﻿ 脉冲噪音图像的修正恢复方法 Recovery Correction to Images Corrupted by Impulse Noise

Computer Science and Application
Vol.07 No.02(2017), Article ID:19773,5 pages
10.12677/CSA.2017.72015

Recovery Correction to Images Corrupted by Impulse Noise

Jie Ni

The First High School of Changsha, Changsha Hunan

Received: Feb. 1st, 2017; accepted: Feb. 20th, 2017; published: Feb. 23th, 2017

ABSTRACT

The total variation (TV) regularization term plus L1 norm, denoted by TV/L1 model, is widely used to the problem of image restoration where the observed images are corrupted by blur and impulse noise. However, TV/L1 model may produce a poor recovery solution, especially for high noise levels. In order to overcome the problem, we propose new modification of TVL1 (MTV/L1) which a linear correction term, constructed by an arc-tangent function, is added. Alternating direction method of multipliers (ADMM) is presented to solve the TV/L1 and MTV/L1 models. Numerical experiments verify that our proposed approach outperforms TV/L1 in terms of signal-to-noise ratio (SNR) values and visual quality, especially for high noise levels.

Keywords:Impulse Noise, Image Recovery, Salt-and-Pepper Noise, TV/L1 Model, Alternating Direction Method of Multipliers

1. 引言

Figure 1. Recovery images corrupted by 90% level salt-and-pepper noise and average blurring. (a) original image, (b) corruption image, (c) recovery image by TV/L1, (d) recovery image by MTV/L1

2. 修正模型和求解算法

(1)

(2)

(3)

TV/L1模型的修正可以进行一步修正，也可以进行多步修正，初始的估计一般选取TV/L1模型的解，之后则选取修正模型MTV/L1的最新计算结果。

，则修正模型MTV/L1 (2)可以改写成

(4)

3. 数值仿真实验

4. 总结

Recovery Correction to Images Corrupted by Impulse Noise[J]. 计算机科学与应用, 2017, 07(02): 124-128. http://dx.doi.org/10.12677/CSA.2017.72015

1. 1. 温海娇, 文杰, 王丽平, 贾帅. 一种新的PCNN自适应去噪算法[J]. 计算机仿真, 2015, 32(11): 338-342.

2. 2. Fabijanska, A. and Sankowski, D. (2011) Noise Adaptive Switching Median-Based Filter for Impulse Noise Removal from Extremely Corrupted Images. IET Image Processing, 5, 472-480. https://doi.org/10.1049/iet-ipr.2009.0178

3. 3. Bar, L., Sochen, N. and Kiryati, N. (2007) Deblurring of Color Images Corrupted by Salt-And-Pepper Noise. IEEE Transactions on Image Processing, 70, 1101-1111. https://doi.org/10.1109/TIP.2007.891805

4. 4. Nikolova, M. (2004) A Variational Approach to Remove Outliers and Impulse Noise. Journal of Mathematical Imaging and Vision, 20, 99-120. https://doi.org/10.1023/B:JMIV.0000011920.58935.9c

5. 5. Rudin, L., Osher, S. and Fatemi, E. (1992) Nonlinear Total Variation Based Noise Removal Algorithms. Physica D: Nonlinear Phenomena, 60, 259-268. https://doi.org/10.1016/0167-2789(92)90242-F

6. 6. Chan, T. and Esedoglu, S. (2005) Aspects of Total Variation Regularized L1 Function Approximation. SIAM Journal on Applied Mathematics, 65, 1817-1837. https://doi.org/10.1137/040604297

7. 7. Chen, F., Shen, L., Xu, Y. and Zeng, X. (2014) The Moreau Envelope Approach for the L1/TV Image Denoising. Inverse Problems and Imaging, 8, 53-77. https://doi.org/10.3934/ipi.2014.8.53

8. 8. Ma, L., Yu, J. and Zeng, T. (2013) Sparse Representation Prior and Total Variation-Based Image Deblurring under Impulse Noise. SIAM Journal on Imaging Sciences, 6, 2258-2284. https://doi.org/10.1137/120866452

9. 9. Yan, M. (2013) Restoration of Images Corrupted by Impulse Noise and Mixed Gaussian Impulse Noise Using Blind Inpainting. SIAM Journal on Imaging Sciences, 6, 1227-1245. https://doi.org/10.1137/12087178X

10. 10. Yang, J., Zhang, Y. and Yin, W. (2009) An Efficient TVL1 Algorithm for Deblurring Multichannel Images Corrupted by Implusive Nosie. SIAM Journal on Scientific Computing, 31, 2842-2865. https://doi.org/10.1137/080732894

11. 11. Bai, M., Zhang, X. and Shao, Q. (2016) Adaptive Correction Procedure for TVL1 Image Deblurring under Impulse Noise. Inverse Problems, 32, Article ID: 085004. https://doi.org/10.1088/0266-5611/32/8/085004