﻿ 面向混合异构配用电通信网的综合监测技术 Fault Detection Method of Distribution Communication Network Based on Unbalance Detection

Computer Science and Application
Vol.07 No.05(2017), Article ID:20628,7 pages
10.12677/CSA.2017.75051

Fault Detection Method of Distribution Communication Network Based on Unbalance Detection

Donghui Bai

Power Supply Bureau of Guangdong Power Grid Co., Ltd., Dongguan Guangdong

Received: May 6th, 2017; accepted: May 21st, 2017; published: May 24th, 2017

ABSTRACT

Distribution communication network is the information channel, which protects the normal operation, fast false response, efficient use of resources, real-time business and sustainable power production of distribution network. In order to ensure the normal communication of the distribution communication network, this paper studies a fault detection method of distribution communication network based on unbalance detection, and calculates the unbalance degree by using the normalized rate of smoothed variability (NRSV). Effective and scalable unbalanced changes have been detected to ensure accuracy of fault detection and improve fault detection efficiency. Simulation results show that this method can achieve high precision network fault detection and high fault detection efficiency.

Keywords:Distribution Network, Fault Detection, Unbalance Detection, Normalized Model

Copyright © 2017 by author and Hans Publishers Inc.

1. 引言

2. 相关研究

3. 不平衡变化检测

3.1. 一般化模型

1) 至少存在一个测量的指标A与有问题的网络设备的服务成功率相关。A在网络故障发生之前或期间相对于正常状态偏小。

2) A的减少过程存在不同变化率的多个阶段，并且阶段的数目取决于网络故障的机制。

3) 在正常条件下还存在与A相关的至少一个测量的指标B。A减少之后B相较于正常状态偏大。

3.2. 方法流程

Figure 1. Fault model diagram

Figure 2. Flow chart of unbalanced change detection

1) 分别从每个设备的吞吐量提取变化率，

2) 计算一组可变性的不平衡程度，

3) 将所计算的不平衡度值与其历史值进行比较，以确定其是否是离群值。

3.3. 提取变化率

(1)

3.4. 计算不平衡度

(2)

(3)

3.5. 异常检测

(4)

4. 评估

4.1. 可行性与效率

4.2. 检测结果

Figure 3. Cumulative distribution of correlation coefficients between device throughputs

Table 1. Performance comparison of two algorithms

Table 2. Test results

5. 结语

Fault Detection Method of Distribution Communication Network Based on Unbalance Detection[J]. 计算机科学与应用, 2017, 07(05): 421-427. http://dx.doi.org/10.12677/CSA.2017.75051

1. 1. 雷煜卿, 李建岐, 侯宝素. 面向智能电网的配用电通信网络研究[J]. 电网技术, 2011, 35(12): 14-19.

2. 2. Kouno, H., Furutani, M., Sagae, Y., Benjebbour, A. and Hagiwara, J. (2011) Implementation of New Silent Faults Detection Method for Base Station Equipment. NTT DOCOMO Technical Journal, 13, 12-19.

3. 3. Katzela, I. and Schwartz, M. (1995) Schemes for Fault Identification in Communication Networks. IEEE/ACM Transactions on Networking, 3, 753-764.

4. 4. Liu, D., Lung, C.H., Lambadaris, I. and Seddigh, N. (2013) Network Traffic Anomaly Detection Using Clustering Techniques and Performance Comparison. 2013 26th IEEE Canadian Conference on Electrical and Computer Engineering, Regina, 5-8 May 2013, 1-4.

5. 5. Thottan, M. and Ji, C. (2003) Anomaly Detection in IP Networks. IEEE Transactions on Signal Processing, 51, 2191- 2204.

6. 6. 王淼. 智能配用电通信网告警关联分析方法的设计与实现[D]: [硕士学位论文]. 北京:北京邮电大学, 2015.

7. 7. 唐金锐. 电力线路在线巡视监测及故障精确定位的研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2014.

8. 8. 江龙才, 霍朝辉, 步冬静. 基于配电通信网的光纤网络故障监测与恢复研究[J]. 无线互联科技, 2016(10): 1-4

9. 9. 孙峰, 司红代, 孙晓非. 智能电网多指标综合评估体系研究[J]. 东北电力技术, 2011, 32(9): 1-7.

10. 10. 王智冬, 李晖, 李隽, 韩丰. 智能电网的评估指标体系[J]. 电网技术, 2009, 33(17):14-18.

11. 11. Bhuyan, M.H., Bhattacharyya, D.K. and Kalita, J.K. (2014) Network Anomaly Detection: Methods, Systems and Tools. IEEE Communications Surveys & Tutorials, 16, 303-336.