Advances in Clinical Medicine
Vol. 13  No. 05 ( 2023 ), Article ID: 64973 , 9 pages
10.12677/ACM.2023.135988

心源性卒中诊疗的研究进展

曹誉竞1,2,3,4,陈灏1,2,3,4*

1重庆医科大学,重庆

2中国科学院重庆绿色智能技术研究院,重庆

3中国科学院大学重庆学院,重庆

4重庆市人民医院心血管外科,重庆

收稿日期:2023年4月7日;录用日期:2023年4月29日;发布日期:2023年5月6日

摘要

缺血性脑卒中在中国的发病率逐年增加,其中大约20%的缺血性脑卒中是心源性卒中(CES)。心源性卒中的发生是多因素的,近年来随着诊断手段的丰富,为心源性卒中的防治提供了重要帮助。溶栓治疗是急性心源性卒中的治疗基础,另外临床常规口服传统抗凝药物预防血栓形成,新型抗凝药的出现为患者提供了新的抗凝选择,对于不能耐受抗凝药物或伴随心脏手术的患者通过房颤消融术或左心耳闭合术来预防卒中的发现也是当前的研究热点。本文重点对心源性卒中的诊断、防治进行了综述。

关键词

心源性卒中,心房颤动,口服抗凝药物,房颤消融,左心耳闭合

Progress in Diagnosis and Treatment of Cardiogenic Stroke

Yujing Cao1,2,3,4, Hao Chen1,2,3,4*

1Chongqing Medical University, Chongqing

2Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing

3Chongqing School, University of Chinese Academy of Sciences, Chongqing

4Department of Cardiovascular Surgery, Chongqing General Hospital, Chongqing

Received: Apr. 7th, 2023; accepted: Apr. 29th, 2023; published: May 6th, 2023

ABSTRACT

The incidence of ischemic stroke in China is increasing year by year, and about 20% of ischemic stroke is cardiogenic stroke (CES) and the occurrence of cardiogenic stroke is multifactorial. In recent years, with the enrichment of diagnostic methods, it has provided important assistance for the prevention and treatment of cardiogenic stroke. Thrombolytic therapy is the basis for the treatment of acute cardiogenic stroke. In addition, traditional oral anticoagulants are routinely used in clinical practice to prevent thrombosis. The emergence of new anticoagulants provides patients with new anticoagulant options. The discovery of preventing stroke through atrial fibrillation ablation or left atrial appendage closure for patients who cannot tolerate anticoagulants or are accompanied by cardiac surgery is also a current research focus. This article focuses on the diagnosis, prevention, and treatment of cardiogenic stroke.

Keywords:Cardiogenic Stroke, Atrial Fibrillation, Oral Anticoagulant Drugs, Atrial Fibrillation Ablation, Left Atrial Appendage Closure

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 前言

随着中国人口老龄化的加剧,中国40岁以上卒中发病率是全球预估发病率的3倍以上,给社会和家庭带来沉重负担 [1] 。缺血性脑卒中是最常见的脑卒中类型,在中国脑卒中患者中比例高达70% [2] 。参照国际脑卒中分类,国内专家提出了适用于我国脑卒中分类的中国缺血性脑卒中亚分类(CISS) [3] 。在CISS中,缺血性中风分为五类:大动脉粥样硬化(Large artery atherosclerosis, LAA)、心源性卒中(Cardiogenic stroke, CS)、穿支动脉疾病((Penetrating artery disease, PAD)、其他病因(Other etiology, OE)及病因不确定(Undetermined etiology, UE)。其中,心源性脑卒中是急性缺血性脑卒中最常见的类型之一,有高的死亡率及致残率。有效识别心源性卒中及相关风险因素、及时有效的干预及治疗是临床实践中的关键 [4] 。

2. 心源性卒中的发生机制

心源性脑卒中(Cardioembolic stroke, CES)指由来源于心脏的栓子脱落后,经循环系统造成脑动脉血管阻塞,对应脑组织缺损坏死,从而导致相应的脑功能障碍。栓子的种类中最多的是血栓栓子,其他包括脂质、肿瘤赘生物和瓣膜性钙化物质等物质。根据A-S-C-O (表型)分类系统中,CES的病因分为以下九类:心房颤动(Atrial fibrillation, AF)、心力衰竭、急性冠脉综合征、卵圆孔未闭(Patent foramen ovale, PFO)、风湿性心脏病、人工心脏瓣膜、感染性心内膜炎、扩张型心肌病和心脏黏液瘤。

3. 心源性卒中的诊断

心源性卒中可发生在所有年龄段的患者中,其中大多数都有心脏病史,其特征是突然出现与对应大脑皮层损伤的严重神经系统症状,这些症状出现迅速,并伴有其他系统血栓栓塞的临床表现。故目前研究热点是更多的是对卒中潜在风险的识别和诊断,提高目前诊断工具的准确性,以及发现及识别有助于诊断和监测的新生物标志物。

3.1. 超声心动图

经食管超声心动图(Transesophageal echocardiography, TEE)和经胸超声心动图(Transthoracic echocardiography, TTE)在评估心源性卒中中发挥着关键作用,通过它们可以确定心脏栓塞的潜在来源,如心内血栓、瓣膜病变和心房颤动。在最近发表在美国心脏协会杂志上的一项研究中比较了TTE和TEE对隐匿性卒中患者左心耳血栓检测的诊断准确性 [5] 。研究发现,TEE在检测血栓方面比TTE具有更高的灵敏度和特异性,表明TEE在非瓣膜性心房颤动相关卒中的心内血栓准确检测和风险分层方面更具有优势。另一项回顾性队列研究中证实超声心动图对缺血性卒中的预测能力,在急性缺血性卒中患者住院期间常规行超声心动图是预防预后不良的保护因素,使院内死亡几率降低了11.1倍(P < 0.001) [6] 。

经颅多普勒(Transcranial Doppler, TCD)是一种非侵入性超声技术,可以评估颅内主要动脉的血流速度及检测与卒中风险增加相关的微栓塞信号(Microembolization signal, MES),可用于识别隐源性卒中患者的心脏栓塞来源。另外,TCD与“发泡试验”在检测右向左分流事件(Right-to-left shunt, RLS)方面的准确性具有很好的优势,而右向左分流在青年人群中常见于卵圆孔未闭,这可能成为检测中青年群体心源性急性脑缺血事件的最佳筛查方法 [7] 。TCD除具有诊断价值外,在脑血管再通治疗方面,无论是静脉溶栓还是机械血栓切除,允许进行连续的脑血流动力学和侧支血管状态方面监测和评估,在识别高灌注综合征和栓塞信号、预测复发性中风和检测再闭塞方面具有重要意义,指导临床医生在急性脑卒中患者治疗中做出个性化决策 [8] 。

3.2. 心电图

心电图主要用于如房颤或近期心肌梗死的诊断,筛选心源性卒中的高风险患者,及对急性卒中患者进行监测,及时发现心电阳性事件,预防复发性卒中。常用的心电图技术包括12导联心电图、18导联心电图、24小时动态心电图监测和长期心电图监测(>24小时)。目前植入式心电事件监测器(insertable cardiac monitor, ICM)作为一种长期心电监测设备,其可长期连续性的监测,对心电阳性事件的捕获尤其是阵发性心房颤动具有更好的价值 [9] 。在研究中发现,心电图异常的存在,包括心房颤动、QT间期延长和ST-T波改变,与心功能异常和更高的死亡率有关。

3.3. 计算机断层扫描(Computed Tomography, CT)

多模式CT成像(非对比CT,NCCT;CT血管造影术,CTA;和CT灌注,CTP)是急性缺血性卒中诊断和治疗的核心。脑实质的NCCT成像是所有急性卒中治疗患者的影像学基础。除了排除颅内出血外,NCCT还可用于评估早期缺血性损伤的程度。ASPECTS评分可用于量化早期梗死的程度,对结果以及对治疗的反应具有预测作用,但评分需要经验丰富的评估者来进行 [10] 。

计算机断层扫描血管造影(CTA)可以在NCCT后立即进行,并为成像程序增加最短的时间,从而实现对脑血管系统的有效成像。CTA可以发现心源性卒中潜在的栓塞源,如动脉粥样硬化病变、动脉夹层、动脉瘤和从主动脉弓到颅底的血栓及动脉粥样硬化斑块,表现为管腔不规则/充盈缺陷、狭窄或闭塞,另外三维多平面重建图像提供了血管树的高分辨率血管造影图像,进一步指导手术治疗 [11] 。然而,CTA上没有发现血管闭塞并不能完全排除缺血性卒中的可能,研究发现高达39%的病例没有在CTA发现阳性特征 [12] 。这些可能与小动脉水平的小血管病变(腔隙性脑梗死)有关或CTA可见分辨率以下的远端闭塞 [13] 。

CTP成像是一种类似于CTA的动力学示踪技术。然而,与后者不同的是,CTP会随着时间的推移跟踪对比剂的团块。CTP对组织信号中相对较小的变化非常敏感,从而可以对微循环进行有效评估。这弥补了对CTA检查下不可见的局灶性缺血的评估,提高了卒中诊断的准确率 [14] 。

3.4. 磁共振成像(MRI)

磁共振成像(MRI)是一种非侵入性技术,可以提供关于脑组织的结构,功能和代谢特征的综合信息。随着技术创新,MRI序列及分析技能取得了重大突破,如基于体素形态学分析(voxel-based morphometry, VBM)、扩散张量束成像(diffusion tensor imaging, DTI)。VBM是一种广泛使用的神经解剖学图像分析自动化技术,可以定量计算和分析灰质、白质密度或体积的变化,以发现结构损伤。MRI在卒中诊断中的主要优势是扩散加权图像(DWI)的存在,这是描述梗死最敏感的技术及核心预测指标。而DTI是在DWI三维观察基础上出现的,用于无创评估白质纤维束与缺血性梗死之间的关系。另外还有DSI、NODDI、fMRI、ASL、SWI、QSM和MRS等MRI序列,这些已被证明是研究脑组织功能及辅助诊断的重要工具 [15] 。但是MRI对出血转化的评估准确性较差,尽管灵敏度为82%和特异度为79%,但更先进的MRI显示了比传统MRI更好的效果 [16] 。所以在将来临床医生对患者个性化的诊断手段选择可能会优化脑卒中患者的治疗方案选择,以及预后效果的评估。

4. 心源性卒中的防治

4.1. 口服抗栓药物治疗

口服抗凝药物(Oral anticoagulants, OAC)房颤患者有效预防卒中的治疗基石,显著降低了64%的卒中风险和26%的死亡风险,是2020年ESC指南中提出的卒中术后ABC管理(A:适当的抗栓治疗;B:改善功能和心理状态C:心血管危险因素和合并症优化管理)的“A”部分 [17] 。这些OAC治疗方案包括维生素K拮抗剂(Vitamin K antagonist, VKA),如华法林和非-VKA口服抗凝剂(New oral anticoagulant, NOAC)。对于大多数没有中度或重度二尖瓣狭窄或人工机械心脏瓣膜的房颤患者,推荐接受华法林抗凝治疗。对于无明显瓣膜性心脏病且符合口服抗凝药物适应证的房颤患者,推荐首选NOAC。患者保持良好的依从性,才能保证良好的抗凝治疗质量,降低相关出血危险因素,可以降低血栓栓塞性卒中的风险和全因风险死亡 [18] 。

以华法林为代表的传统口服抗凝药物疗效肯定,但存在药物剂量治疗窗窄及需要定期随访监测国际标准化比值(International normalized ratio, INR),存在较明显的出血风险,在治疗中建议目标INR为2.0~3.0,治疗范围时间(TTR) > 70%。基于传统抗凝药物的局限性,新型抗凝药物具有剂量固定、药代动力学稳定、无需常规监测INR、受药物和食物影响小及安全性好等优点。NOAC包括凝血酶抑制剂(达比加群)、凝血因子Xa抑制剂(利伐沙班、依度沙班和阿哌沙班等),目前被证实的是NOAC预防卒中发生的治疗效果不劣于传统VKA [19] ,有效减少术后出血风险 [20] ,但有研究证明NOAC有更高的胃肠道出血风险(P = 0.04) [21] 。在关于房颤患者抗凝相关胃肠道出血后OAC恢复的系统综述发现,接受OAC的患者出血事件发生率增加,胃肠道再次出血的风险更高 [22] 。尽管如此,尽管出血事件增加,但净临床获益分析仍有利于抗凝相关胃肠道出血后恢复OAC治疗(净临床获益0.11,95% CI 0.09~0.14,P < 0.001) [23] 。另外抗血小板药(阿司匹林、氯吡格雷等)也能降低脑卒中的发生率 [24] ,但无论是单一抗血小板治疗还是联合用药,长期使用远期出血风险也明显增加 [25] ,包括美国、英国和中国在内的几个国家的指南中建议在轻度卒中或高危TIA后24小时内开始服用阿司匹林加氯吡格雷的DAPT,并持续21天 [26] [27] 。

4.2. 房颤治疗

心房颤动是导致心源性脑卒中最常见的危险因素。心房颤动是临床最常见的心律失常之一,心房颤动因多个异位起搏点的存在引起心房肌肉发生不规律的颤动,心房内血流缓慢、淤滞,从而形成附壁血栓,而心脏的不规律活动又容易导致血栓脱落,随血液循环进入脑血管造成血管阻塞,引发缺血性脑卒中。所以对房颤的治疗是预防心源性卒中的关键环节。通过控制房颤来预防卒中的治疗主要包括药物治疗和手术治疗,药物治疗主要是抗凝药物的使用,主要目标是预防血栓形成风险,手术治疗主要包括房颤射频消融术和左心耳闭合术。

4.2.1. 射频消融术

房颤消融是一种与卒中/全身栓塞风险以及出血风险相关的侵入性手术,适用于有症状且药物控制不佳的房颤患者,通过热效应促使病灶区域凝固性坏死,消除异位起搏点,使房颤心律转为窦性心律,从而达到预防卒中的目的。最近研究显示,围术期期间合并OAC的使用可以降低出血风险和血栓栓塞并发症风险,NOAC比VKA具有更高的安全性和有效性。消融期间的抗凝通常以静脉推注和/或输注肝素的形式进行,并经常测量激活凝血时间(ACT)。最近的指南建议ACT目标控制在为350~400秒,以防止脑部微血栓栓塞 [28] 。另外,房颤消融术后房颤的复发仍是目前研究重点。研究中显示,房颤的复发可能与左心房功能(心房纤维化、左房/左心耳容积、左心房/左心耳射血分数)、肾功能受损(肾小球滤过率(eGFR)的下降)、阻塞性睡眠呼吸暂停综合征(OSAS)、炎性因子(hs-CRP、IL-6)有关 [29] ,所以提高射频消融成功率,减少房颤复发率是预防卒中的关键,而最新的研究提及的神经节丛消融(GPA)、碎裂电位消融(CFAE)、线性消融(LA)、后壁隔离(PWI)疗效暂不确切,可能需要未来更多的数据来证实 [30] 。

4.2.2. 左心耳干预

研究中证实90%的非瓣膜AF患者及57的瓣膜性房颤患者血栓的形成发生在左心耳 [31] ,美国房颤协会在心房颤动治疗指南中指出,非瓣膜性患者若存在华法林抗凝的禁忌证,可采用左心耳闭合来降低术后血栓发生率,对左心耳的处理为IIb级推荐 [32] 。在最新发布的多中心前瞻性随机对照研究(RCT) LAAO III [33] 结果中显示,LAA闭合与未闭合组卒中和体循环栓塞率分别为4.8% vs 7.0%,围术期并发症没有明显差异;从KM曲线上看,LAA闭合对预防卒中具有优势。该结果有可能在将来进一步提升LAA闭合的证据级别和推荐程度。目前临床中常用的外科左心耳闭合术包括于切除缝合(吻合器或组织剪)、内缝合、夹闭、结扎。左心耳闭合术可以在开胸或胸腔镜心脏手术中同期进行,或作为一种独立的手术进行。但是之前的研究显示在各种外科手术方式都存在一定的失败率 [34] ,失败的左心耳闭合被定义为左心耳残端的形成(>1 cm)或者左心耳的血流再通 [35] [36] [37] ,而左心耳闭合失败有研究表明可能导致原有的卒中风险增加 [38] ,所以LAA的完全闭合对于预防晚期卒中或血栓栓塞事件的发生是关键。在最新的研究中,闭合设备的使用是现在左心耳闭合的热点,包括使用左心耳夹闭装置(如Atriclip)的经心外膜左心耳夹术,及使用缝合结扎装置(如Lariat)的经皮左心耳结扎术,因为没有直接接触循环系统,所以不需要抗凝,这对绝对有抗凝禁忌症的患者更加友好 [39] 。Atriclip夹闭装置通过经心外膜在左心耳基底部夹闭左心耳从而达到闭合效果,其闭合效果值得肯定 [40] 。但手术中应注意选择合适的尺寸及释放位置,否则可能导致心包缝合困难,或夹闭不严形成残余漏,造成左心耳血栓的形成的风险 [41] [42] 。此外,研究者最近报道了1例因AtriClip装置导致的心肌梗死事件,原因可能是植入部位的水肿造成了回旋支的延迟性闭塞 [43] 。在最近的研究中,有研究者尝试经前路通过胸腔镜技术来应用Atriclip Pro夹闭装置,取得了不错的效果 [44] 。最近开发的经皮左心耳结扎的Lariat系统,手术方法是将一根通过跨房间隔穿刺置入左心耳尾部的磁控导线与另一根通过剑突下穿刺进入心包腔磁控导线靠拢通过磁吸作用吸附,然后经食道超声定位评估后,然后沿心包腔磁控导线将缝合结扎装置入左心耳后释放,完成左心耳闭合,安全性及有效性已被证实 [45] 。但在一多中心的随访中依然发现了26.5%的残余漏(<5 mm),其可能导致较高的血栓风险 [46] 。因此,需要进一步研究,以确定该技术的临床效用和安全性。

另外还包括现在处于研究热点的内科的介入手段:左心耳封堵术,目前常用的是WATCHMAN、Amplatzer/Amulet封堵器。左心耳封堵术是微创的方式经导管将LAA封堵器放置于左心耳开口处,以隔绝左心耳与左心房间血液流通,从而预防血栓形成。PROTECT-AF和PREVAIL试验成功地证明了WATCHMAN装置对非瓣膜性心房颤动患者中预防卒中的能力不劣于口服华法林,且有更低的出血风险 [47] [48] 。但封堵器属于血管内植入物,在使用封堵器的过程中,存在周围漏、器械栓塞、空气栓塞、器械相关血栓形成和感染的潜在风险 [49] [50] 。因此专家共识中建议只对具有高卒中风险和不能长期口服抗凝药物的房颤患者进行LAA封堵术 [51] 。未来对于如何避免封堵器相关并发症的发生是一个十分关键的问题。

5. 溶栓治疗

急性心源性卒中治疗的首要目的是消除栓子,尽快实现血管再通。静脉溶栓(IVT)和手术是急性治疗大血管闭塞引起的心源性卒中的主要方法。目前临床上常用的溶栓药物有尿激酶、链激酶及纤维蛋白溶解剂,在欧洲卒中指南中指出,症状发作时间 < 4.5 h的急性缺血性脑卒中患者,建议使用静脉溶栓治疗。而如果发作时间更久(4.5~9 h),仅建议适用于CT或MRI核心/灌注失配(梗死核心体积 < 70 ml;严重低灌注体积/梗死核心体积 > 1.2;绝对失配体积 > 10 ml;CTP中相对脑血流量 < 30%或DWI表观弥散系数 < 620 m2/s;CTP或MRP达峰时间 > 6 s),且不适合或未计划进行机械取栓的患者 [52] 。由于受到静脉溶栓治疗时间窗及出血风险的限制,所以通过手术解除栓塞尤为重要,目前的手术技术其包括动脉取栓、碎栓、吸栓及血栓切除术等。荟萃分析中显示血栓切除术是一种更安全有效的治疗方式 [53] ,最新研究中提及的SOFIA导管对血栓的消除也取得了很好的疗效 [54] 。另有研究提出支架取栓器与机械血栓切除术结合的联合手术治疗可以进一步提高血运重建率和再通率,进一步延长时间窗,减少出血转化率及术后并发症 [55] 。所以,通过及时有效的干预来消除栓塞,才能显著改善急性缺血性中风患者的预后,这对以后的手术操作及药物的研发提出更高的要求。

6. 总结

总体而言,心源性卒中的早期识别和及时治疗对于改善预后和降低复发风险至关重要。在急性卒中患者的治疗过程中,整体的质量管理(包括患者评估、抗凝、心率控制、节律控制、危险因素管理和结果)对患者预后具有巨大的影响,未来心源性卒中的治疗会是多学科综合诊治,超声科、放射科、神经科、心脏科、社区医院之间的合作会更加紧密。另外,对于心源性卒中的防治中更关键的是预防,有效识别和解决风险因素,提高患者的教育和意识,并制定新的预防策略,这是未来的研究方向。针对可能诱发心源性卒中的相关原发疾病,丰富评估工具及提高检出率,对原发病进行及时干预,例如患有高风险心脏疾病(如严重主动脉瓣狭窄或房颤)的患者,可以考虑手术干预,对于卵圆孔未闭的患者,可以考虑经皮封堵术解决心源性来降低发生卒中的风险达到预防的目的。多元化的诊疗手段这对未来患者个体化治疗提出了巨大挑战。

文章引用

曹誉竞,陈 灏. 心源性卒中诊疗的研究进展
Progress in Diagnosis and Treatment of Cardiogenic Stroke[J]. 临床医学进展, 2023, 13(05): 7069-7077. https://doi.org/10.12677/ACM.2023.135988

参考文献

  1. 1. Jing, M., Bao, L.X.Y. and Seet, R.C.S. (2023) Estimated Incidence and Mortality of Stroke in China. JAMA Network Open, 6, e231468. https://doi.org/10.1001/jamanetworkopen.2023.1468

  2. 2. Wang, W., Jiang, B., Sun, H., et al. (2017) Prevalence, Incidence, and Mortality of Stroke in China: Results from a Nationwide Population-Based Survey of 480 687 Adults. Circulation, 135, 759-771. https://doi.org/10.1161/CIRCULATIONAHA.116.025250

  3. 3. Gao, S., Wang, Y.J., Xu, A.D., Li, Y.S. and Wang, D.Z. (2011) Chinese Ischemic Stroke Subclassification. Frontiers in Neurology, 2, Article 6. https://doi.org/10.3389/fneur.2011.00006

  4. 4. Simonsen, S.A., West, A.S., Heiberg, A.V., et al. (2022) Is the TOAST Classification Suitable for Use in Personalized Medicine in Ischemic Stroke? Journal of Personalized Medicine, 12, Article No. 496. https://doi.org/10.3390/jpm12030496

  5. 5. Tanaka, K., Koga, M., Lee, K.-J., et al. (2021) Transesophageal Echo-cardiography in Ischemic Stroke with Atrial Fibrillation. Journal of the American Heart Association, 10, e022242. https://doi.org/10.1161/JAHA.121.022242

  6. 6. Teodoro, R.S., Sampaio Silva, G., Modolo, G.P., et al. (2021) The Role of Transthoracic Echocardiography in the Evaluation of Patients with Ischemic Stroke. Frontiers in Cardiovascular Medicine, 8, Article ID: 710334. https://doi.org/10.3389/fcvm.2021.710334

  7. 7. Palazzo, P., Ingrand, P., Agius, P., Chaidi, R.B. and Neau, J.-P. (2019) Transcranial Doppler to Detect Right-to-Left Shunt in Cryptogenic Acute Ischemic Stroke. Brain and Behavior, 9, e01091. https://doi.org/10.1002/brb3.1091

  8. 8. Shahripour, R.B., Azarpazhooh, M.R., Akhuanzada, H., et al. (2021) Tran-scranial Doppler to Evaluate Postreperfusion Therapy Following Acute Ischemic Stroke: A Literature Review. Journal of Neuroimaging, 31, 849-857. https://doi.org/10.1111/jon.12887

  9. 9. Bernstein, R.A., Kamel, H., Granger, C.B., et al. (2021) Effect of Long-Term Continuous Cardiac Monitoring vs Usual Care on Detection of Atrial Fibrillation in Patients with Stroke At-tributed to Large- or Small-Vessel Disease: The STROKE-AF Randomized Clinical Trial. JAMA, 325, 2169-2177. https://doi.org/10.1001/jama.2021.6470

  10. 10. Schröder, J. and Thomalla, G. (2016) A Critical Review of Alberta Stroke Program Early CT Score for Evaluation of Acute Stroke Imaging. Frontiers in Neurology, 7, Article 245. https://doi.org/10.3389/fneur.2016.00245

  11. 11. Heran, M., Lindsay, P., Gubitz, G., et al. (2022) Canadian Stroke Best Practice Recommendations: Acute Stroke Management, 7th Edition Practice Guidelines Update, 2022. Canadian Journal of Neurological Sciences. https://doi.org/10.1017/cjn.2022.344

  12. 12. Ajili, N., Decroix, J.P., Preda, C., et al. (2016) Impact of Thrombolysis in Acute Ischaemic Stroke without Occlusion: An Observational Comparative Study. European Journal of Neurology, 23, 1380-1386. https://doi.org/10.1111/ene.13042

  13. 13. Powers, W.J. (2022) Strokelore: Therapeutic Relevance of Lacunar Infarcts. Journal of Stroke and Cerebrovascular Diseases, 31, Article ID: 106594. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106594

  14. 14. Rudilosso, S., Urra, X., San Roman, L., et al. (2015) Perfusion Deficits and Mismatch in Patients with Acute Lacunar Infarcts Studied with Whole-Brain CT Perfusion. American Journal of Neuroradiology, 36, 1407-1412. https://doi.org/10.3174/ajnr.A4303

  15. 15. Sun, C., Liu, X., Bao, C., et al. (2020) Advanced Non-Invasive MRI of Neuroplasticity in Ischemic Stroke: Techniques and Applications. Life Sciences, 261, Article ID: 118365. https://doi.org/10.1016/j.lfs.2020.118365

  16. 16. Suh, C.H., Jung, S.C., Cho, S.J., et al. (2020) MRI for Prediction of Hemorrhagic Transformation in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Acta Radiologica, 61, 964-972. https://doi.org/10.1177/0284185119887593

  17. 17. Hindricks, G., Potpara, T., Dagres, N., et al. (2021) 2020 Esc Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Asso-ciation for Cardio-Thoracic Surgery (EACTS): The Task Force for the Diagnosis and Management of Atrial Fibrillation of the European Society of Cardiology (ESC) Developed with the Special Contribution of the European Heart Rhythm Association (EHRA) of the ESC. European Heart Journal, 42, 373-498. https://doi.org/10.1093/eurheartj/ehaa612

  18. 18. Mazurek, M., Shantsila, E., Lane, D.A., et al. (2017) Guide-line-Adherent Antithrombotic Treatment Improves Outcomes in Patients with Atrial Fibrillation: Insights from the Com-munity-Based Darlington Atrial Fibrillation Registry. Mayo Clinic Proceedings, 92, 1203-1213. https://doi.org/10.1016/j.mayocp.2017.05.023

  19. 19. January, C.T., Wann, L.S., et al. (2019) 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients with Atrial Fibrillation: A Re-port of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm, 16, e66-e93. https://doi.org/10.1016/j.hrthm.2019.01.024

  20. 20. Sun, B., Chen, R.R., Gao, C. and Tao, L. (2022) Comparison of Outcomes between Novel Oral Anticoagulants and Warfarin Monotherapy in Patients with Left Atrial Appendage Closure: A Systematic Review and Meta-Analysis. Frontiers in Cardiovascular Medicine, 9, Article ID: 1023941. https://doi.org/10.3389/fcvm.2022.1023941

  21. 21. Ruff, C.T., Giugliano, R.P., Braunwald, E., Hoffman, E.B., et al. (2014) Comparison of the Efficacy and Safety of New Oral Anti-coagulants with Warfarin in Patients with Atrial Fibrillation: A Meta-Analysis of Randomised Trials. Lancet, 383, 955-962. https://doi.org/10.1016/S0140-6736(13)62343-0

  22. 22. Little, D., Chai-Adisaksopha, C., Hillis, C., Witt, D.M., et al. (2019) Resumption of Anticoagulant Therapy after Anticoagulant-Related Gastrointestinal Bleeding: A Sys-tematic Review and Meta-Analysis. Thrombosis Research, 175, 102-109. https://doi.org/10.1016/j.thromres.2019.01.020

  23. 23. Proietti, M., Romiti, G.F., Romanazzi, I., et al. (2018) Restart-ing Oral Anticoagulant Therapy after Major Bleeding in Atrial Fibrillation: A Systematic Review and Meta-Analysis. In-ternational Journal of Cardiology, 261, 84-91. https://doi.org/10.1016/j.ijcard.2018.03.053

  24. 24. Johnston, S.C., Easton, J.D., Farrant, M., Barsan, W., et al. (2018) Clopidogrel and Aspirin in Acute Ischemic Stroke and High-Risk TIA. New England Journal of Medicine, 379, 215-25. https://doi.org/10.1056/NEJMoa1800410

  25. 25. Brown, D.L., Levine, D.A., Albright, K., et al. (2021) Benefits and Risks of Dual versus Single Antiplatelet Therapy for Secondary Stroke Prevention: A Systematic Review for the 2021 Guideline for the Prevention of Stroke in Patients with Stroke and Transient Ischemic Attack. Stroke, 52, e468-e479. https://doi.org/10.1161/STR.0000000000000377

  26. 26. Wang, Y., Liu, M. and Pu, C. (2017) 2014 Chinese Guide-lines for Secondary Prevention of Ischemic Stroke and Transient Ischemic Attack: Compiled by the Chinese Society of Neurology, Cerebrovascular Disease Group. International Journal of Stroke, 12, 302-320. https://doi.org/10.1177/1747493017694391

  27. 27. Powers, W.J., Rabinstein, A.A., Ackerson, T., et al. (2018) 2018 Guidelines for the Early Management of Patients with Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 49, e46-e99. https://doi.org/10.1161/STR.0000000000000158

  28. 28. Andrade, J.G., Aguilar, M., Atzema, C., et al. (2020) The 2020 Canadian Cardiovascular Society/Canadian Heart Rhythm Society Comprehensive Guidelines for the Management of Atrial Fibrillation. Canadian Journal of Cardiology, 36, 1847-948. https://doi.org/10.1016/j.cjca.2020.09.001

  29. 29. 台楠, 司道远, 杨红亮, 贺玉泉. 心房颤动射频消融术后复发影响因素的研究进展[J]. 中国循证心血管医学杂志, 2022, 14(10): 1277-1280.

  30. 30. Sau, A., Al-Aidarous, S., Howard, J., et al. (2019) Optimum Lesion Set and Predictors of Outcome in Persistent Atrial Fibrillation Ablation: A Meta-Regression Analysis. EP Europace, 21, 1176-1184. https://doi.org/10.1093/europace/euz108

  31. 31. Collado, F.M.S., Lama von Buchwald, C.M., Anderson, C.K., et al. (2021) Left Atrial Appendage Occlusion for Stroke Prevention in Nonvalvular Atrial Fibrillation. Journal of the Ameri-can Heart Association, 10, e022274. https://doi.org/10.1161/JAHA.121.022274

  32. 32. January, C.T., Wann, L.S., Calkins, H., Chen, L.Y., et al. (2019) 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients with Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration with the Society of Thoracic Surgeons. Circulation, 140, e125-e151. https://doi.org/10.1161/CIR.0000000000000665

  33. 33. Whitlock, R.P., Belley-Cote, E.P., Paparella, D., et al. (2021) Left Atrial Appendage Occlusion during Cardiac Surgery to Prevent Stroke. New England Journal of Medicine, 384, 2081-2091. https://doi.org/10.1056/NEJMoa2101897

  34. 34. Rozen, G., Margolis, G., Marai, I., et al. (2022) Left Atrial Appendage Exclusion in Atrial Fibrillation. Frontiers in Cardiovascular Medicine, 9, Article ID: 949732. https://doi.org/10.3389/fcvm.2022.949732

  35. 35. Van Laar, C., Verberkmoes, N.J., Van Es, H.W., et al. (2018) Thoracoscopic Left Atrial Appendage Clipping: A Multicenter Cohort Analysis. JACC: Clinical Electrophysiology, 4, 893-901. https://doi.org/10.1016/j.jacep.2018.03.009

  36. 36. Lee, R., Vassallo, P., Kruse, J., et al. (2016) A Random-ized, Prospective Pilot Comparison of 3 Atrial Appendage Elimination Techniques: Internal Ligation, Stapled Excision, and Surgical Excision. The Journal of Thoracic and Cardiovascular Surgery, 152, 1075-1080. https://doi.org/10.1016/j.jtcvs.2016.06.009

  37. 37. Hirnle, G., Lewkowicz, J., Suwalski, P., et al. (2020) Effectiveness of Surgical Closure of Left Atrial Appendage during Minimally Invasive Mitral Valve Surgery. Kardiologia Polska, 78, 1137-1141. https://doi.org/10.33963/KP.15539

  38. 38. Wang, J.L., Zhou, K., Qin, Z., et al. (2021) Minimally Inva-sive Thoracoscopic Left Atrial Appendage Occlusion Compared with Transcatheter Left Atrial Appendage Closure for Stroke Prevention in Recurrent Nonvalvular Atrial Fibrillation Patients after Radiofrequency Ablation: A Prospective Cohort Stud. Journal of Geriatric Cardiology, 18, 877-885.

  39. 39. Zhang, S., Cui, Y., Li, J., et al. (2022) Concomitant Transcatheter Occlusion versus Thoracoscopic Surgical Clipping for Left Atrial Appendage in Patients Undergoing Abla-tion for Atrial Fibrillation: A Meta-Analysis. Frontiers in Cardiovascular Medicine, 9, Article 970847. https://doi.org/10.3389/fcvm.2022.970847

  40. 40. Toale, C., Fitzmaurice, G.J., Eaton, D., Lyne, J. and Redmond, K.C. (2019) Outcomes of Left Atrial Appendage Occlusion Using the AtriClip Device: A Systematic Review. Interactive Car-dioVascular and Thoracic Surgery, 29, 655-662. https://doi.org/10.1093/icvts/ivz156

  41. 41. Caliskan, E., Eberhard, M., Falk, V., Alkadhi, H. and Emmert, M.Y. (2019) Incidence and Characteristics of Left Atrial Appendage Stumps after Device-Enabled Epicardial Closure. Interactive CardioVascular and Thoracic Surgery, 29, 663-669. https://doi.org/10.1093/icvts/ivz176

  42. 42. Greenberg, J.W., Lee, R. and Hui, D.S. (2019) Patient Selection and Methods of Surgical Left Atrial Appendage Exclusion. Journal of Thrombosis and Thrombolysis, 48, 209-214. https://doi.org/10.1007/s11239-019-01881-2

  43. 43. Kuzmin, B., Staack, T., Wippermann, J. and Wacker, M. (2021) Left Atrial Appendage Occlusion Device Causing Coronary Obstruction: A Word of Caution. Journal of Cardiac Sur-gery, 36, 723-725. https://doi.org/10.1111/jocs.15222

  44. 44. Vondran, M., Rose, F., Treede, H., et al. (2022) Anterior Pathway for Ep-icardial Left Atrial Appendage Clip Occlusion during Minimally Invasive Atrioventricular Valve Surgery. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 17, 553-556. https://doi.org/10.1177/15569845221137886

  45. 45. Litwinowicz, R., Bartus, M., Burysz, M., et al. (2018) Long Term Outcomes after Left Atrial Appendage Closure with the Lariat Device—Stroke Risk Reduction Over Five Years Follow-up. PLOS ONE, 13, e0208710. https://doi.org/10.1371/journal.pone.0208710

  46. 46. Mohanty, S., Gianni, C., Trivedi, C., et al. (2020) Risk of Thromboembolic Events after Percutaneous Left Atrial Appendage Ligation in Patients with Atrial Fibrillation: Long-Term Results of a Multicenter Study. Heart Rhythm, 17, 175-181. https://doi.org/10.1016/j.hrthm.2019.08.003

  47. 47. Go, A.S., Al-Khatib, S.M., Desvigne-Nickens, P., et al. (2023) Research Opportunities in Stroke Prevention for Atrial Fibrillation: A Report from a National Heart, Lung, and Blood In-stitute Virtual Workshop. Stroke, 54, e75-e85. https://doi.org/10.1161/STROKEAHA.121.038273

  48. 48. Reddy, V.Y., Doshi, S.K., Kar, S., Gibson, D.N., et al. (2017) 5-Year Outcomes after Left Atrial Appendage Closure: From the PREVAIL and PROTECT AF Trials. Journal of the American College of Cardiology, 70, 2964-2975. https://doi.org/10.1016/j.jacc.2017.10.021

  49. 49. Sedaghat, A., Nickenig, G., Schrickel, J.W., et al. (2021) Incidence, Predictors and Outcomes of Device-Related Thrombus after Left Atrial Appendage Closure with the WATCHMAN De-vice—Insights from the EWOLUTION Real World Registry. Catheterization and Cardiovascular Interventions, 97, E1019-E1024. https://doi.org/10.1002/ccd.29458

  50. 50. Aminian, A., Lalmand, J., Tzikas, A., et al. (2015) Emboli-zation of Left Atrial Appendage Closure Devices: A Systematic Review of Cases Reported with the Watchman Device and the Amplatzer Cardiac Plug. Catheterization and Cardiovascular Interventions, 86, 128-135. https://doi.org/10.1002/ccd.25891

  51. 51. 黄从新, 张澍, 黄德嘉, 等. 左心耳干预预防心房颤动患者血栓栓塞事件: 目前的认识和建议-2019 [J]. 中国心脏起搏与心电生理杂志, 2019, 33(5): 385-401.

  52. 52. Berge, E., Whiteley, W., Audebert, H., et al. (2021) European Stroke Organisation (ESO) Guidelines on Intravenous Thrombolysis for Acute Ischaemic Stroke. European Stroke Journal, 6, I-LXII. https://doi.org/10.1177/2396987321989865

  53. 53. Jadhav, A.P., Desai, S.M. and Jovin, T.G. (2021) Indications for Mechanical Thrombectomy for Acute Ischemic Stroke: Current Guidelines and Beyond. Neurology, 97, S126-S136. https://doi.org/10.1212/WNL.0000000000012801

  54. 54. Gao, W., Qin, B., Qin, H., et al. (2023) Efficacy and Safety of the Soft Torqueable Catheter Optimized for Intracranial Access in the Endovascular Treatment of Acute Ischemic Stroke: A Meta-Analysis. World Neurosurgery, 171, 167-174. https://doi.org/10.1016/j.wneu.2022.12.038

  55. 55. Meder, G., Żuchowski, P., Skura, W., et al. (2021) Mechanical Thrombectomy in Stroke. Experience from Switching from Stent Retriever Only to Stent Retriever Combined with Aspi-ration Catheter. Journal of Clinical Medicine, 10, Article No. 1802. https://doi.org/10.3390/jcm10091802

  56. NOTES

    *通讯作者。

期刊菜单