﻿ APF中完美谐波消除法的仿真与分析 Simulation and Analysis of the Perfect Harmonic Cancellation Method for APF

Smart Grid
Vol.05 No.06(2015), Article ID:16521,8 pages
10.12677/SG.2015.56034

Simulation and Analysis of the Perfect Harmonic Cancellation Method for APF

Xin Kong, Baohua Wang

College of Automation, Nanjing University of Science and Technology, Nanjing Jiangsu

Received: Nov. 26th, 2015; accepted: Dec. 8th, 2015; published: Dec. 15th, 2015

ABSTRACT

Harmonic detection is one of the most important control strategies in active power filter (APF). When the grid voltage is under distorted or unbalanced circumstance, the harmonic detection of APF causes error using the conventional harmonic detection methods, and the compensation effect is unsatisfactory. The compensating current equation of the perfect harmonic cancellation (PHC) is derived based on Instantaneous Reactive Power Theory in the paper. The PHC method uses positive sequence components of the grid voltage without the effect of distortion and unbalance while detecting harmonic. It makes for error reduction. Finally, the PHC method is simulated in the paper when the grid voltage is under normal circumstance or distorted and unbalanced circumstance. The simulation results verify that the APF using the PHC method has more satisfied compensation effect when the grid voltage is under distorted and unbalanced circumstance, and it proves that the PHC method is correct and superior.

Keywords:Active Power Filter, Harmonic Detection, Instantaneous Reactive Power Theory, The Perfect Harmonic Cancellation (PHC)

APF中完美谐波消除法的仿真与分析

1. 引言

APF的控制策略包括以下两个环节：谐波检测和电流控制。谐波检测是解决谐波问题的一个重要手段[9] ，对抑制谐波有着重要的指导作用，是众多国内外学者致力研究的目标。基于此，国内外学者提出了诸多谐波检测的方法，时域中常用的方法包括基于三相瞬时无功功率理论的p-q法 [10] 、同步旋转坐标法(d-q法)和完美谐波消除法(Perfect Harmonic Cancellation, PHC) [11] [12] 等。其中p-q法在电网电压畸变或负载不对称时，无法有效地检测出谐波电流。在电网电压畸变或不对称时，d-q法的检测效果优于p-q法，但是补偿效果仍不理想。PHC法检测谐波时，以电网电压中的正序基波分量为基准，排除了电网电压畸变或者不对称带来的不利影响，补偿效果较好。

2. PHC法补偿电流推导

Figure 1. Main circuit of shunt APF

Figure 2. Structure diagram of APF

(1)

(2)

(3)

(4)

(5)

3. 仿真与分析

3.2. 三相电网电压正弦对称

3.3. 三相电网电压含有谐波对称

3.4. 三相电网电压含有谐波不对称

Figure 3. Simulation model of d-q method

Figure 4. Simulation model of PHC method

Figure 5. Simulation model of p-q method

(a) 补偿前的仿真波形 (b) d-q法的仿真波形(c) PHC法的仿真波形 (d) p-q法的仿真波形

Figure 6. Simulation waveforms of the three methods using sinusoidal symmetry voltage

(a) 补偿前的仿真波形 (b) d-q法的仿真波形(c) PHC法的仿真波形(d) p-q法的仿真波形

Figure 7. Simulation waveforms of the three methods using non-sinusoidal symmetry voltage

(a) 补偿前的仿真波形 (b) d-q法的仿真波形(c) PHC法的仿真波形 (d) p-q法的仿真波形

Figure 8. Simulation waveforms of the three methods using non-sinusoidal dissymmetry voltage

4. 结论

Simulation and Analysis of the Perfect Harmonic Cancellation Method for APF[J]. 智能电网, 2015, 05(06): 285-292. http://dx.doi.org/10.12677/SG.2015.56034

1. 1. 姚杰. 并联型有源电力滤波器的控制算法研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2009.

2. 2. Grady, W.M., Samotyi, M.J. and Noyola, A.H. (1990) Survey of Active Power Line Conditioning Methodologies. IEEE Transactions on PD, 5, 1536-1542. http://dx.doi.org/10.1109/61.57998

3. 3. 丁道宏. 电力电子技术[M]. 修订版. 北京: 航空工业出版社, 1999.

4. 4. 陈东华. 有源滤波应用于飞机交流电源系统的关键技术研究[D]: [博士学位论文]. 南京: 南京航空航天大学, 2007.

5. 5. 石磊. 新型航空并联有源电力滤波器的研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2011.

6. 6. 李建林, 张仲超. 有源电力滤波器控制策略综述[J]. 电力建设, 2003, 24(6): 44-46.

7. 7. 王兆安, 杨君, 等. 谐波抑制和无功功率补偿[M]. 北京: 机械工业出版社, 2005: 220-241.

8. 8. Akagi, H., Fujita, H. and Wada, K. (1999) A Shunt Active Filter Based on Voltage Detection for Harmonic Termination of a Radial Power Distribution Line. IEEE Transactions on IA, 35, 638-645. http://dx.doi.org/10.1109/28.767015

9. 9. 魏志强. 电力有源滤波器谐波检测方法研究[D]: [硕士学位论文]. 天津: 天津大学, 2007.

10. 10. Akagi, H., Kanazava, Y. and Nabae, A. (1984) Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Component. IEEE Transactions and APPI, 20, 625-630. http://dx.doi.org/10.1109/TIA.1984.4504460

11. 11. Montero, M., Cadaval, E. and Gonzalez, F. (2007) Comparison of Control Strategies for Shunt Active Power Filters in Three-Phase Four-Wire System. IEEE Transactions on Power Electronics, 22, 229-236. http://dx.doi.org/10.1109/TPEL.2006.886616

12. 12. Rafiei, M.R., Toliyat, H.A., Ghazi, R. and Gopalarathanam, T. (2001) An Optimal and Flexible Control Strategy for Active Filtering and Power Factor Correction under Nonsinusoidal Line Voltages. IEEE Transactions on Power Delivery, 16, 297-305. http://dx.doi.org/10.1109/61.915499

13. 13. 卢盈. 应用于飞机交流电源的有源电力滤波器研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2009.