Advances in Clinical Medicine
Vol. 10  No. 12 ( 2020 ), Article ID: 39103 , 7 pages
10.12677/ACM.2020.1012433

肾素–血管紧张素系统在股骨头缺血性坏死中的研究进展

赵志平1,2,王向宇1,2,张聿达1,2,张永涛2,王昌耀2,王英振2*

1青岛大学医学部,山东 青岛

2青岛大学附属医院关节外科,山东 青岛

收稿日期:2020年11月15日;录用日期:2020年12月3日;发布日期:2020年12月10日

摘要

越来越多的研究表明骨组织和骨细胞中存在肾素–血管紧张素系统(renin-angiotensin system, RAS)组分,还发现骨组织RAS的异常激活参与骨疾病的发生和发展的病理过程。目前,对骨组织RAS在股骨头缺血性坏死(avascular necrosis of the femoral head, ANFH)中的具体作用和机制的研究,是骨科研究领域的热点。近来研究显示,骨组织RAS直接参与调控骨代谢和骨微循环的病理生理过程,该文就骨组织RAS在ANFH中的作用及机制的研究进展予以综述。

关键词

股骨头缺血性坏死,肾素–血管紧张素系统,骨代谢,骨微环境

Research Progress of Renin-Angiotensin System in Avascular Necrosis of Femoral Head

Zhiping Zhao1,2, Xiangyu Wang1,2, Yuda Zhang1,2, Yongtao Zhang2, Changyao Wang2, Yingzhen Wang2*

1Medical College, Qingdao University, Qingdao Shandong

2Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao Shandong

Received: Nov. 15th, 2020; accepted: Dec. 3rd, 2020; published: Dec. 10th, 2020

ABSTRACT

More and more studies have revealed the existence of renin-angiotensin system (RAS) components in bone tissue and bone cells, and it has also been found that abnormal activation of bone local RAS is involved in the pathological process of the occurrence and development of bone diseases. At present, the research on the specific role and mechanism of bone local RAS in avascular necrosis of femoral head (ANFH) has become a hot spot in the field of orthopedic research. Recent studies have shown that bone tissue RAS is directly involved in the pathophysiology of bone metabolism and bone microcirculation. This review summarizes the research progress of the role and mechanism of bone local RAS in ANFH.

Keywords:Avascular Necrosis of Femoral Head, Renin-Angiotensin System, Bone Metabolism, Bone Microenvironment

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

非创伤性股骨头缺血性坏死(ANFH)是由于股骨头的血液循环障碍,引起骨细胞及骨髓成分死亡及随后的修复中骨重塑出现失衡,继而导致股骨头结构改变、股骨头塌陷、髋关节功能障碍的疾病 [1],是一种致残率极高的骨科临床常见疑难症。ANFH常见的病因有滥用酒精、长期使用糖皮质激素等 [2],然而,目前关于ANFH发生发展的病理生理机制仍不明确。流行病学和实验研究均表明,骨组织局部肾素–血管紧张素系统(RAS)过度激活是ANFH的重要发生机制之一 [3] [4];相关药理学研究显示骨组织RAS能够明显促进小鼠激素诱导的ANFH,RAS抑制剂能增加骨量和骨密度,进而延缓ANFH的发生发展,揭示RAS抑制剂对ANFH的药理价值 [3] [5]。与此同时,骨组织RAS在ANFH中的具体作用和机制的研究,是骨科研究领域的热点,本文就骨组织局部RAS在ANFH中的研究进展进行综述,为进一步探索ANFH发病机制和早期预防提供理论依据。

2. 骨组织局部RAS的概述

经典的RAS在维持人体内水电解质和内部环境的稳定中起着重要作用,在心脑血管疾病中的重要作用得到了广泛的认可。RAS组分包括肾素、血管紧张素原、血管紧张素转化酶(ACE)、ACE2、血管紧张素(Ang)I和II、AngII的1型受体(AT1R)和2型受体(AT2R)、Ang(1-7)及Mas受体,研究发现,RAS不仅存在于血液循环中,也广泛的分布于人体各局部组织,如骨骼、肾、心脏、脂肪、血管和中枢等 [6]。近来体内、体外和临床研究显示,骨细胞和骨组织局部存在RAS组分 [6] [7] [8] [9] [10],Zhang等 [3] 研究发现骨组织RAS通过调控骨代谢和骨微循环参与骨的病理生理过程,过度激活的RAS在骨疾病的发生、发展中发挥重要生物学作用 [11] [12] [13]。RAS抑制剂如血管紧张素转化酶抑制剂(ACEI)以及AngII受体阻滞剂(ARB)作为临床上常用的一类抗高血压药物,在一定程度上对骨组织RAS起到抑制作用,Izu等 [9] 研究发现成人骨中存在RAS组分以及AT2受体阻断剂能显著提高骨量水平(P < 0.05),Lin等 [14] 学者发现ACEI和ARB可以降低类风湿性关节炎的发病风险,Abuohashish等 [15] 研究显示在雌激素缺乏的骨质疏松大鼠模型中,ACEI能显著改善骨的代谢、矿化和超微结构,Nakagami等 [16] 临床研究表明,使用ACEI可显著降低骨折风险。因此,ACEI和ARB为ANFH等骨科疾病的治疗提供新的思路和潜在可能的靶点。综上所述,局部RAS在组织和器官的调控作用中有重要意义,以及骨组织局部存在RAS组分的表达,其活性的异常升高诱发骨代谢疾病和缺血性疾病,RAS抑制剂在一定程度上缓解其病理过程,说明骨组织RAS在骨代谢和微环境调控中发挥重要作用。

3. RAS调控骨代谢参与ANFH

Tara等 [17] 发现在局部骨组织中,成骨细胞和破骨细胞的动态平衡维持着正常的骨重塑周期,保持成年人骨的结构和质量的稳定。近些年来,越来越多的研究揭示过度激活的骨组织RAS打破成骨细胞和破骨细胞在骨重塑中的稳态,通过促进破骨细胞成熟增加骨吸收和抑制成骨细胞形成减少骨形成,进而使骨形成和骨吸收失衡,最终导致骨代谢紊乱。在体外研究中,Hatton等 [18] 发现RAS可以促进破骨细胞的成熟和分化,应用ACEI或者ARB可以抑制破骨细胞的形成 [19];在动物模型中,Zhang等 [20] 发现RAS促进破骨细胞相关基因的表达,进而诱导破骨细胞成熟和分化,以及降低骨矿化表面、矿物质沉积率和血清骨钙素水平,导致骨形成减少和骨吸收增多,使用ACEI能逆转此过程 [21] [22];在临床研究中,Lynn等 [23] 发现ACEI和ARB可以增加骨密度,降低骨折发生风险 [13]。

近期研究发现,骨组织局部RAS激活所诱发的骨代谢紊乱与ANFH的发生和发展密切相关 [3] [4] [5]。Zhang等 [3] 研究发现骨组织RAS可能调控骨代谢参与大鼠激素诱导的ANFH;Liu等 [5] 发现AngII使小鼠股骨头空骨陷窝率增加以及股骨头骨小梁的骨量减少促进股骨头坏死;随着基因学的发展,Zhang等 [4] 研究表明ACE DD基因型有更高的ACE活性,是中国人群股骨头缺血性坏死的危险因素。

破骨细胞的形成是骨代谢的中心,20世纪90年代中后期研究发现,核因子受体激活剂kappaB配体(RANKL)是破骨细胞形成和激活的重要细胞因子,它通过与破骨前体细胞表面的核因子κB受体活化因子(RANK)结合,上调了破骨细胞相关基因的表达和促进了破骨细胞的成熟和分化,而骨保护素(OPG)作为RANKL的竞争性拮抗因子,可以阻断RANKL与RANK的结合,从而抑制破骨细胞的形成和活性 [24],RANKL-RANK-OPG信号通路的发现在阐明破骨细胞生成和骨吸收的调控机制方面是一项历史性突破 [25]。

近来研究发现,骨组织局部RAS对破骨细胞的作用与RANKL-RANK信号通路也是密切相关 [21] [26],Tanaka等 [27] 学者发现RAS诱导RANKL和破骨基因的表达,促进破骨细胞形成和骨的吸收;Zhang等 [20] 研究表明局部骨组织RAS能增加成骨细胞中RANKL/OPG的比值,刺激破骨细胞的形成与分化而促进骨吸收,而使用ACEI能明显阻断这种变化;Jiang等 [28] 发现RANKL-RANK-OPG系统的破骨作用参与ANFH的发生发展过程,降低RANKL-RANK-OPG的比值抑制激素性ANFH大鼠破骨细胞的分化,促进骨形成;Kim等 [29] 研究发现应用RANKL抑制剂减少骨吸收和Legg-Calvé-Perthes病导致的股骨头坏死。因此,局部骨RAS的激活通过调控RANKL-RANK-OPG轴改变成骨细胞和破骨细胞的平衡,进而抑制骨形成和刺激骨吸收,导致骨代谢紊乱,最终增加ANFH等骨疾病的发生风险并损害其修复,而使用RAS抑制剂可以延缓其病理过程。

4. RAS调控骨微循环参与ANFH

大量研究表明,ANFH发生的机制与股骨微循环障碍密切相关 [1] [30],其中最有可能存在涉及受损软骨下微循环的常见病理生理途径 [31],主要包括血管内皮损伤和微血管血栓形成减少了股动脉灌注,脂肪代谢紊乱导致髓内脂肪形成,而增加了骨内压,导致静脉淤滞和动脉阻塞 [30]。与此同时,最近研究发现骨组织局部RAS与骨缺血性疾病密切相关,过度激活的RAS通过影响骨微循环诱导股骨头缺血性坏死 [4] [5],其潜在的机制可能由于骨组织RAS通过促进活性氧产生,基质沉积,内皮功能障碍,脂质摄取增加和炎症因子产生而损伤血管,造成股骨头血供中断或受损 [32] [33],最终导致ANFH。RAS中最主要的活性分子是血管紧张素II,血管紧张素II作为最有效的微血管收缩剂之一,能够使股骨头微循环中血管收缩和血供减少,与ANFH密切相关 [3]。血管紧张素II可以通过诱导产生血管细胞黏附分子-1、细胞间黏附分子-1、单核细胞趋化蛋白-1、白细胞介素-6 (IL-6)、白细胞介素-8 (IL-8)和肿瘤坏死因子-α (TNF-α)等,诱导内皮细胞炎症反应和功能障碍、凝血异常和血栓形成 [34] [35],这可能参与股骨头坏死等骨缺血性疾病的病理过程。骨组织局部的RAS促进骨周围组织内的单核巨噬细胞、成纤维细胞和滑膜细胞释放炎性细胞因子,如TNF-α、IL-6、IL-1β,而这些炎症因子将进一步促进破骨细胞的形成和成熟,增加骨吸收能力,Zhang等 [36] 学者发现低剂量的卡托普利可以有效减少炎症因子(TNF-α、IL-6和IL-1β)的产生,减少骨质破坏和流失。康等 [37] 人研究发现血液高凝易栓和脂类代谢异常在激素诱发股骨头缺血性坏死中起重要作用,联合抗凝、降脂可以预防激素型股骨头缺血性坏死的发生,降低股骨头缺血性坏死的发生率。与此同时,骨组织RAS还能上调NADPH氧化酶介导氧化应激过程,通过促进骨微循环中ROS的产生介导血管炎症 [38],ROS是一种强有效的细胞间和细胞内第二信使,ROS水平的升高可以抑制或者灭活内皮细胞NO,诱导内皮细胞的衰老和凋亡 [39],研究结果显示ROS通过损伤血管内皮细胞、诱导成骨细胞与骨细胞减少、异常激活破骨细胞等方式诱发ANFH [40]。此外,血管紧张素II能增加纤溶酶原激活物抑制剂-1的表达水平,打破了血栓形成与纤溶系统平衡的稳态机制 [41],Lykissas等 [35] 学者发现血栓形成与纤溶系统平衡紊乱能导致骨微循环的高凝状态,最终导致股骨头缺血性坏死。

骨组织局部RAS的异常激活可能导致在股骨微循环中血管收缩、血管炎症、溶骨性炎症因子的释放和氧化应激等,导致血管内皮细胞功能障碍和骨微循环高凝状态,减少股骨头微循环的血液供应和导致骨代谢紊乱,进而发生缺血性改变,增加了ANFH的发生风险。

5. 展望

骨组织RAS的激活主要通过经典的ACE/AngⅡ/AT1R信号通路调控骨代谢和骨微循环参与ANFH的病理过程,然而,近来研究发现,RAS的另一条轴ACE2/Ang(1-7)/Mas级联受体可能是RAS中的保护因子 [42] [43],ACE2/Ang(1-7)/Mas轴能够消除传统的ACE/AngⅡ/AT1R信号通路对骨组织的破坏,Hatem等 [44] 研究首次发现了Ang(1-7)通过ACE2/Mas级联对骨骼健康和代谢的治疗作用是新颖而又有价值的,近来研究发现,ACEI和ARB与ACE2/Ang(1-7)/Mas轴对于骨的保护有协同作用 [15] [45],因此,RAS双轴系统在维持、调控骨代谢和骨微循环平衡过程中的交互作用有待进一步研究,这也将有助于更好理解RAS在ANFH等骨疾病中的分子致病机制。与此同时,AT1R和AT2R在骨代谢和骨微循环中的具体作用和机制,以及ACEI和ARB在骨疾病治疗中的作用仍有不小的争议 [46] [47] [48],ACEI和ARB在对ANFH的治疗中仍有很大的应用前景。虽然我们对ANFH的认识在不断的提高,但该疾病的治疗仍然非常困难,早期的诊断和及时的治疗是极为重要的,随着研究的广泛开展和深入,骨组织RAS在ANFH中的更多的生物学效应及其调节机制将进一步得到阐明,并在ANFH的诊断和治疗提供新的思路和潜在的可能的靶点。

文章引用

赵志平,王向宇,张聿达,张永涛,王昌耀,王英振. 肾素–血管紧张素系统在股骨头缺血性坏死中的研究进展
Research Progress of Renin-Angiotensin System in Avascular Necrosis of Femoral Head[J]. 临床医学进展, 2020, 10(12): 2861-2867. https://doi.org/10.12677/ACM.2020.1012433

参考文献

  1. 1. Baig, S.A. and Baig, M.N. (2018) Osteonecrosis of the Femoral Head: Etiology, Investigations, and Management. Cureus, 10, e3171. https://doi.org/10.7759/cureus.3171

  2. 2. Liu, Y.F., Chen, W.M., Lin, Y.F., et al. (2005) Type II Collagen Gene Variants and Inherited Osteonecrosis of the Femoral Head. New England Journal of Medicine, 352, 2294-2301. https://doi.org/10.1056/NEJMoa042480

  3. 3. Zhang, Y., Wang, K., Song, Q., et al. (2014) Role of the Local Bone Renin-Angiotensin System in Steroid-Induced Osteonecrosis in Rabbits. Molecular Medicine Reports, 9, 1128-1134. https://doi.org/10.3892/mmr.2014.1978

  4. 4. Zhang, Y., Zhao, Z., Wang, C., et al. (2019) Association between the Angiotensin-Converting Enzyme Gene Insertion/Deletion Polymorphism and Avascular Necrosis of the Femoral Head. Genetic Testing and Molecular Biomarkers, 23, 778-782. https://doi.org/10.1089/gtmb.2019.0068

  5. 5. 刘保一, 李敏德, 杨帆, 等. 血管紧张素II可促进小鼠激素诱导的缺血性股骨头坏死[J]. 中国组织工程研究, 2019, 23(19): 3044-3049.

  6. 6. Zhao, J., Yang, H., Chen, B., et al. (2019) The Skeletal Renin-Angiotensin System: A Potential Therapeutic Target for the Treatment of Osteoarticular Diseases. International Immunopharmacology, 72, 258-263. https://doi.org/10.1016/j.intimp.2019.04.023

  7. 7. Wu, Y., Li, M., Zeng, J., et al. (2020) Differential Expression of Renin-Angiotensin System-Related Components in Patients with Rheumatoid Arthritis and Osteoarthritis. The American Journal of the Medical Sciences, 359, 17-26. https://doi.org/10.1016/j.amjms.2019.10.014

  8. 8. Gebru, Y., Diao, T.Y., Pan, H., et al. (2013) Potential of RAS Inhibition to Improve Metabolic Bone Disorders. BioMed Research International, 2013, Article ID: 932691. https://doi.org/10.1155/2013/932691

  9. 9. Izu, Y., Mizoguchi, F., Kawamata, A., et al. (2009) Angiotensin II Type 2 Receptor Blockade Increases Bone Mass. Journal of Biological Chemistry, 284, 4857-4864. https://doi.org/10.1074/jbc.M807610200

  10. 10. Wang, Y., Kou, J., Zhang, H., et al. (2018) The Renin-Angiotensin System in the Synovium Promotes Periarticular Osteopenia in a Rat Model of Collagen-Induced Arthritis. International Immunopharmacology, 65, 550-558. https://doi.org/10.1016/j.intimp.2018.11.001

  11. 11. Braz, N., Pinto, M., Vieira, E., et al. (2020) Renin-Angiotensin System Molecules Are Associated with Subclinical Atherosclerosis and Disease Activity in Rheumatoid Arthritis. Modern Rheumatology, 1-8. https://doi.org/10.1080/14397595.2020.1740418

  12. 12. Carbone, L.D., Vasan, S., Prentice, R.L., et al. (2019) The Renin-Angiotensin Aldosterone System and Osteoporosis: Findings from the Women’s Health Initiative. Osteoporosis International, 30, 2039-2056. https://doi.org/10.1007/s00198-019-05041-3

  13. 13. Kao, Y.T., Huang, C.Y., Fang, Y.A., et al. (2020) The Association between Renin Angiotensin Aldosterone System Blockers and Future Osteoporotic Fractures in a Hypertensive Population—A Population-Based Cohort Study in Taiwan. International Journal of Cardiology, 305, 147-153. https://doi.org/10.1016/j.ijcard.2019.12.069

  14. 14. Lin, T.T., Wu, C.K., Liao, M.T., et al. (2017) Primary Prevention of Myocardial Infarction with Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers in Hypertensive Patients with Rheumatoid Arthritis—A Nationwide Cohort Study. PLoS ONE, 12, e188720. https://doi.org/10.1371/journal.pone.0188720

  15. 15. Abuohashish, H.M., Ahmed, M.M., Sabry, D., et al. (2017) ACE-2/Ang1-7/Mas Cascade Mediates Ace Inhibitor, Captopril, Protective Effects in Estrogen-Deficient Osteoporotic Rats. Biomedicine & Pharmacotherapy, 92, 58-68. https://doi.org/10.1016/j.biopha.2017.05.062

  16. 16. Nakagami, H. and Morishita, R. (2009) Hormones and Osteoporosis Update. Effect of Angiotensin II on Bone Metabolism. Clinical Calcium, 19, 997-1002.

  17. 17. Coughlan, T. and Dockery, F. (2014) Osteoporosis and Fracture Risk in Older People. Clinical Medicine, 14, 187-191. https://doi.org/10.7861/clinmedicine.14-2-187

  18. 18. Hatton, R., Stimpel, M. and Chambers, T.J. (1997) Angiotensin II Is Generated from Angiotensin I by Bone Cells and Stimulates Osteoclastic Bone Resorption in Vitro. Journal of Endocrinology, 152, 5-10. https://doi.org/10.1677/joe.0.1520005

  19. 19. Shimizu, H., Nakagami, H. and Morishita, R. (2012) Activation of Osteoclasts by RAAS and Strategy of Target Therapy on Bone Metabolic Diseases. Nihon Rinsho, 70, 1524-1529.

  20. 20. Zhang, Y.T., et al. (2014) Glucocorticoids Activate the Local Renin-Angiotensin System in Bone: Possible Mechanism for Glucocorticoid-Induced Osteoporosis. Endocrine, 47, 598-608. https://doi.org/10.1007/s12020-014-0196-z

  21. 21. Asaba, Y., Ito, M., Fumoto, T., et al. (2009) Activation of Renin-Angiotensin System Induces Osteoporosis Independently of Hypertension. Journal of Bone and Mineral Research, 24, 241-250. https://doi.org/10.1359/jbmr.081006

  22. 22. Zhou, F., Rong, C., Wang, K., et al. (2016) Investigation on the Role on Perindopril for Prevention and Treatment of Glucocorticoid-Induced Osteoporosis in Rabbits. China Journal of Orthopaedics and Traumatology, 29, 52-57.

  23. 23. Lynn, H., Kwok, T., Wong, S.Y., et al. (2006) Angiotensin Converting Enzyme Inhibitor Use Is Associated with Higher Bone Mineral Density in Elderly Chinese. Bone, 38, 584-588. https://doi.org/10.1016/j.bone.2005.09.011

  24. 24. Amin, N., Boccardi, V., Taghizadeh, M., et al. (2020) Probiotics and Bone Disorders: The Role of RANKL/ RANK/OPG Pathway. Aging Clinical and Experimental Research, 32, 363-371. https://doi.org/10.1007/s40520-019-01223-5

  25. 25. Liu, W. and Zhang, X. (2015) Receptor Activator of Nuclear Factor-kappaB Ligand (RANKL)/RANK/Osteoprotegerin System in Bone and Other Tissues (Review). Molecular Medicine Reports, 11, 3212-3218. https://doi.org/10.3892/mmr.2015.3152

  26. 26. Shimizu, H., Nakagami, H., Osako, M.K., et al. (2008) Angiotensin II Accelerates Osteoporosis by Activating Osteoclasts. FASEB Journal, 22, 2465-2475. https://doi.org/10.1096/fj.07-098954

  27. 27. Tanaka, T., Kelly, M., Takei, Y., et al. (2018) RANKL-Mediated Osteoclastogenic Differentiation of Macrophages in the Abdominal Aorta of Angiotensin II-Infused Apolipoprotein E Knockout Mice. Journal of Vascular Surgery, 68, 48S-59S. https://doi.org/10.1016/j.jvs.2017.11.091

  28. 28. Jiang, Y., Zhang, Y., Chen, W., et al. (2014) Achyranthesbidentata Extract Exerts Osteoprotective Effects on Steroid-Induced Osteonecrosis of the Femoral Head in Rats by Regulating RANKL/RANK/OPG Signaling. Journal of Translational Medicine, 12, 334. https://doi.org/10.1186/s12967-014-0334-7

  29. 29. Kim, H.K., Morgan-Bagley, S. and Kostenuik, P. (2006) RANKL Inhibition: A Novel Strategy to Decrease Femoral Head Deformity after Ischemic Osteonecrosis. Journal of Bone and Mineral Research, 21, 1946-1954. https://doi.org/10.1359/jbmr.060905

  30. 30. Mont, M.A., Salem, H.S., Piuzzi, N.S., et al. (2020) Nontraumatic Osteonecrosis of the Femoral Head: Where Do We Stand Today? A 5-Year Update. The Journal of Bone and Joint Surgery. American Volume. https://doi.org/10.2106/JBJS.19.01271

  31. 31. Shah, K.N., Racine, J., Jones, L.C., et al. (2015) Pathophysiology and Risk Factors for Osteonecrosis. Current Reviews in Musculoskeletal Medicine, 8, 201-209. https://doi.org/10.1007/s12178-015-9277-8

  32. 32. Nakagami, H., Osako, M.K. and Morishita, R. (2013) Potential Effect of Angiotensin II Receptor Blockade in Adipose Tissue and Bone. Current Pharmaceutical Design, 19, 3049-3053. https://doi.org/10.2174/1381612811319170011

  33. 33. Wassmann, S. and Nickenig, G. (2006) Pathophysiological Regulation of the AT1-Receptor and Implications for Vascular Disease. Journal of hypertension. Supplement, 24, S15-S21. https://doi.org/10.1097/01.hjh.0000220402.53869.72

  34. 34. Pacurari, M., Kafoury, R., Tchounwou, P.B., et al. (2014) The Renin-Angiotensin-Aldosterone System in Vascular Inflammation and Remodeling. International Journal of Inflammation, 2014, Article ID: 689360. https://doi.org/10.1155/2014/689360

  35. 35. Lykissas, M.G., Gelalis, I.D., Kostas-Agnantis, I.P., et al. (2012) The Role of Hypercoagulability in the Development of Osteonecrosis of the Femoral Head. Orthopedic Reviews (Pavia), 4, e17. https://doi.org/10.4081/or.2012.e17

  36. 36. Zhang, W., Zhao, H., Peng, X., et al. (2011) Low-Dose Captopril Inhibits Wear Debris-Induced Inflammatory Osteolysis. Journal of International Medical Research, 39, 798-804. https://doi.org/10.1177/147323001103900312

  37. 37. 康鹏德, 沈彬, 杨静, 等. 抗凝、降脂治疗对预防兔激素型股骨头缺血性坏死的实验研究[J]. 中华关节外科杂志(电子版), 2007(1): 56-61.

  38. 38. Wang, C., Zhang, C., Zhou, F., et al. (2018) Angiotensin II Induces Monocyte Chemoattractant Protein1 Expression by Increasing Reactive Oxygen Speciesmediated Activation of the Nuclear Factor kappaB Signaling Pathway in Osteoblasts. Molecular Medicine Reports, 17, 1166-1172. https://doi.org/10.3892/mmr.2017.7971

  39. 39. Strawn, W.B. (2002) Pathophysiological and Clinical Implications of AT(1) and AT(2) Angiotensin II Receptors in Metabolic Disorders: Hypercholesterolaemia and Diabetes. Drugs, 62, 31-41. https://doi.org/10.2165/00003495-200262991-00004

  40. 40. 翟玥, 邓国英, 王秋根, 等. 活性氧与激素性股骨头坏死[J]. 国际骨科学杂志, 2017, 38(2): 102-105.

  41. 41. Olatunji, L.A., Usman, T.O., Seok, Y.M., et al. (2017) Activation of Cardiac Renin-Angiotensin System and Plasminogen Activator Inhibitor-1 Gene Expressions in Oral Contraceptive-Induced Cardiometabolic Disorder. Archives of Physiology and Biochemistry, 123, 1-8. https://doi.org/10.3109/13813455.2016.1160935

  42. 42. 刘金鑫, 张方怡, 张岩. 血管紧张素II调控骨代谢的研究进展[J]. 中国药理学通报, 2015, 31(4): 458-461.

  43. 43. Queiroz-Junior, C.M., Santos, A., Galvao, I., et al. (2019) The Angiotensin Converting Enzyme 2/Angiotensin- (1-7)/Mas Receptor Axis as a Key Player in Alveolar Bone Remodeling. Bone, 128, Article ID: 115041. https://doi.org/10.1016/j.bone.2019.115041

  44. 44. Abuohashish, H.M., Ahmed, M.M., Sabry, D., et al. (2017) Angiotensin (1-7) Ameliorates the Structural and Biochemical Alterations of Ovariectomy-Induced Osteoporosis in Rats via Activation of ACE-2/Mas Receptor Axis. Scientific Reports, 7, Article No. 2293. https://doi.org/10.1038/s41598-017-02570-x

  45. 45. Abuohashish, H.M., Ahmed, M.M., Sabry, D., et al. (2017) The ACE-2/Ang1-7/Mas Cascade Enhances Bone Structure and Metabolism Following Angiotensin-II Type 1 Receptor Blockade. European Journal of Pharmacology, 807, 44-55. https://doi.org/10.1016/j.ejphar.2017.04.031

  46. 46. Diao, T.Y., Pan, H., Gu, S.S., et al. (2014) Effects of Angiotensin-Converting Enzyme Inhibitor, Captopril, on Bone of Mice with Streptozotocin-Induced Type 1 Diabetes. Journal of Bone and Mineral Metabolism, 32, 261-270. https://doi.org/10.1007/s00774-013-0500-7

  47. 47. 吴元刚, 沈彬, 曾羿. 肾素–血管紧张素系统在骨关节炎发病中的研究[J]. 中华关节外科杂志(电子版), 2019, 13(4): 448-454.

  48. 48. Zhang, Y., Li, X.L., Sha, N.N., et al. (2017) Differential Response of Bone and Kidney to ACEI in db/db Mice: A Potential Effect of Captopril on Accelerating Bone Loss. Bone, 97, 222-232. https://doi.org/10.1016/j.bone.2017.01.029

  49. NOTES

    *通讯作者。

期刊菜单