Material Sciences
Vol. 11  No. 06 ( 2021 ), Article ID: 43228 , 15 pages
10.12677/MS.2021.116083

有机羰基化合物在钠离子电池中的研究进展

李舒冰1,2,费奔3*

1东华大学纤维材料改性国家重点实验室,上海

2东华大学高分子系,上海

3复旦大学材料系,上海

收稿日期:2021年4月22日;录用日期:2021年6月11日;发布日期:2021年6月18日

摘要

钠–有机电池以有机材料作为钠离子电池的电极,由于其丰富的钠资源和对环境友好的特点,是下一代可持续、多功能储能装置中具有吸引力的替代锂离子电池。然而,用于钠离子电池的有机物也遇到了一些问题,如氧化还原电位低、在电解质中的溶解度高、电导率低。因此,改变芳香族体系/吸附吸电子基团,构建聚合物,并结合导电基质是有效的策略。本文从功能导向设计的角度,从小分子化合物到聚合物,再到复合材料,对近年来用于钠–有机电池的有机羰基化合物进行了总结和简要讨论。本综述对羰基有机柔性电极的钠–有机电池进行了系统的综述。

关键词

钠–有机电池,聚合物,羰基有机柔性电极

Research Progress of Organic Carbonyl Compounds on Sodium-Ion Battery

Shubing Li1,2, Ben Fei3*

1State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, Shanghai

2Polymer Department of Donghua University, Shanghai

3Department of Material Science, Fudan University, Shanghai

Received: Apr. 22nd, 2021; accepted: Jun. 11th, 2021; published: Jun. 18th, 2021

ABSTRACT

Sodium-organic batteries, which use organic materials as the electrodes in sodium-ion batteries, are an attractive alternative to conventional lithium-ion batteries for next-generation sustainable and versatile energy storage devices owing to the abundant sodium resources and environmental friendly features. However, organics used in sodium-ion batteries also encounter some issues such as low redox potential, high solubility in the electrolyte, and low conductivity. In response, altering the aromatic system/attaching electron-withdrawing groups, constructing polymers, and incorporating a conductive matrix are effective strategies. This review summarizes and briefly discusses recent organic carbonyl compounds for sodium-organic batteries from the viewpoint of function-oriented design, including function evolution from small-molecule compounds to polymers, then composites, and finally flexible electrodes. In particular, as a timely overview, carbonyl-based organic flexible electrodes for sodium-organic batteries are also highlighted for the first time.

Keywords:Sodium-Organic Batteries, Polyimide, Carbonyl-Based Organic Flexible Electrodes

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

随着化石燃料资源的日益枯竭和环境污染问题的日益严重,开发低成本、高效、环境友好的可再生能源成为全球优先考虑的问题。为此,人们认为各种能源储存和转换技术在减少对化石燃料的依赖和减少环境污染方面越来越重要。作为最重要的储能技术之一,锂离子电池(LIBs)已经主导了便携式电子产品市场,现在正扩展到柔性可穿戴电子设备和电动汽车(EV)在这一背景下 [1] [2] [3] [4] [5],锂电池面临着两大挑战:锂资源的稀缺和矿物资源的枯竭。就锂资源的有限性而言,众所周知,锂的稀缺性和全球分布的不平衡性,锂离子电池的扩大应用可能会导致锂的价格飞涨,在可预见的未来 [6] [7] [8],锂的供应可能会耗尽因此,钠资源更加丰富、成本更低、分布更广,这使得碳酸钠的成本远低于碳酸锂 [9] - [19],这为发展钠离子电池(SIB)作为锂离子电池的替代品提供了一个令人信服的理由。

就耗竭矿物资源而言,目前的LIB/SIB是由耗竭矿物资源制备的无机材料构成的,合成时会消耗能源并产生碳排放,因此大规模使用会带来成本和环境问题。与之形成鲜明对比的是,有机电活性材料具有许多优点,包括更好的氧化还原稳定性、多电子反应、结构多样性、环境友好、易于回收/处置等特点。这些有机化合物可以直接从可再生资源中获得,也可以从其衍生物中制备,可以减少能源消耗和二氧化碳的释放此外,还可以利用有机合成方法通过调整结构来设计氧化还原性能和多电子反应因此,有机电极材料可以用来实现新一代绿色电池 [20] - [30]。由于上述两种策略的整合几乎可以被视为提供完全可持续和绿色的储能系统,因此开发用于SIB的有机电活性材料的热潮正在兴起。

鉴于有机SIB的迅速发展,已经有一些关于有机二次电池材料的综述 [31] [32]。我们从功能导向设计的角度来总结和简要讨论近期用于SIB的有机羰基化合物。本文综述了羰基小分子化合物、聚合物、复合材料以及用于SIB的柔性电极的研究进展。

2. 小分子化合物

到目前为止,含N杂环化合物 [33] - [38]、有机自由基化合物 [39] [40] [41]、和有机羰基化合物等各种不同基团的有机化合物已被证明是LIBs/SIBs的电活性电极材料 [24] - [32]。其中羰基化合物以其独特的多电子反应和高比容量等优势引起了广泛的关注。目前报道的电活性羰基化合物一般可以分为三种类型,即酸酐(示意图1(a))、醌类(示意图1(b))和羧酸类(示意图1(c))。对于酸酐,酸酐直接与芳香多环相连,芳香多环可以通过离域分散负电荷。对于醌类,羰基直接与共轭环相连,通过还原可以形成额外的芳香体系。对于小分子化合物羧酸盐,羧酸钠与芳香环相连,可以生成含二钠的共轭体系。相比之下,酸酐具有较高的比容量,醌类具有较高的氧化还原电位,而羧酸类具有较低的Na插入电压,只能作为阳极材料。所有的有机羰基化合物都可以直接从可再生资源中获得或由其衍生物制备。在这一部分中,详细讨论了三种典型的小分子羰基化合物作为SIB活性电极材料。

Scheme 1. Schematic diagram for the redox mechanisms of representative organic carbonyl compounds for SIBs

示意图1. 代表性有机羰基化合物在SIB中的氧化还原机理示意图

2.1. 酐

具有芳香核和两个酸酐基团的酸酐基有机电极材料,如邻苯二甲酸二酐(PMDA),1,4,5,8-萘四羧酸二酐(NTCDA),和苝3,4,9,10-四羧基二酐(PTCDA)由于其多电子反应和高比容量而得到了广泛的研究特别是PTCDA受到了广泛关注。例如,Luo等人已经证明,没有任何修饰的商用PTCDA可以用作SIB的极具前景的阴极 [42]。此外,Wang等人通过将具有芳香核的酸酐基团与其他没有酸酐基团的芳香族化合物进行比较,证明了酸酐基团的重要性 [43]。在这种结构中,芳香核可以与羰基形成共轭结构,促进氧化还原烯醇化反应,芳香羰基可以捕获Na+离子形成烯酸钠,这也可以促进Na+离子插入缩合芳香结构中。理想情况下,这种含有两个酸酐基团的芳香酸酐可以进行四电子还原,其理论比容量可超过240 mAh∙g−1 [44]。事实上,在1~3 V的电位范围内,只有接近150 mAh∙g−1的可逆容量才能实现,而在0.6 V以下可以获得额外的容量(图1(a)) [42] [43] [44] [45]。甚至非常高容量1017 mAh∙g−1在第一周期可以深放电至0.01 V,这都是因为固体电解质界面的形成和钠离子插入到浓缩的芳香结构 [42] [43] [44] [45],然而,深放电可能破坏PTCDA的晶体结构,因此,在5个循环后,容量急剧下降到300 mAh∙g−1 [42]。此外,PTCDA对SIB的工作电压也应考虑,因为Na固有的正还原电位比Li高0.3 V。众所周知,有机分子的氧化还原电位可以通过调节其最高占据分子轨道(HOMO)和最低占据分子轨道(LUMO)的能级来调节。根据分子轨道理论,低LUMO能量意味着更大的EA (电子亲和能)和更好的氧化性,从而更高的还原势 [44] [46] [47]。为了降低LUMO能量,我们认为有两种策略是可行的。首先是扩展芳香环的共轭体系 [21] [44],不仅可以增加分子的离子摄入量和实际容量,还可以减小HOMO-LUMO间隙,降低极化度。将芳香体系由PMDA转变为NTCDA和PTCDA可以降低LUMO能量,从而提高平均放电电压。第二个降低LUMO能量的策略是附着吸电子基团 [22] [48] - [55]。例如,Banda等人在苝二亚胺上具有适当的吸电基团(Br和CN)作为取代基时,对Na+/Na在2.1~2.6 V的放电电位具有显著的可调性 [45]。微分电容图与计算出的LUMO能量值之间存在线性关系(图1(b))。显然,吸电子取代基的掺入导致了更高的还原电位(图1(c))。

Figure 1. (a) Schematic diagrams for the proposed electrochemical reactions during sodiation/desodiation of PTCDA [45] . (b) First reduction potential versus calculated LUMO energy levels for 1, 3, and 6. (c) Charge/discharge voltage profiles of 1, 3, and 6 cycled at a current rate of C/4 [45]

图1. (a) PTCDA在钠化/脱氧过程中的电化学反应示意图 [45]。(b) 首先计算1、3和6的LUMO能级的还原势。(c) 1、3、6在C/4电流速率下循环的充放电电压曲线 [45]

2.2. 醌类

醌类有机电极材料包括简单醌类、多羰基醌类、融合杂芳基醌类、取代醌类、氧碳盐类和羧酸醌类,由于其具有较高的氧化还原电位,在二次电池领域引起了广泛的关注近年来,苯醌及其衍生物作为SIBs的基本结构单元已被证明是SIBs的电极材料密度泛函理论(DFT)的计算也揭示了电负性元素引入醌结构可以显著增加钠的存储电位,其变化趋势为C6F4O2 > C6Cl4O2 > C6Br4O2 > C6H4O2 (图2(a)),实验中比容量较低是因为中间相的稳定化程度较大 [56]。具有基本结构单元的简单醌类化合物在非质子电解质中的高溶解度是亟待解决的问题,因为这使它们表现出严重的容量衰退。形成/引入盐是一种有效的策略。一方面,盐的掺入增加了有机材料的极性,抑制了有机材料在非质子电解质中的溶解;另一方面,盐的强亲水基团可以形成O∙∙∙Li/Na∙∙O等配位键,部分阻碍有机物的溶解 [57]。Tarascon的研究小组报告了醌盐,特别是锂化碳盐(Li2C6O6) [16],这为构建有机盐作为电极材料开辟了道路。盐取代基(钠烯酸盐,−ONa)是增加醌基有机电极材料极性最常用的替代物。为了达到电化学性能的最大化,研究了各种因素。首先,构建纳米结构的醌基有机电极材料可以表现出更好的钠的存储性能。例如,Wang等人通过比较微体、微棒和纳米棒结构的Na2C6O6,证明了红壤酸钠二元酸钠(Na2C6O6)具有很强的尺寸依赖性钠离子存储性能(图2(b)) [56] [58]。在这些结构中,纳米棒表现出最好的性能,0.1 C时的可逆容量约为190 mAh∙g−1,100次循环后的保留率超过90%。可见,有机化合物还具有形态控制和尺寸效应,这将大大提高电化学反应动力学。其次,优化分子设计和电化学技术可以消除有机电极材料的溶解。例如,Wang等人研究了各种因素对SIB性能的影响,包括高容量和快速充电和快速放电过程下的长期循环性 [59]。一方面,利用更多的酮羰基可以获得更高的理论比容量和电化学电势。另一方面,合适的电化学窗口、粘结剂和形貌对提高循环性能和快速充放电至关重要。最后,降低活性颗粒尺寸和选择合适的电解质可以获得良好的电化学性能。最近Lee等研究了Na2C6O6电化学性能有限的原因,认为减小活性颗粒尺寸和选择合适的电解质可以降低脱硝过程中相变的激活障,促进Na2C6O6可逆相变 [60]。因此,Na2C6O6显示了高效的四钠存储器,可逆容量为484 mAh∙g−1,具有良好的循环保留能力(图2(c))。

Figure 2. (a) Chemical structure of C6R4O2 molecules (R = F, Cl, Br) and LUMO energies of C6R4O2 molecules by using DFT calculations [56] . (b) Cycling test of microbulk, microrod, and nanorod samples [58] . (c) Cycle retention of Na2C6O6 at 500 mAh∙g1 and the corresponding voltage profile (inset) for 50 cycles [60]

图2. (a) DFT计算C6R4O2分子的化学结构(R = F, Cl, Br)和C6R4O2分子的LUMO能 [56]。(b) 微块、微棒和纳米棒样品的循环测试 [58]。(c) Na2C6O6在500 mAh∙g−1的循环保持和相应的电压曲线(插图) 50个循环 [60]

2.3. 羧基化合物

羧酸基有机电极材料包括一个与两个/多个羧酸钠连接的芳香环作为SIBs的电极材料已被广泛报道(图3)。表1比较了这些化合物作为SIBs电极材料的电化学性能。与其他有机羰基化合物相比,这类有机材料具有较低的Na插入电压,从安全性和能量密度的角度来看,这是阳极应用的理想选择。对苯二甲酸钠是目前研究最广泛的羧酸基SIBs有机电极材料例如,Zhao等人证明对苯二甲酸钠(1)具有较高的可逆容量250 mAh∙g−1,对应于双电子转移,在电极表面涂上一层薄的Al2O3可以进一步提高Na的存储性能 [61] [62] [63] [64]。Park等人证明了对苯二甲酸乙二醇酯二钠提供一个可逆容量约295 mAh∙g−1微不足道的容量衰减和对苯二甲酸乙二醇酯钠的操作电压也可以调整由连接不同的组(2) [62]。电负性卤素取代基组比未取代会导致更高的氧化还原电势化合物通过诱导撤退效应。虽然氨基是电负性的,但由于主要的p给体效应,它可以导致比非取代化合物更低的氧化还原电位。此外,硝基可以提供更高的容量,但明显的容量衰退。Abouimrane等人也研究了钠插入对苯二甲酸钠及其衍生物(3) [63]。重要的是,显示了使用有机阳极材料组装的钠离子全电池的第一个例子,该电池提供超过238 mAh∙g−1放电容量,容量在50次循环后有限衰减(~7%)。此外,Wan等人揭示了纳米效应对对苯二甲酸钠电化学性能的主要作用 [64]。纳米片状结构使对苯二甲酸钠与体积对应物相比具有更好的可逆容量(248 mAh∙g−1 vs. 199 mAh∙g−1),更高的速率能力(59 mAh∙g−1 vs. 38 mAh∙g−1,1250 mA∙g−1)和更好的循环性能(105 mAh∙g−1 vs. 60 mAh∙g−1,250 mA∙g−1后100次循环)。该羧酸盐的主要缺点是低电流密度和高速率会导致性能显著下降。

Table 1. Comprehensive overview of organic carbonyl compounds as electrode materials for SIBs

表1. 有机羰基化合物作为SIBs电极材料的综述

Figure 3. Structures of reported carboxylate-based organic compounds as electrode materials for SIBs

图3. 报道的羧酸基有机化合物作为SIBs电极材料的结构

从分子设计的角度来看,扩展共轭体系是提高高倍率性能(从1到4,5和6)的有效途径例如,Choi等人证明,即使在20 C速率(3740 mA∙g−1)下,4,4’-联苯二甲酸钠(4)也表现出了100 mAh∙g−1的优良性能 [65] [66] [67]。此外,Wang等人证明,即使在10 A∙g−1时,4,4’-二苯乙烯–二羧酸钠(5)也表现出了72 mAh∙g−1的改进速率性能 [66]。这些结果可以归因于p-共轭体系的扩展不仅提高了电荷输运,稳定了荷/放电状态,而且增强了分子间的相互作用,促进了Na离子的插入/萃取。此外,与氧原子相比,硫原子的原子半径和电子密度更大,是另一种提高电导率的有效方法,从而获得高倍率性能(7~9)有趣的是,氧在羧酸基中的取代也可以提高电子离域和钠的吸收能力。因此,当引入4个硫原子时,可以获得更大的容量567 mAh∙g−1 (8)。DFT计算表明,富电子的硫取代分子可以吸收多达6个额外的钠离子(图4(a))。此外,酸酐衍生的多羧酸化合物(10)也可用作SIBs的阳极 [43] [67]。DFT计算表明,该化合物只有在两个钠离子插入时才具有很高的可逆性,而在四个钠离子插入时其结构是不稳定的(图4(b))。功能导向设计和可控合成是有机化合物的重要组成部分。如上所述,醌类有机材料具有较高的氧化还原电位,而羧酸类有机材料具有较低的氧化还原电位。因此,具有这两种结构的化合物可以作为双功能电极。例如,Wang等将羧酸盐(−COONa)和钠烯酸醌结合制备了有机四钠盐(11) [68]。在1.6~2.8 V和0.1~1.8 V时,根据烯酸基和羧酸基,可以可逆地摄取/去除两种Na+离子。最重要的是,化合物11可以作为阳极和阴极的活性材料,它被组装成第一个全有机摇椅式SIB的样品,平均工作电压为1.8 V,能量密度约为65 Wh∙kg−1

Figure 4. (a) Calculated HOMO plots of compound x with different uptake amounts of sodium [66] (b) HOMO plots of compound x by using selected molecules/anions with different extents of reduction calculated at the B3LYP/6-31G(d) level [43]

图4. (a) 计算了化合物x在不同钠吸收量下的HOMO图 [66]。(b) 在B3LYP/6-31G(d)水平上计算不同还原程度的选定分子/阴离子,得到化合物x的HOMO图谱 [43]

3. 聚合物

小分子有机化合物在非质子电解质中的溶解度导致其容量严重下降,限制了其实际应用。除形成/引入盐外,构建聚合物也是解决这一问题的有效策略根据羰基化合物特别是二酐的结构特点,构建聚酰亚胺(PI)是一个很有吸引力的选择一方面,它的合成方法简单,没有繁琐复杂的合成反应和过程 [57] [69]。另一方面,众所周知,PI具有良好的力学性能、高热稳定性和低成本等优点。一个例子是构建一系列由烃基链组成的PI,它们相互连接电化学二酐,如PMDA、NTCDA和PTCDA (图5(a)) [44]。如上所述,将芳香体系由PMDA转变为NTCDA和PTCDA可以降低LUMO能量,从而提高平均放电电压(图5(b))。此外,缩短烷基链可以增加重量容量(图5(c))。重要的是,将二酐结构掺入聚合物框架极大地抑制了电解质中不必要的溶解,从而提高了稳定性。因此,基于PTCDA的PI在5000次循环后表现出超长的循环稳定性,且没有明显的衰减,比功率为20.99 kW∙kg−1,比能量为285 Wh∙kg−1 (图5(d))。显然,用烷基链连接氧化还原活性羰基化合物可以有效抑制严重的容量衰退,但烷基链是不氧化还原的,这可能导致固有的电化学负担和较低的理论容量。因此,有必要缩短连接链,以增加理论容量。因此,用短链联氨连接PTCDA合成PI,其可逆容量为126 mAh∙g−1,容量保持良好。有趣的是,当这种类型的PI与对苯二甲酸钠耦合时,实现了全有机钠离子全电池,其初始容量为73 mAh∙g−1,平均电池电压为1.35 V。为了进一步降低电化学自重,提高理论容量,提出并应用了羰基小分子自连接策略。例如,Xu等以2,6-二氨基蒽醌为链连接PMDA和NTCDA,合成了两种基于蒽醌的PI,其可逆容量分别高达165和192 mAh∙g−1 [70]。随后,Xu等人以1,5-二氨基蒽醌为链连接NTCDA,同样合成了聚蒽醌酰亚胺,其可逆容量为190 mAh∙g−1 [71]。与预期的一样,使用自链接策略合成的所有PI都具有良好的循环稳定性。除了PI,多巴胺(PDA)也被证明是SIB的电极材料事实上,从多巴胺到PDA的聚合机制是复杂且有争议的,但毫无疑问,它具有与氧化还原活性醌基相似的分子结构。因此,PDA可以作为电极材料,甚至是阳极和阴极材料。例如,Sun等人受到生理过程的启发,选择PDA作为阳极材料,其表现出优异的电化学性能 [72] [73],包括500 mAh∙g−1的高比容量和良好的循环稳定性,SIB的容量保持率接近100%。有趣的是,从PDA的粘附能力来看,在没有附加粘合剂的情况下组装细胞,换句话说,PDA本身也是一种粘合剂,这有利于提高容量和速率性能,甚至循环稳定性。显然,从分子结构的角度来看,构建聚合物可以有效地提高电化学性能,特别是循环稳定性。因此,为了进一步提高电化学性能,需要对分子结构进行合理设计或功能导向设计。

Figure 5. (a) Chemical structures of tailored polyimides. Charge/discharge curves of different benzene-ring (b) and linking chain (c) based PIs (d) Cycle performance of the PI2 at a current density of 0.8 C [44]

图5. (a) 特制聚酰亚胺的化学结构。基于PI的不同苯环(b)和链(c)的充放电曲线(d) PI2在0.8 C电流密度下的循环性能 [44]

Figure 6. (a) Schematic of the synthesis process of Na2PDHBQS/RGO. (b) Synthesis scheme and redox reaction of Na2PDHBQS. (c) Cycle performance of various samples at 100 mA∙g1. (d) Rate performance at various current densities [56]

图6. (a) Na2PDHBQS/RGO合成工艺示意图。(b) Na2PDHBQS的合成方案及氧化还原反应。(c) 各种样品在100 mA∙g1处的循环性能。(d) 不同电流密度下的速率性能 [56]

4. 羰基复合材料

有机化合物,无论是小分子化合物还是聚合物,都是不具有电化学活性的,这导致了电化学性能特别是倍率性能的巨大牺牲 [74] [75] [76]。为了克服这一障碍,将有机化合物分散在导电基质中是一种有效的策略,这可以为电子转移反应提供丰富的电子和离子通道石墨烯由于其良好的电学和力学特性,被认为是一种很有前途的导电基体,可以改善有机化合物的电导率例如,Chen等人合成了含有两个噻吩的醌基有机化合物,并将其与石墨烯结合 [77]。在24.3 mA∙g−1时,复合阴极材料的可逆容量为217 mAh∙g−1;在48.6 mA∙g−1时,在70次循环后,其保持率为80%。特别是在486 mA∙g−1和136 mAh∙g−1的倍率上,它是单个有机化合物的1.7倍。同时,Deng等人制备了纳米花状羧酸钠萘二羧酸钠,然后用石墨烯包裹 [78]。该复合阳极材料在10 mA∙g−1时的容量为226 mAh∙g−1,循环稳定性好,在20 mA∙g−1时超过100次循环的容量保留率为92%。特别是,它提供了88 mAh∙g−1和2000 mA∙g−1的高倍率,是单个有机化合物的两倍以上。显然,石墨烯框架的引入可以促进快速电子传导,从而提高速率性能。为了进一步实现高速率性能和长循环稳定性,活性聚合物与石墨烯的结合是一种有效的策略,不仅可以提高导电性能,而且可以抑制有机电极的溶解。例如,Li等人将石墨烯作为基质,形成和生长多孔聚(2,5-二羟基–对苯醌基硫化物)钠盐(Na2PDHBQS)/还原氧化石墨烯(RGO;图6(a)) [79]。根据合成路线,通过简单的回流工艺合成了Na2PDHBQS,可以可逆插入两个Na+,理论容量为250 mAh∙g−1 (图6(b))。该复合正极材料经150次循环后,在100 mA∙g−1下的可逆容量为179 mAh∙g−1,优于单体聚合物(Na2PDHBQS)、单体(Na2CL)和RGO(图6(c))。此外,与Na2PDHBQS相比,该复合材料在1000 mA∙g−1时的速率为147 mAh∙g−1 (图6(d))。此外,该复合阴极材料可以组装成具有对苯二甲酸二钠阳极的有机全电池,其初始可逆容量为210 mAh∙g−1在25 mA∙g−1。这种电化学性能的提高归功于聚合的有效性、石墨烯的掺入以及醚基电解质的选择。除石墨烯外,包括介孔碳和碳纳米管在内的其他碳材料也被证明是很有前途的导电基质。例如,Zheng等 [26] [68] 将杯状醌包封成有序介孔碳(CMK-3),并将其作为SIBs的正极材料 [26],的初始放电容量高达438 mAh∙g−1。此外,与单个有机化合物相比,该复合物在44.6 mA∙g−1时的可逆容量(50次循环后219.2 mAh∙g−1 vs. 10次循环后24 mAh∙g−1)和446 mA∙g−1时的倍率容量(130.4 vs. 13.2 mAh∙g−1)均有所提高。可见,有机化合物与导电基体之间的相互作用不仅可以提高有机化合物的电导率,而且可以通过其范德华/氢键相互作用或p-p堆叠相互作用来限制有机化合物的易溶性。

5. 小结

本文从功能导向设计的角度综述了有机羰基化合物用于SIB的研究进展,包括从小分子化合物到聚合物,再到复合材料的结构和组分的演变。对于羰基小分子化合物,有三种类型,包括酸酐、醌和羧酸盐。酸酐表现出多电子反应和高比容量,而醌类表现出较高的氧化还原电位;但两者均可作为正极材料。羧酸盐具有较低的Na插入电压,可以作为负极材料。聚合、盐化和载碳可以抑制小分子有机化合物在非质子电解质中的溶解问题,从而提高循环稳定性。碳负载不仅可以提高有机化合物的电导率,从而提高速率性能,而且使材料具有柔性特性,从而产生无粘结剂、添加剂和无集电体电极。尽管到目前为止已经取得了相当大的成就,但sib的有机电极材料仍处于初级阶段,开发高性能有机电极材料面临许多挑战:

1) 面向功能的设计。有机钠电池的兴起促使有机化学家实现更精确的功能导向设计。扩展共轭系统和附加吸电子基团是提高平均放电电压的有效方法。同时,形成聚合物是提高循环稳定性的有效途径。需要注意的是,为了增加理论容量,应缩短或避免连接氧化还原活性单元的烷基链。从分子结构上看,杂原子的掺入也是提高电导率的有效途径。

2) 所有的有机钠电池。除了有机材料的结构多样性和分子水平可控性外,资源可再生性是有机材料最显著的特征。然而,关于全有机钠电池的报道较少,因此仍需要传统的金属基电极材料。因此,应该组装全有机钠离子电池。由于有机阴极和阳极材料的氧化还原电位不同,组装电池的电压可以调整。最重要的是,全有机钠离子电池中没有钴、铅、镍等重金属,因此有机电池的处理和回收简单、环保。

3) 柔性钠有机电池。考虑到对柔性电子器件技术的需求正在迅速增长,开发柔性电源迫在眉睫。作为回应,柔性钠有机电池将引领下一代电池的创新,不仅简化了电极的制备过程,而且显著提高了电池的电化学性能。此外,活性高分子材料固有的柔韧性有利于柔性电池的制备。

文章引用

李舒冰,费 奔. 有机羰基化合物在钠离子电池中的研究进展
Research Progress of Organic Carbonyl Compounds on Sodium-Ion Battery[J]. 材料科学, 2021, 11(06): 717-731. https://doi.org/10.12677/MS.2021.116083

参考文献

  1. 1. Tarascon, J.M. and Armand, M. (2001) Issues and Challenges Facing Rechargeable Lithium Batteries. Nature, 414, 359-367. https://doi.org/10.1038/35104644

  2. 2. Armand, M. and Tarascon, J.M. (2008) Building Better Batteries. Nature, 451, 652-657. https://doi.org/10.1038/451652a

  3. 3. Dunn, B., Kamath, H. and Tarascon, J.-M. (2011) Electrical Energy Storage for the Grid: A Battery of Choices. Science, 334, 928-935. https://doi.org/10.1126/science.1212741

  4. 4. Zhou, G.M., Li, F. and Cheng, H.-M. (2014) Progress in Flexible Lithium Batteries and Future Prospects. Energy & Envi-ronmental Science, 7, 1307-1338. https://doi.org/10.1039/C3EE43182G

  5. 5. Li, L., Wu, Z., Yuan, S. and Zhang, X.-B. (2014) Advances and Challenges for Flexible Energy Storage and Conversion Devices and Systems. Energy & Environmental Science, 7, 2101-2122. https://doi.org/10.1039/c4ee00318g

  6. 6. Tarascon, J.-M. (2010) Is Lithium the New Gold? Nature Chemistry, 2, 510. https://doi.org/10.1038/nchem.680

  7. 7. Pan, H., Hu, Y.-S. and Chen, L. (2013) Room-Temperature Stationary Sodium-Ion Batteries for Large-Scale Electric Energy Storage. Energy & Environmental Science, 6, 2338-2360. https://doi.org/10.1039/c3ee40847g

  8. 8. Zhu, C.-X. and Li, H. (2011) Thermodynamic Analysis on Energy Densities of Batteries. Energy & Environmental Science, 4, 2614-2624. https://doi.org/10.1039/c0ee00777c

  9. 9. Kim, S.-W., Seo, D.-H., Ma, X.H., Ceder, G. and Kang, K. (2012) Elec-trode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Advanced Energy Materials, 2, 710-721. https://doi.org/10.1002/aenm.201200026

  10. 10. Reddy, T.B. and Linden, D. (2010) Linden’s Handbook of Batteries. McGraw-Hill, New York.

  11. 11. Yabuuchi, N., Kubota, K., Dahbi, M. and Komaba, S. (2014) Research Development on Sodium-Ion Batteries. Chemical Reviews, 114, 11636-11682. https://doi.org/10.1021/cr500192f

  12. 12. Hwang, J.-Y., Myung, S.-T. and Sun, Y.-K. (2017) Sodium-Ion Batteries: Present and Future. Chemical Society Reviews, 46, 3529-3614. https://doi.org/10.1039/C6CS00776G

  13. 13. Slater, M.D., Kim, D., Lee, E. and Johnson, C.S. (2013) Sodium-Ion Batteries. Advanced Functional Materials, 23, 947-959. https://doi.org/10.1002/adfm.201200691

  14. 14. Ni, J.F. and Li, L. (2018) Ionogel-Based Sodium Ion Micro-Batteries with a 3D Na-Ion Diffusion Mechanism Enable Ultrahigh Rate Capability. Advanced Functional Materials, 17, Article ID: 1704880.

  15. 15. Ni, J., Li, L. and Lu, J. (2018) Phosphorus: An Anode of Choice for Sodium-Ion Batteries. ACS Energy Letters, 3, 1137-1144. https://doi.org/10.1021/acsenergylett.8b00312

  16. 16. Chen, H., Armand, M., Demailly, G., Dolhem, F., Poizot, P. and Tarascon, J.M. (2008) From Biomass to a Renewable LiXC6O6 Organic Electrode for Sustainable Li-Ion Batteries. ChemSusChem, 1, 348-355. https://doi.org/10.1002/cssc.200700161

  17. 17. Hu, P., Wang, H., Yang, Y., Yang, J., Lin, J. and Guo, L. (2016) Renewable-Biomolecule-Based Full Lithium-Ion Batteries. Advanced Materials, 28, 3486-3492. https://doi.org/10.1002/adma.201505917

  18. 18. Goriparti, S., Harish, M.N.K. and Sampath, S. (2013) Ellagic Ac-id—A Novel Organic Electrode Material for High Capacity Lithium Ion Batteries. Chemical Communications, 49, 7234-7236. https://doi.org/10.1039/c3cc43194k

  19. 19. Zhu, H., Yin, J., Zhao, X., Wang, C. and Yang, X. (2015) Humic Acid as Promising Organic Anodes for Lithium/Sodium Ion Batteries. Chemical Communications, 51, 14708-14711. https://doi.org/10.1039/C5CC04772B

  20. 20. Nokami, T., Matsuo, T., Inatomi, Y., Hojo, N., Tsu-kagoshi, T., Yoshizawa, H., Shimizu, A., Kuramoto, H., Komae, K., Tsuyama, H. and Yoshida, J.-I. (2012) Poly-mer-Bound Pyrene-4,5,9,10-tetraone for Fast-Charge and -Discharge Lithium-Ion Batteries with High Capacity. Journal of the American Chemical Society, 134, 19694-19700. https://doi.org/10.1021/ja306663g

  21. 21. Liang, Y. and Zhang, P. (2013) Function-Oriented Design of Conjugated Carbonyl Compound Electrodes for High Energy Lithium Batteries. Chemical Science, 4, 1330-1337. https://doi.org/10.1039/c3sc22093a

  22. 22. Liang, Y., Zhang, P., Yang, S., Tao, Z. and Chen, J. (2013) Fused Het-eroaromatic Organic Compounds for High-Power Electrodes of Rechargeable Lithium Batteries. Advanced Energy Ma-terials, 3, 600-605. https://doi.org/10.1002/aenm.201200947

  23. 23. Luo, Z.Q., Liu, L.J., Zhao, Q., Li, F.J. and Chen, J. (2017) An In-soluble Benzoquinone-Based Organic Cathode for Use in Rechargeable Lithium-Ion Batteries. Angewandte Chemie International Edition, 56, 12561-12565. https://doi.org/10.1002/anie.201706604

  24. 24. Liang, Y.L., Tao, Z.L. and Chen, J. (2012) Organic Electrode Mate-rials for Rechargeable Lithium Batteries. Advanced Energy Materials, 2, 742-769. https://doi.org/10.1002/aenm.201100795

  25. 25. Song, Z.P. and Zhou, H.S. (2013) Towards Sustainable and Versa-tile Energy Storage Devices: An Overview of Organic Electrode Materials. Energy & Environmental Science, 6, 2280-2301. https://doi.org/10.1039/c3ee40709h

  26. 26. Xie, J., Gu, P.Y. and Zhang, Q.C. (2017) Nanostructured Conjugated Polymers: Toward High-Performance Organic Electrodes for Rechargeable Batteries. ACS Energy Letters, 2, 1985-1996. https://doi.org/10.1021/acsenergylett.7b00494

  27. 27. Muench, S., Wild, A., Friebe, C., H-upler, B., Janoschka, T. and Schubert, U.S. (2016) Polymer-Based Organic Batteries. Chemical Reviews, 116, 9438-9484. https://doi.org/10.1021/acs.chemrev.6b00070

  28. 28. H-upler, B., Wild, A. and Schubert, U.S. (2015) Carbonyls: Powerful Organic Materials for Secondary Batteries. Advanced Energy Materials, 5, Article ID: 1402034. https://doi.org/10.1002/aenm.201402034

  29. 29. Wu, Y.W., Zeng, R.H., Nan, J.M., Shu, D., Qiu, Y.C. and Chou, S.-L. (2017) Quinone Electrode Materials for Rechargeable Lithium/Sodium Ion Batteries. Advanced Energy Materials, 7, Article ID: 1700278. https://doi.org/10.1002/aenm.201700278

  30. 30. Lee, S., Kwon, G., Ku, K., Yoon, K., Jung, S.-K., Lim, H.-D. and Kang, K. (2018) Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries. Advanced Materials, 30, Article ID: 1704682. https://doi.org/10.1002/adma.201704682

  31. 31. Zhao, Q., Lu, Y. and Chen, J. (2017) Advanced Organic Electrode Materials for Rechargeable Sodium-Ion Batteries. Advanced Energy Materials, 7, Article ID: 1601792. https://doi.org/10.1002/aenm.201601792

  32. 32. Xu, Y., Zhou, M. and Lei, Y. (2018) Organic Materials for Re-chargeable Sodium-Ion Batteries. Materials Today, 21, 60-78. https://doi.org/10.1016/j.mattod.2017.07.005

  33. 33. Hong, J., Lee, M., Lee, B., Seo, D.-H., Park, C.B. and Kang, K. (2014) Biologically Inspired Pteridine Redox Centres for Rechargeable Batteries. Nature Communications, 5, Article No. 5335. https://doi.org/10.1038/ncomms6335

  34. 34. Lee, M., Hong, J., Seo, D.-H., Nam, D.H., Nam, K.T., Kang, K. and Park, C.B. (2013) Redox Cofactor from Biological Energy Transduction as Molecularly Tunable Energy-Storage Compound. Angewandte Chemie International Edition, 52, 8322-8328. https://doi.org/10.1002/anie.201301850

  35. 35. Shin, J.-Y., Yamada, T., Yoshikawa, H., Awaga, K. and Shinokubo, H. (2014) An Antiaromatic Electrode-Active Material Enabling High Capacity and Stable Performance of Rechargeable Batteries. Angewandte Chemie International Edition, 53, 3096-3101. https://doi.org/10.1002/anie.201310374

  36. 36. Wu, J.S., Rui, X.H., Long, G.K., Chen, W.Q., Yan, Q.Y. and Zhang, Q.C. (2015) Pushing Up Lithium Storage through Nanostructured Polyazaacene Analogues as Anode. Angewandte Chemie International Edition, 54, 7354-7358. https://doi.org/10.1002/anie.201503072

  37. 37. Wu, J.S., Rui, X.H., Wang, C.Y., Pei, W.-B., Lau, R., Yan, Q.Y. and Zhang, Q.C. (2015) Nanostructured Conjugated Ladder Polymers for Stable and Fast Lithium Storage Anodes with High-Capacity. Advanced Energy Materials, 5, Article ID: 1402189. https://doi.org/10.1002/aenm.201402189

  38. 38. Sakaushi, K., Hosono, E., Nickerl, G., Gemming, T., Zhou, H.S., Kaskel, S. and Eckert, J. (2013) Aromatic Porous-Honeycomb Electrodes for a Sodium-Organic Energy Storage Device. Nature Communications, 4, Article No. 1485. https://doi.org/10.1038/ncomms2481

  39. 39. Guo, W., Yin, Y.-X., Xin, S., Guo, Y.-G. and Wan, L.-J. (2012) Superior Radical Polymer Cathode Material with a Two-Electron Process Redox Reaction Promoted by Grapheme. Energy & Environmental Science, 5, 5221-5225. https://doi.org/10.1039/C1EE02148F

  40. 40. Morita, Y., Nishida, S., Murata, T., Moriguchi, M., Ueda, A., Satoh, M., Arifuku, K., Sato, K. and Takui, T. (2011) Organic Tailored Batteries Materials Using Stable Open-Shell Molecules with Degenerate Frontier Orbitals. Nature Materials, 10, 947-951. https://doi.org/10.1038/nmat3142

  41. 41. Kim, J.-K., Kim, Y., Park, S., Ko, H. and Kim, Y. (2016) Encapsulation of Organic Active Materials in Carbon Nanotubes for Application to High-Electrochemical-Performance Sodium Batteries. Energy & Environmental Science, 9, 1264-1269. https://doi.org/10.1039/C5EE02806J

  42. 42. Luo, W., Allen, M., Raju, V. and Ji, X.L. (2014) An Organic Pigment as a High-Performance Cathode for Sodium-Ion Batteries. Advanced Energy Materials, 4, Article ID: 1400554. https://doi.org/10.1002/aenm.201400554

  43. 43. Wang, H.G., Yuan, S., Si, Z.J. and Zhang, X.B. (2015) Multi-Ring Aromatic Carbonyl Compounds Enabling High Capacity and Stable Performance of Sodium-Organic Batteries. Energy & Environmental Science, 8, 3160-3165. https://doi.org/10.1039/C5EE02589C

  44. 44. Wang, H.G., Yuan, S., Ma, D.L., Huang, X.L., Meng, F.L. and Zhang, X.B. (2014) Tailored Aromatic Carbonyl Derivative Polyimides for High-Power and Long-Cycle Sodium-Organic Batteries. Advanced Energy Materials, 4, 1301651. https://doi.org/10.1002/aenm.201301651

  45. 45. Banda, H., Damien, D., Nagarajan, K., Raj, A., Hariharan, M. and Shaijumon, M.M. (2017) Twisted Perylene Diimides with Tunable Redox Properties for Organic Sodium-Ion Batteries. Advanced Energy Materials, 7, Article ID: 1701316. https://doi.org/10.1002/aenm.201701316

  46. 46. Song, Z.P., Zhan, H. and Zhou, Y.H. (2010) Polyimides: Promising Energy-Storage Materials. Angewandte Chemie International Edition, 49, 8444-8448. https://doi.org/10.1002/anie.201002439

  47. 47. Li, L., Hong, Y.-J., Chen, D.-Y. and Lin, M.-J. (2017) Molecular Engineering of Perylene Imides for High-Performance Lithium Batteries: Diels-Alder Extension and Chiral Dimerization. Chemistry—A European Journal, 23, 16612-16620. https://doi.org/10.1002/chem.201703823

  48. 48. Vadehra, G.S., Maloney, R.P., Garcia-Garibay, M.A. and Dunn, B. (2014) Naphthalene Diimide Based Materials with Adjustable Redox Potentials: Evaluation for Organic Lithium-Ion Batteries. Chemistry of Materials, 26, 7151-7157. https://doi.org/10.1021/cm503800r

  49. 49. Iordache, A., Maurel, V., Mouesca, J.M., Pcaut, J., Dubois, L. and Gutel, T. (2014) Monothioanthraquinone as an Organic Active Material for Greener Lithium Batteries. Journal of Power Sources, 267, 553-559. https://doi.org/10.1016/j.jpowsour.2014.05.050

  50. 50. Herndez-Burgos, K., Burkhardt, S.E., Rodrguez-Calero, G.G., Hennig, R.G. and AbruÇa, H.D. (2014) Theoretical Studies of Carbonyl-Based Organic Molecules for Energy Storage Applications: The Heteroatom and Substituent Effect. The Journal of Physical Chemistry C, 118, 6046-6051. https://doi.org/10.1021/jp4117613

  51. 51. Yokoji, T., Matsubara, H. and Satoh, M. (2014) Rechargeable Organic Lithium-Ion Batteries Using Electron-Deficient Benzoquinones as Positive-Electrode Materials with High Discharge Voltages. Journal of Materials Chemistry A, 2, 19347-19354. https://doi.org/10.1039/C4TA02812K

  52. 52. Yokoji, T., Kameyama, Y., Maruyama, N. and Matsubara, H. (2016) High-Capacity Organic Cathode Active Materials of 2,2’-Bis-p-benzoquinone Derivatives for Rechargeable Batteries. Journal of Materials Chemistry A, 4, 5457-5466. https://doi.org/10.1039/C5TA10713J

  53. 53. Lee, J., Kim, H. and Park, M.J. (2016) Long-Life, High-Rate Lithium-Organic Batteries Based on Naphthoquinone Derivatives. Chemistry of Materials, 28, 2408-2416. https://doi.org/10.1021/acs.chemmater.6b00624

  54. 54. Kwon, J.E., Hyun, C.-S., Ryu, Y.J., Lee, J., Min, D.J., Park, M.J., An, B.-K. and Park, S.Y. (2018) Triptycene-Based Quinone Molecules Showing Multi-Electron Redox Reactions for Large Capacity and High Energy Organic Cathode Materials in Li-Ion Batteries. Journal of Materials Chemistry A, 6, 3134-3140. https://doi.org/10.1039/C7TA09968A

  55. 55. Ma, T., Zhao, Q., Wang, J.B., Pan, Z. and Chen, J. (2016) A Sulfur Heterocyclic Quinone Cathode and a Multifunctional Binder for a High-Performance Rechargeable Lithium-Ion Battery. Angewandte Chemie International Edition, 55, 6428-6432. https://doi.org/10.1002/anie.201601119

  56. 56. Kim, H., Kwon, J.E., Lee, B., Hong, J., Lee, M., Park, S.Y. and Kang, K. (2015) High Energy Organic Cathode for Sodium Rechargeable Batteries. Chemistry of Materials, 27, 7258-7264. https://doi.org/10.1021/acs.chemmater.5b02569

  57. 57. Song, Z., Qian, Y., Gordin, M.L., Tang, D., Xu, T., Otani, M., Zhan, H., Zhou, H. and Wang, D. (2015) Polyanthraquinone as a Reliable Organic Electrode for Stable and Fast Lithium Storage. Angewandte Chemie International Edition, 54, 13947-13951. https://doi.org/10.1002/anie.201506673

  58. 58. Wang, Y.Q., Ding, Y., Pan, L.J., Shi, Y., Yue, Z.H., Shi, Y. and Yu, G.H. (2016) Understanding the Size-Dependent Sodium Storage Properties of Na2C6O6-Based Organic Electrodes for Sodium-Ion Batteries. Nano Letters, 16, 3329-3334. https://doi.org/10.1021/acs.nanolett.6b00954

  59. 59. Wang, C.L., Fang, Y.G., Xu, Y., Liang, L.Y., Zhou, M., Zhao, H.P. and Lei, Y. (2016) Manipulation of Disodium Rhodizonate: Factors for Fast-Charge and Fast-Discharge Sodium-Ion Batteries with Long-Term Cyclability. Advanced Functional Materials, 26, 1777-1786. https://doi.org/10.1002/adfm.201504537

  60. 60. Lee, M., Hong, J., Lopez, J., Sun, Y., Feng, D., Lim, K., Chueh, W.C., Toney, M.F., Cui, Y. and Bao, Z.N. (2017) High-Performance Sodium-Organic Battery by Realizing Four-Sodium Storage in Disodium Rhodizonate. Nature Energy, 2, 861-868. https://doi.org/10.1038/s41560-017-0014-y

  61. 61. Zhao, L., Zhao, J., Hu, Y.-S., Li, H., Zhou, Z., Armand, M. and Chen, L. (2012) Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low-Cost Room-Temperature Sodium-Ion Battery. Advanced Energy Materials, 2, 962-965. https://doi.org/10.1002/aenm.201200166

  62. 62. Park, Y., Shin, D.-S., Woo, S.H., Choi, N.S., Shin, K.H., Oh, S.M., Lee, K.T. and Hong, S.Y. (2012) Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries. Advanced Materials, 24, 3562-3567. https://doi.org/10.1002/adma.201201205

  63. 63. Abouimrane, A., Weng, W., Eltayeb, H., Cui, Y., Niklas, J., Poluektov, O. and Amine, K. (2012) Sodium Insertion in Carboxylate Based Materials and Their Application in 3.6 V Full Sodium Cells. Energy & Environmental Science, 5, 9632-9638. https://doi.org/10.1039/c2ee22864e

  64. 64. Wan, F., Wu, X.-L., Guo, J.-Z., Li, J.-Y., Zhang, J.-P., Niu, L. and Wang, R.-S. (2015) Nano Effects Promote the Elec-trochemical Properties of Organic Na2C8H4O4 as Anode Material for Sodium-Ion Batteries. Nano Energy, 13, 450-457. https://doi.org/10.1016/j.nanoen.2015.03.017

  65. 65. Choi, A., Kim, Y.K., Kim, T.K., Kwon, M.-S., Lee, K.T. and Moon, H.R. (2014) 4,4’-Biphenyldicarboxylate Sodium Coordination Compounds as Anodes for Na-Ion Batteries. Journal of Materials Chemistry A, 2, 14986-14993. https://doi.org/10.1039/C4TA02424A

  66. 66. Wang, C., Xu, Y., Fang, Y., Zhou, M., Liang, L., Singh, S., Zhao, H., Schober, A. and Lei, Y. (2015) Extended π-Conjugated System for Fast-Charge and -Discharge Sodium-Ion Batteries. Journal of the American Chemical Society, 137, 3124-3130. https://doi.org/10.1021/jacs.5b00336

  67. 67. Mihali, V.A., Renault, S., Nyholm, L. and Brandell, D. (2014) Benzenediacrylates as Organic Battery Electrode Materials: Na versus Li. RSC Advances, 4, 38004-38011. https://doi.org/10.1039/C4RA06288D

  68. 68. Zhao, H.Y., Wang, J.W., Zheng, Y.H., Li, J., Han, X.G., He, G. and Du, Y.P. (2017) Organic Thiocarboxylate Electrodes for a Room-Temperature Sodium-Ion Battery Delivering an Ultrahigh Capacity. Angewandte Chemie International Edition, 56, 15334-15338. https://doi.org/10.1002/anie.201708960

  69. 69. Jing, Y., Liang, Y., Gheytani, S. and Yao, Y. (2017) Cross-Conjugated Oligomeric Quinones for High Performance Organic Batteries. Nano Energy, 37, 46-52. https://doi.org/10.1016/j.nanoen.2017.04.055

  70. 70. Xu, F., Xia, J. and Shi, W. (2015) Anthraquinone-Based Polyimide Cathodes for Sodium Secondary Batteries. Electrochemistry Communications, 60, 117-120. https://doi.org/10.1016/j.elecom.2015.08.027

  71. 71. Xu, F., Wang, H., Lin, J., Luo, X., Cao, S.-A. and Yang, H. (2016) Poly(anthraquinonyl imide) as a High Capacity Organic Cathode Material for Na-Ion Batteries. Journal of Materials Chemistry A, 4, 11491-11497. https://doi.org/10.1039/C6TA03956A

  72. 72. Sun, T., Li, Z.-J., Wang, H.-G., Bao, D., Meng, F.-L. and Zhang, X.-B. (2016) A Biodegradable Polydopamine-Derived Electrode Material for High-Capacity and Long-Life Lithium-Ion and Sodium-Ion Batteries. Angewandte Chemie International Edition, 55, 10662-10666. https://doi.org/10.1002/anie.201604519

  73. 73. Liu, T., Kim, K.C., Lee, B., Chen, Z., Noda, S., Jang, S.S. and Lee, S.W. (2017) Self-Polymerized Dopamine as an Organic Cathode for Li- and Na-Ion Batteries. Energy & Environmental Science, 10, 205-215. https://doi.org/10.1039/C6EE02641A

  74. 74. Gao, J., Lowe, M.A., Conte, S., Burkhardt, S.E. and AbruÇa, H.D. (2012) Poly(2,5-dimercapto-1,3,4-thiadiazole) as a Cathode for Rechargeable Lithium Batteries with Dramatically Improved Performance. Chemistry—A European Journal, 18, 8521-8526. https://doi.org/10.1002/chem.201103535

  75. 75. Wu, H., Wang, K., Meng, Y., Lu, K. and Wei, Z. (2013) An Organic Cathode Material Based on a Polyimide/CNT Nanocomposite for Lithium Ion Batteries. Journal of Materials Chemistry A, 1, 6366-6372. https://doi.org/10.1039/c3ta10473g

  76. 76. Ai, W., Zhou, W., Du, Z., Sun, C., Yang, J., Chen, Y., Sun, Z., Feng, S., Zhao, J., Dong, X., Huang, W. and Yu, T. (2017) Toward High Energy Organic Cathodes for Li-Ion Batteries: A Case Study of Vat Dye/Graphene Composites. Advanced Functional Materials, 27, Article ID: 1603603. https://doi.org/10.1002/adfm.201603603

  77. 77. Chen, X., Wu, Y., Huang, Z., Yang, X., Li, W., Yu, L.C., Zeng, R., Luo, Y. and Chou, S.-L. (2016) C10H4O2S2/Graphene Composite as a Cathode Material for Sodium-Ion Batteries. Journal of Materials Chemistry A, 4, 18409-18415. https://doi.org/10.1039/C6TA05853A

  78. 78. Deng, W., Qian, J., Cao, Y., Ai, X. and Yang, H. (2016) Graphene-Wrapped Na2C12H6O4 Nanoflowers as High Performance Anodes for Sodium-Ion Batteries. Small, 12, 583-587. https://doi.org/10.1002/smll.201502278

  79. 79. Li, A., Feng, Z., Sun, Y., Shang, L. and Xu, L. (2017) Porous Organic Polymer/RGO Composite as High Performance Cathode for Half and Full Sodium Ion Batteries. Journal of Power Sources, 343, 424-430. https://doi.org/10.1016/j.jpowsour.2017.01.079

  80. NOTES

    *通讯作者。

期刊菜单