﻿ 一种基于Chirp-Step的复合测速方法 A Composite Velocity Measurement Method Based on Chirp-Step

Computer Science and Application
Vol.06 No.08(2016), Article ID:18315,5 pages
10.12677/CSA.2016.68058

A Composite Velocity Measurement Method Based on Chirp-Step

Chen Wang, Yun Fu, Xuting Zhou

School of Physics and Electronic Information, Anhui Normal University, Wuhu Anhui

Received: Jul. 24th, 2016; accepted: Aug. 11th, 2016; published: Aug. 17th, 2016

ABSTRACT

Millimeter wave (MMW) Chirp-Step Costas coded radar is a high-resolution distance radar, and motion compensation has to be implemented to improve resolution of moving target. This paper adopts an approach for motion compensation based on Pulse-Doppler velocity, and analyzes the effect of compensation for high velocity target with diversified velocity. The simulation result confirms effective and fast effect of the technology. High resolution 1-D range profile is generated by using the algorithm.

Keywords:MMW Radar, Composite Speed, Chirp-Step, Costas Code, Pulse-Doppler

1. 引言

2. 目标运动对Costas编码雷达的影响

2.1. 信号形式及基本处理

(1)

(2)

(3)

2.2. 多普勒效应

Costas编码消除了距离–多普勒耦合，消除了目标一维距离像的峰值走动，但是经过编码之后，相当于在各步进信号之间引入了随机变量，所以引起目标一维距离像能量发散，为了使聚焦理想，必须进行运动补偿。

(4)

(5)

3. 基于多普勒测速的运动补偿

3.1. 多普勒测速方法

(6)

Costas编码雷达不存在距离–多普勒耦合造成的峰值走动，所以每一个散射中心不会移动到别的距离单元。由式(3)和式(6)，我们可得到如下表达式：

(7)

(8)

(9)

(10)

(11)

3.2. 仿真

(a) (b) (c)

Figure 1. Range image of target before speed compensation. (a) v = 0 m/s; (b) v = 2.5 m/s; (c) v = 110 m/s

(a) (b) (c)

Figure 2. Range image of the target after speed compensation. (a) v = 2.5 m/s; (b) v = 10 m/s; (c) v = 110 m/s

4. 结束语

A Composite Velocity Measurement Method Based on Chirp-Step[J]. 计算机科学与应用, 2016, 06(08): 472-476. http://dx.doi.org/10.12677/CSA.2016.68058

1. 1. 孙慧霞, 刘峥. 毫米波调频步进雷达复合测速方法[J]. 系统工程与电子技术, 2011, 33(3): 539-543.

2. 2. 刘峥, 刘宏伟. 正负步进频率编码信号及其处理[J]. 信号处理, 1999(S1): 21-25.

3. 3. 刘静, 李兴国, 吴文. 波形熵法在毫米波Costas跳频雷达运动补偿中的应用[J]. 红外与毫米波学报, 2003, 22(4): 303-306.

4. 4. 刘静, 李兴国, 吴文. 毫米波Costas编码雷达动目标一维距离像运动补偿[J]. 红外与毫米波学报, 2005, 24(5): 344-347.

5. 5. 魏玺章, 刘振, 邓斌, 黎湘. Costas编码跳频宽带雷达信号测速技术研究[J]. 电子学报, 2010, 38(10): 2426-2429.

6. 6. 王桂丽, 李兴国. 频率步进和脉冲多普勒复合测速研究[J]. 红外与毫米波学报, 2008, 27(3): 190-192.

7. 7. Orlenko, V.M. (2004) Simulation of Target Detection Using a High Range Resolution Radar. Ultraw Ultrash Impulse Signal, 9, 19-22. http://dx.doi.org/10.1109/uwbus.2004.1388068

8. 8. De Maio, A., Farina, A. and Gerlach, K. (2007) Adaptive Detection of Range Spread Targets with Orthogonal Rejection. IEEE Transactions on Aerospace and Elec-tronic Systems, 43, 738-751. http://dx.doi.org/10.1109/TAES.2007.4285365

9. 9. Jia, S.G. and Kong, L.J. (2009) A New Approach to Range Spread Target Detection Based on Information Entropy. 2009 2nd Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xi’an, 26-30 October 2009, 560-562. http://dx.doi.org/10.1109/APSAR.2009.5374222

10. 10. Farina, A. and Studer, F.A. (1991) Detection with High Resolution Radar: Great Promise, Big Challenge. Microwave Journal, 24, 263-273.

11. 11. 孙慧霞, 刘峥. 毫米波调频步进雷达复合测速方法[J]. 系统工程与电子技术, 2011, 33(3): 539-543.