﻿ 一维热传导条件下测点温度与加热时间的相关性研究 Correlation between the Measured Point Temperature and the Heating Time under the Conditions of One-Dimensional Heat Conduction

Vol.06 No.02(2016), Article ID:17395,7 pages
10.12677/AG.2016.62009

Correlation between the Measured Point Temperature and the Heating Time under the Conditions of One-Dimensional Heat Conduction

Ziwen Liu*, Chunde Piao#, Liang Xie, Bin Li, Dashuai Yang, Dongyue Pan

School of Resources and Earth Science, China University of Mining, Xuzhou Jiangsu

Received: Mar. 28th, 2016; accepted: Apr. 18th, 2016; published: Apr. 21st, 2016

ABSTRACT

In order to study the relationship between the changes of linear heating device testing point temperature and heating time in the heat transfer process, we study the relevance between radiation values E and the power P at the center of the heating device. Based on the nature of the surrounding conductive medium, we derived one-dimensional heat conduction model which considered the time delay parameters. We verify the suitability of the theoretical model through laboratory experiments by heating bar arrangement. The results show that test point temperature slope is gradually reduced and stabilized when the test point temperature difference gradually rises in the effect of heat conduction. Through the measured temperature values compared with theoretical calculations, it showed that the maximum relative error reached 20% in early experiments, but the temperature difference decreased and tended to zero with the increase of heating time and source of power, showed that theoretical formula derived realistic in this paper.

Keywords:One-Dimensional Heat Conduction, Temperature Distribution, Temperature Gradient

1. 引言

2. 一维热传导模型

(1)

(2)

(3)

(4)

(5)

Figure 1. Temperature distribution of infinite cylinder

(6)

(7)

(8)

(9)

3. 加热棒温度传导模拟实验

3.1. 实验方案

Figure 2. Experimental device diagram

Figure 3. Schematic diagram of heating rod structure

14℃。试验时将电阻丝加热到石英管壁出现温度变化的时间段作为时间延迟τ0，并按照一定温度梯度记录加热时间，当玻璃管表面温度不发生变化时终止实验。按以上步骤，更换水浴箱中的水，放置功率为300 W加热棒进行下一组实验。

3.2. 实验结果与分析

Figure 4. Temperature change curve of outer surface center of 200 W heating rod

Figure 5. Temperature change curve of outer surface center of 300 W heating rod

4. 结论

1) 通过考虑时间延迟参数的一维热传导模型，得到了加热棒表面温度随时间的变化曲线。结果表明，由于加热初期石英管壁与电阻丝之间的温差较大，测试点温度随时间的斜率近似为直线，但随着加热时间的增加，两者的温差减小，温度变化斜率逐渐减小并趋于稳定。

2) 通过不同功率下对理论计算的温度量值与温度实测值进行了对比，其结果两者在实验初期相对误差最大达到20%，但随着加热时间的增加，两者的温度逐渐趋于一致，说明本文推导的理论计算公式符合实际。

Correlation between the Measured Point Temperature and the Heating Time under the Conditions of One-Dimensional Heat Conduction[J]. 地球科学前沿, 2016, 06(02): 72-78. http://dx.doi.org/10.12677/AG.2016.62009

1. 1. 董海洲, 张小燕. 堤坝渗漏圆柱状热源模型及试验研究[J]. 岩石力学与工程学报, 2011, 30(S2): 3665-3670.

2. 2. 孙培德. 深井巷道围岩地温场温度分布可视化模拟研究[J]. 岩土力学, 2005, 26(S2): 222-226.

3. 3. 赵坚. 岩石裂隙中的水流–岩石热传导[J]. 岩石力学与工程学报, 1999, 18(2): 119-123.

4. 4. 王小明, 丁蓬莱. 越江隧道周围土体温度场的演化规律[J]. 公路交通科技, 2013, 30(4): 76-81.

5. 5. 高红贝, 邵明安. 温度对土壤水分运动基本参数的影响[J]. 水科学进展. 2011, 22(4): 484-494.

6. 6. 曹鼎峰, 施斌, 严珺凡, 等. 基于C-DTS 的土壤含水率分布式测定方法研究[J]. 岩土工程学报, 2014, 36(5): 910- 915.

7. 7. 严珺凡, 施斌, 曹鼎峰, 等. 基于碳纤维加热光缆的砂性土渗流场C-DTS分布式监测试验研究[J]. 岩土力学, 2015, 36(2): 430-436.

8. 8. 杨世铭, 陶文铨. 传热学(第四版)[M]. 北京: 高等教育出版社, 2006.

9. 9. 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.