum Alloy Plates. Tehnicki Vjesnik, 23, 653-660.

10. 10. Asadi, P., Mahdavinejad, R.A. and Tutunchilar, S. (2011) Simulation and Experimental Investigation of FSP of AZ91 Magnesium Alloy. Materials Science and Engineering A, 528, 6469-6477.

11. NOTES

*通讯作者。